Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Nat Chem Biol ; 19(4): 498-506, 2023 04.
Article in English | MEDLINE | ID: mdl-36702959

ABSTRACT

[NiFe]-hydrogenases are biotechnologically relevant enzymes catalyzing the reversible splitting of H2 into 2e- and 2H+ under ambient conditions. Catalysis takes place at the heterobimetallic NiFe(CN)2(CO) center, whose multistep biosynthesis involves careful handling of two transition metals as well as potentially harmful CO and CN- molecules. Here, we investigated the sequential assembly of the [NiFe] cofactor, previously based on primarily indirect evidence, using four different purified maturation intermediates of the catalytic subunit, HoxG, of the O2-tolerant membrane-bound hydrogenase from Cupriavidus necator. These included the cofactor-free apo-HoxG, a nickel-free version carrying only the Fe(CN)2(CO) fragment, a precursor that contained all cofactor components but remained redox inactive and the fully mature HoxG. Through biochemical analyses combined with comprehensive spectroscopic investigation using infrared, electronic paramagnetic resonance, Mössbauer, X-ray absorption and nuclear resonance vibrational spectroscopies, we obtained detailed insight into the sophisticated maturation process of [NiFe]-hydrogenase.


Subject(s)
Cupriavidus necator , Hydrogenase , Catalytic Domain , Hydrogenase/chemistry , Hydrogenase/metabolism , Cupriavidus necator/chemistry , Cupriavidus necator/metabolism , Oxidation-Reduction , Nickel
2.
J Basic Microbiol ; 61(9): 825-834, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34342882

ABSTRACT

Polyhydroxyalkanoates (PHA) are polymers produced by microorganisms with increasing commercialization potential; Cupriavidus necator has been the model microorganism to research PHA production. Despite many contributions concerning the formation and degradation of PHA granules, as well as the morphological changes in cells, these phenomena have not been univocally explained yet. Thus, this study aims to integrate the microscopic and analytical analysis to characterize changes in bacterial cell/PHA granules morphology, PHA content, and yield coefficients under different cultivation strategies of C. necator ATCC 17697. The cell size and morphology, granule size and amount, residual biomass, and PHA concentration along the fermentation and degradation depend greatly on nutritional conditions and cultivation time of C. necator. It was proposed to calculate a yield coefficient for the residual biomass production in the PHA utilization stage, related to the bacteria's ability to survive without a carbon source in the culture medium by utilizing the accumulated PHA previously. Maximum granule length reached 1.07 µm after 72 h of PHA accumulation stage under optimum nutritional conditions. This value is twice the values previously reported for C. necator. It is important since the larger PHA granules facilitate the recovery of PHA and different application development.


Subject(s)
Culture Media/chemistry , Cupriavidus necator/metabolism , Polyhydroxyalkanoates/metabolism , Biomass , Carbon/metabolism , Cupriavidus necator/chemistry , Fermentation , Polyhydroxyalkanoates/analysis
3.
Biochemistry ; 60(29): 2309-2319, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34254784

ABSTRACT

Consensus design (CD) is a representative sequence-based protein design method that enables the design of highly functional proteins by analyzing vast amounts of protein sequence data. This study proposes a partial consensus design (PCD) of a protein as a derivative approach of CD. The method replaces the target protein sequence with a consensus sequence in a secondary-structure-dependent manner (i.e., regionally dependent and divided into α-helix, ß-sheet, and loop regions). In this study, we generated several artificial partial consensus l-threonine 3-dehydrogenases (PcTDHs) by PCD using the TDH from Cupriavidus necator (CnTDH) as a target protein. Structural and functional analysis of PcTDHs suggested that thermostability would be independently improved when consensus mutations are introduced into the loop region of TDHs. On the other hand, enzyme kinetic parameters (kcat/Km) and average productivity would be synergistically enhanced by changing the combination of the mutations-replacement of one region of CnTDH with a consensus sequence provided only negative effects, but the negative effects were nullified when the two regions were replaced simultaneously. Taken together, we propose the hypothesis that there are protein regions that encode individual protein properties, such as thermostability and activity, and that the introduction of consensus mutations into these regions could additively or synergistically modify their functions.


Subject(s)
Alcohol Oxidoreductases/chemistry , Bacterial Proteins/chemistry , Cupriavidus necator/chemistry , Alcohol Oxidoreductases/genetics , Bacterial Proteins/genetics , Consensus Sequence , Crystallography, X-Ray , Cupriavidus necator/genetics , Models, Molecular , Mutagenesis , Mutation , Protein Engineering , Protein Stability , Protein Structure, Secondary , Temperature
4.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Article in English | MEDLINE | ID: mdl-34312231

ABSTRACT

Polyhydroxyalkanoates (PHAs) are biodegradable polyesters that are intracellularly accumulated as distinct insoluble granules by various microorganisms. PHAs have attracted much attention as sustainable substitutes for petroleum-based plastics. However, the formation of PHA granules and their characteristics, such as localization, volume, weight, and density of granules, in an individual live bacterial cell are not well understood. Here, we report the results of three-dimensional (3D) quantitative label-free analysis of PHA granules in individual live bacterial cells through measuring the refractive index distributions by optical diffraction tomography (ODT). The formation and growth of PHA granules in the cells of Cupriavidus necator, the best-studied native PHA producer, and recombinant Escherichia coli harboring C. necator poly(3-hydroxybutyrate) (PHB) biosynthesis pathway are comparatively examined. Through the statistical ODT analyses of the bacterial cells, the distinctive characteristics for density and localization of PHB granules in vivo could be observed. The PHB granules in recombinant E. coli show higher density and localization polarity compared with those of C. necator, indicating that polymer chains are more densely packed and granules tend to be located at the cell poles, respectively. The cells were investigated in more detail through real-time 3D analyses, showing how differently PHA granules are processed in relation to the cell division process in native and nonnative PHA-producing strains. We also show that PHA granule-associated protein PhaM of C. necator plays a key role in making these differences between C. necator and recombinant E. coli strains. This study provides spatiotemporal insights into PHA accumulation inside the native and recombinant bacterial cells.


Subject(s)
Cupriavidus necator/chemistry , Escherichia coli/chemistry , Polyhydroxyalkanoates/chemistry , Tomography, Optical/methods , Cupriavidus necator/metabolism , Imaging, Three-Dimensional
5.
FEBS J ; 288(15): 4560-4575, 2021 08.
Article in English | MEDLINE | ID: mdl-33576566

ABSTRACT

LysR-type transcription regulators (LTTRs) comprise one of the largest families of transcriptional regulators in bacteria. They are typically homo-tetrameric proteins and interact with promoter DNA of ~ 50-60 bp. Earlier biochemical studies have suggested that LTTR binding to promoter DNA bends the DNA and, upon inducer binding, the bend angle of the DNA is reduced through a quaternary structure change of the tetrameric LTTR, leading to the activation of transcription. To date, crystal structures of full-length LTTRs, DNA-binding domains (DBD) with their target DNAs, and the regulatory domains with and without inducer molecules have been reported. However, these crystal structures have not provided direct evidence of the quaternary structure changes of LTTRs or of the molecular mechanism underlying these changes. Here, we report the first crystal structure of a full-length LTTR, CbnR, in complex with its promoter DNA. The crystal structure showed that, in the absence of bound inducer molecules, the four DBDs of the tetrameric CbnR interact with the promoter DNA, bending the DNA by ~ 70°. Structural comparison between the DNA-free and DNA-bound forms demonstrates that the quaternary structure change of the tetrameric CbnR required for promoter region-binding arises from relative orientation changes of the three domains in each subunit. The mechanism of the quaternary structure change caused by inducer binding is also discussed based on the present crystal structure, affinity analysis between CbnR and the promoter DNA, and earlier mutational studies on CbnR. DATABASE: Atomic coordinates and structure factors for the full-length Cupriavidus necator NH9 CbnR in complex with promoter DNA are available in the Protein Data Bank under the accession code 7D98.


Subject(s)
Bacterial Proteins/chemistry , Molecular Docking Simulation , Transcription Factors/chemistry , Bacterial Proteins/metabolism , Binding Sites , Crystallography, X-Ray , Cupriavidus necator/chemistry , DNA/chemistry , DNA/metabolism , Promoter Regions, Genetic , Protein Binding , Transcription Factors/metabolism
6.
Int J Biol Macromol ; 174: 449-456, 2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33485890

ABSTRACT

Here, we report an analysis method for determining PHA (polyhydroxyalkanoates) contents and their monomer composition in microbial cells based on pyrolysis gas chromatography combined with mass spectrometry (Py-GC/MS). Various kinds of microbial cells accumulating different PHA contents and monomer compositions were prepared through the cultivation of Ralstonia eutropha and recombinant Escherichia coli. Py-GC/MS could analyse these samples in a short time without complicated pretreatment steps. Characteristic peaks such as 2-butenoic acid, 2-pentenoic acid, and hexadecanoic acid regarding PHA compositions and cell components were identified. Considering constituents of cells and ratios of peak areas of dehydrated monomers to hexadecanoic acid, a simple equation for estimation of PHA contents in microbial cells was derived. Also, monomer compositions of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) in R. eutropha could be successfully determined based on peak area of 2-butenoic acid and 2-pentenoic acid of Py-GC/MS, which are the corresponding species of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) in PHBV. Correlation of results between GC-FID and Py-GC/MS could be fitted very well. This method shows similar results for the samples obtained from same experimental conditions, allowing rapid and reliable analysis. Py-GC/MS can be a promising tool to rapidly screen PHA-positive strains based on polymer contents along with monomer compositions.


Subject(s)
Cupriavidus necator/growth & development , Escherichia coli/growth & development , Polyhydroxyalkanoates/analysis , 3-Hydroxybutyric Acid/chemistry , Batch Cell Culture Techniques , Cell Membrane/chemistry , Crotonates/chemistry , Cupriavidus necator/chemistry , Escherichia coli/chemistry , Gas Chromatography-Mass Spectrometry , Pentanoic Acids/chemistry , Polyhydroxyalkanoates/isolation & purification , Pyrolysis
7.
N Biotechnol ; 60: 12-19, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-32846214

ABSTRACT

Oil extracted from spent coffee grounds (SCG) [yield 16.8 % (w/w)] was discovered to be a highly suitable carbon substrate for the biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3 HV)] copolymers by Cupriavidus necator DSM 545 in the absence of any traditional 3 HV precursors. Cells cultivated in a 3 L bioreactor (batch) reached a total biomass concentration of 8.9 g L-1 with a P(3HB-co-3 HV) (6.8 mol% 3 HV) content of 89.6 % (w/w). In contrast, cells grown on sunflower oil reached a total biomass concentration of 9.4 gL-1 with a P(3HB-co-3 HV) (0.2 mol% 3 HV) content of 88.1 % (w/w). It is proposed that the organism could synthesize 3 HV monomers from succinyl CoA, an intermediate of the tricarboxylic acid (TCA) cycle, via the succinate-propionate metabolic pathway.


Subject(s)
Coffee/chemistry , Cupriavidus necator/metabolism , Oils/chemistry , Polyesters/metabolism , Coffee/metabolism , Cupriavidus necator/chemistry , Molecular Structure , Oils/isolation & purification , Oils/metabolism , Polyesters/chemistry
8.
Electrophoresis ; 42(5): 656-666, 2021 03.
Article in English | MEDLINE | ID: mdl-33215725

ABSTRACT

Rare earth elements (REEs) are widely used across different industries due to their exceptional magnetic and electrical properties. In this work, Cupriavidus necator is characterized using dielectrophoretic ultra-high-frequency measurements, typically in MHz range to quantify the properties of cytoplasm in C. necator for its metal uptake/bioaccumulation capacity. Cupriavidus necator, a Gram-negative bacteria strain is exposed to REEs like europium, samarium, and neodymium in this study. Dielectrophoretic crossover frequency experiments were performed on the native C. necator species pre- and post-exposure to the REEs at MHz frequency range. The net conductivity of native C. necator, Cupriavidus europium, Cupriavidus samarium, and Cupriavidus neodymium are 15.95 ± 0.029 µS/cm, 16.15 ± 0.028 µS/cm, 16.05 ± 0.029 µS/cm, 15.61 ± 0.005 µS/cm respectively. The estimated properties of the membrane published by our group are used to develop a microfluidic sorter by modeling and simulation to separate REE absorbed C. necator from the unabsorbed native C. necator species using COMSOL Multiphysics commercial software package v5.5.


Subject(s)
Cupriavidus necator/metabolism , Electrophoresis/methods , Metals, Rare Earth , Bioaccumulation , Computer Simulation , Cupriavidus necator/chemistry , Metals, Rare Earth/analysis , Metals, Rare Earth/chemistry , Metals, Rare Earth/metabolism , Models, Chemical
9.
Anal Chem ; 92(24): 15711-15718, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33253538

ABSTRACT

The gut microbiome and its metabolic processes are dynamic systems. Surprisingly, our understanding of gut microbiome dynamics is limited. Here, we report a metaproteomic workflow that involves protein stable isotope probing (protein-SIP) and identification/quantification of partially labeled peptides. We also developed a package, which we call MetaProfiler, that corrects for false identifications and performs phylogenetic and time series analysis for the study of microbiome dynamics. From the stool sample of five mice that were fed with 15N hydrolysate from Ralstonia eutropha, we identified 12 326 nonredundant unlabeled peptides, of which 8256 of their heavy counterparts were quantified. These peptides revealed incorporation profiles over time that were different between and within taxa, as well as between and within clusters of orthologous groups (COGs). Our study helps unravel the complex dynamics of protein synthesis and bacterial dynamics in the mouse microbiome. MetaProfiler and the bioinformatic pipeline are available at https://github.com/northomics/MetaProfiler.git.


Subject(s)
Bacterial Proteins/analysis , Cupriavidus necator/chemistry , Peptides/analysis , Proteomics , Animals , Bacterial Proteins/metabolism , Isotope Labeling , Male , Mass Spectrometry , Mice , Mice, Inbred C57BL , Peptides/metabolism
10.
Chembiochem ; 21(11): 1573-1581, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32180334

ABSTRACT

Hydrogenases (H2 ase) catalyze the oxidation of dihydrogen and the reduction of protons with remarkable efficiency, thereby attracting considerable attention in the energy field due to their biotechnological potential. For this simple reaction, [NiFe] H2 ase has developed a sophisticated but intricate mechanism with the heterolytic cleavage of dihydrogen, where its Ni-Fe active site exhibits various redox states. Recently, new spectroscopic and crystal structure studies of [NiFe] H2 ases have been reported, providing significant insights into the catalytic reaction mechanism, hydrophobic gas-access tunnel, proton-transfer pathway, and electron-transfer pathway of [NiFe] H2 ases. In addition, [NiFe] H2 ases have been shown to play an important role in biofuel cell and solar dihydrogen production. This concept provides an overview of the biocatalytic reaction mechanism and biochemical application of [NiFe] H2 ases based on the new findings.


Subject(s)
Archaeal Proteins/chemistry , Bacterial Proteins/chemistry , Electrons , Hydrogen/chemistry , Hydrogenase/chemistry , Iron-Sulfur Proteins/chemistry , Archaeal Proteins/metabolism , Bacterial Proteins/metabolism , Biocatalysis , Bioelectric Energy Sources , Catalytic Domain , Cupriavidus necator/chemistry , Cupriavidus necator/enzymology , Desulfovibrio gigas/chemistry , Desulfovibrio gigas/enzymology , Desulfovibrio vulgaris/chemistry , Desulfovibrio vulgaris/enzymology , Humans , Hydrogen/metabolism , Hydrogenase/metabolism , Hydrophobic and Hydrophilic Interactions , Iron-Sulfur Proteins/metabolism , Methanosarcina barkeri/chemistry , Methanosarcina barkeri/enzymology , Oxidation-Reduction , Protons , Solar Energy
11.
Biotechnol Prog ; 36(4): e2992, 2020 07.
Article in English | MEDLINE | ID: mdl-32185881

ABSTRACT

Alligator weed (Alternanthera philoxeroides) is a stoloniferous, amphibious and perennial herb which has invaded many parts of the world and led to serious environmental and ecological problems. In order to exploit cheap carbon source for poly(3-hydroxybutyrate) (PHB) production, alligator weed hydrolysates were prepared by acid and enzyme treatment and used for PHB production via Cupriavidus necator. The bacterium utilized alligator weed enzymatic hydrolysate and produced the PHB concentration of 3.8 ± 0.2 g/L at the conditions of pH 7.0, 27.5°C, 1.5 g/L of nitrogen source, and 25 g/L of carbon source, this exceeded the value of 2.1 ± 0.1 g/L from acid hydrolysate media at the same conditions. In order to obtain the optimum conditions of PHB production, response surface methodology was employed which improved PHB content. The optimum conditions for PHB production are as follows: carbon source, 34 g/L; nitrogen source, 2 g/L; pH, 7; temperature, 28°C. After 72 hr of incubation, the bacterium produced 8.5 g/L of dry cell weight and 4.8 g/L of PHB. The PHB was subjected to Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and Molecular weight analysis and found the melting temperature, number average molecular mass, and polydispersity were 168.20°C, 185 kDa, and 2.1, respectively.


Subject(s)
Carbon/chemistry , Cupriavidus necator/genetics , Fermentation/genetics , Hydroxybutyrates/chemistry , Polyesters/chemistry , Amaranthaceae/chemistry , Cupriavidus necator/chemistry , Protein Hydrolysates/chemistry
12.
Org Lett ; 22(6): 2464-2469, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32150420

ABSTRACT

Microbial arene oxidation of benzoic acid with Ralstonia eutropha B9 provides a chiral highly functionalized cyclohexadiene, suitable for further structural diversification. Subjecting this scaffold to a Pd-catalyzed Heck reaction effects a regio- and stereoselective arylation of the cyclohexadiene ring, with 1,3-chirality transfer of stereogenic information installed in the microbial arene oxidation. Quantum chemical calculations explain the selectivity both by a kinetic preference for the observed arylation position and by reversible carbopalladation in competing positions. Further product transformation allowed the formation of a tricyclic ketone possessing four stereogenic centers. This demonstrates the capability of the method to introduce stereochemical complexity from planar nonchiral benzoic acid in just a few steps.


Subject(s)
Cupriavidus necator/metabolism , Cyclohexenes/chemical synthesis , Palladium/chemistry , Benzoates/chemistry , Catalysis , Cupriavidus necator/chemistry , Iodobenzenes/chemistry , Oxidation-Reduction , Stereoisomerism
13.
Methods Enzymol ; 630: 303-325, 2020.
Article in English | MEDLINE | ID: mdl-31931991

ABSTRACT

We describe the use of carbon as a versatile support for H2-driven redox biocatalysis for NADH-dependent CX bond reductions in batch and flow reactions. In each case, carbon is providing an electronic link between enzymes for H2 oxidation and reduction of the biological cofactor NAD+, as well as a support for a multi-enzyme biocatalysis system. Carbon nanopowders offer high surface areas for enzyme immobilization and good dispersion in aqueous solution for heterogeneous batch reactions. Difficulties in handling multi-wall carbon nanotubes in aqueous solution are overcome by growing them on quartz tubes to form carbon nanotube column reactors, and we show that these facilitate simple translation of H2-driven biocatalysis into flow processes. Using this flow reactor design, high conversions (90%) and total enzyme turnover numbers up to 54,000 could be achieved. Use of an entirely heterogeneous biocatalysis system simplifies recovery and re-use of the enzymes; combined with highly atom-efficient cofactor recycling, this means that high product purity can be achieved. We demonstrate these methods as platform approaches for overcoming challenges with NADH-dependent biocatalysis.


Subject(s)
Bacillus subtilis/enzymology , Cupriavidus necator/enzymology , Enzymes, Immobilized/chemistry , Escherichia coli/enzymology , Nanotubes, Carbon/chemistry , Amination , Bacillus subtilis/chemistry , Biocatalysis , Bioreactors , Cupriavidus necator/chemistry , Escherichia coli/chemistry , Hydrogenase/chemistry , Hydrogenation , Models, Molecular , NAD/chemistry , NADH, NADPH Oxidoreductases/chemistry , Oxidation-Reduction
14.
N Biotechnol ; 56: 16-20, 2020 May 25.
Article in English | MEDLINE | ID: mdl-31731039

ABSTRACT

A bioreactor was designed to provide high gas mass transfer to reach cell and product titres in the g L-1 level from CO2 for realistic, laboratory scale, engineered autotrophic strain evaluation. The design was based on independent CO2, H2 and air inputs and the ability to operate at high pressures. The bioreactor configuration and cultivation strategy enabled growth of Cupriavidus necator strains for long periods, to reach over 3 g L-1 dry cell weight. No negative impact of the high pressure was observed on viability of the strains up to more than 4 bar overpressure. The cultivation was then carried out using an engineered isopropanol producing strain; in this case, 3.5 g L-1 isopropanol was obtained from CO2 as the sole carbon source. This is the first reported demonstration of a successful production from engineered bacteria of product in the g L-1 range on CO2, raising the prospect of future development of CO2-based bioprocesses.


Subject(s)
2-Propanol/metabolism , Bioreactors , Carbon Dioxide/metabolism , Cupriavidus necator/chemistry , 2-Propanol/chemistry , Carbon Dioxide/chemistry , Cupriavidus necator/metabolism
15.
J Am Chem Soc ; 141(26): 10272-10282, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31244185

ABSTRACT

Living cells do not interface naturally with nanoscale materials, although such artificial organisms can have unprecedented multifunctional properties, like wireless activation of enzyme function using electromagnetic stimuli. Realizing such interfacing in a nanobiohybrid organism (or nanorg) requires (1) chemical coupling via affinity binding and self-assembly, (2) the energetic coupling between optoelectronic states of artificial materials with the cellular process, and (3) the design of appropriate interfaces ensuring biocompatibility. Here we show that seven different core-shell quantum dots (QDs), with excitations ranging from ultraviolet to near-infrared energies, couple with targeted enzyme sites in bacteria. When illuminated by light, these QDs drive the renewable production of different biofuels and chemicals using carbon-dioxide (CO2), water, and nitrogen (from air) as substrates. These QDs use their zinc-rich shell facets for affinity attachment to the proteins. Cysteine zwitterion ligands enable uptake through the cell, facilitating cell survival. Together, these nanorgs catalyze light-induced air-water-CO2 reduction with a high turnover number (TON) of ∼106-108 (mols of product per mol of cells) to biofuels like isopropanol (IPA), 2,3-butanediol (BDO), C11-C15 methyl ketones (MKs), and hydrogen (H2); and chemicals such as formic acid (FA), ammonia (NH3), ethylene (C2H4), and degradable bioplastics polyhydroxybutyrate (PHB). Therefore, these resting cells function as nanomicrobial factories powered by light.


Subject(s)
Azotobacter vinelandii/metabolism , Cupriavidus necator/metabolism , Light , Nanotechnology , Quantum Dots/metabolism , Azotobacter vinelandii/chemistry , Carbon Dioxide/chemistry , Carbon Dioxide/metabolism , Cupriavidus necator/chemistry , Nitrogen/chemistry , Nitrogen/metabolism , Quantum Dots/chemistry , Water/chemistry , Water/metabolism
16.
Biomacromolecules ; 20(9): 3253-3260, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31062966

ABSTRACT

A considerable variety of different biopolymers is formed by the entirety of organisms present on earth. Most of these compounds are organic polymers such as polysaccharides, polyamino acids, polynucleotides, polyisoprenes or polyhydroxyalkanoates (PHAs), but some biopolymers can consist of solely inorganic monomers such as phosphate in polyphosphates (polyPs). In this contribution, we describe the formation of an organic-inorganic block copolymer consisting of poly(3-hydroxybutyrate) (PHB) and polyP. This was achieved by the expression of a fusion of the polyP kinase gene (ppk2c) with the PHB synthase gene (phaC) of Ralstonia eutropha in a polyP-free and PHB-free mutant background of R. eutropha. The fusion protein catalyzed both the formation of polyP by its polyP kinase domain and the formation of PHB by its PHB synthase domain. It was also possible to synthesize the polyP-PHB polymer in vitro with purified Ppk2c-PhaC, if the monomers, adenosine triphosphate (ATP) and 3-hydroxybutyryl-CoA (3HB-CoA), were provided. Most likely, the formed block copolymer (polyP-protein-PHB) turns into a blend of polyP and PHB after release from the enzyme.


Subject(s)
Biopolymers/chemistry , Polyesters/chemistry , Polyhydroxyalkanoates/chemistry , Polyphosphates/chemistry , Acyltransferases/chemistry , Acyltransferases/genetics , Bacterial Proteins/chemistry , Biopolymers/biosynthesis , Cupriavidus necator/chemistry , Cupriavidus necator/genetics , Polyhydroxyalkanoates/biosynthesis , Polyphosphates/metabolism
17.
Biochemistry ; 58(19): 2398-2407, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31045343

ABSTRACT

Thiol dioxygenases make up a class of ferrous iron-dependent enzymes that oxidize thiols to their corresponding sulfinates. X-ray diffraction structures of cysteine-bound cysteine dioxygenase show how cysteine is coordinated via its thiolate and amine to the iron and oriented correctly for O atom transfer. There are currently no structures with 3-mercaptopropionic acid or mercaptosuccinic acid bound to their respective enzymes, 3-mercaptopropionate dioxygenase or mercaptosuccinate dioxygenase. Sequence alignments and comparisons of known structures have led us to postulate key structural features that define substrate specificity. Here, we compare the rates and reactivities of variants of Rattus norvegicus cysteine dioxygenase and 3-mercaptopropionate dioxygenases from Pseudomonas aureginosa and Ralstonia eutropha (JMP134) and show how binary variants of three structural features correlate with substrate specificity and reactivity. They are (1) the presence or absence of a cis-peptide bond between residues Ser158 and Pro159, (2) an Arg or Gln at position 60, and (3) a Cys or Arg at position 164 (all RnCDO numbering). Different permutations of these features allow sulfination of l-cysteine, 3-mercaptopropionic acid, and ( R)-mercaptosuccinic acid to be promoted or impeded.


Subject(s)
3-Mercaptopropionic Acid/chemistry , Cysteine Dioxygenase/chemistry , Sulfhydryl Compounds/chemistry , Amino Acid Sequence , Animals , Catalysis , Crystallography, X-Ray , Cupriavidus necator/chemistry , Cysteine/chemistry , Iron/chemistry , Kinetics , Molecular Docking Simulation , Oxidation-Reduction , Pseudomonas/chemistry , Rats , Sequence Alignment , Substrate Specificity
18.
J Fish Dis ; 42(6): 777-787, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30850999

ABSTRACT

The natural amorphous polymer poly-ß-hydroxybutyrate (PHB-A: lyophilized Ralstonia eutropha containing 75% PHB) was used as a biological agent to control bacterial pathogens of blue mussel (Mytilus edulis) larvae. The larvae were supplied with PHB-A at a concentration of 1 or 10 mg/L for 6 or 24 hr, followed by exposure to either the rifampicin-resistant pathogen Vibrio splendidus or Vibrio coralliilyticus at a concentration of 105 CFU/ml. Larvae pretreated 6 hr with PHB-A (1 mg/L) survived a Vibrio challenge better relative to 24 hr pretreatment. After 96 hr of pathogen exposure, the survival of PHB-A-treated mussel larvae was 1.41- and 1.76-fold higher than the non-treated larvae when challenged with V. splendidus and V. coralliilyticus, respectively. Growth inhibition of the two pathogens at four concentrations of the monomer ß-HB (1, 5, 25 and 125 mM) was tested in vitro in LB35 medium, buffered at two different pH values (pH 7 and pH 8). The highest concentration of 125 mM significantly inhibited the pathogen growth in comparison to the lower levels. The effect of ß-HB on the production of virulence factors in the tested pathogenic Vibrios revealed a variable pattern of responses.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cupriavidus necator/chemistry , Hydroxybutyrates/pharmacology , Mytilus edulis/drug effects , Polyesters/pharmacology , Vibrio Infections/veterinary , Vibrio/drug effects , Animals , Biological Control Agents , Larva/drug effects , Larva/microbiology , Mytilus edulis/microbiology , Vibrio/pathogenicity , Vibrio Infections/prevention & control , Virulence Factors/metabolism
19.
Fish Shellfish Immunol ; 84: 196-203, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30266603

ABSTRACT

Marine invertebrates rely mainly on innate immune mechanisms that include both humoral and cellular responses. Antimicrobial peptides (AMPs), lysozyme and phenoloxidase activity, are important components of the innate immune defense system in marine invertebrates. They provide an immediate and rapid response to invading microorganisms. The impact of amorphous poly-ß-hydroxybutyrate (PHB-A) (1 mg PHB-A L-1) on gene expression of the AMPs mytimycin, mytilinB, defensin and the hydrolytic enzyme lysozyme in infected blue mussel larvae was investigated during "in vivo" challenge tests with Vibrio coralliilyticus (105 CFU mL-1). RNAs were isolated from mussel larvae tissue, and AMPs were quantified by q-PCR using the 18srRNA gene as a housekeeping gene. Our data demonstrated that AMPs genes had a tendency to be upregulated in challenged mussel larvae, and the strongest expression was observed from 24 h post-exposure onwards. The presence of both PHB-A and the pathogen stimulated the APMs gene expression, however no significant differences were noticed between treatments or between exposure time to the pathogen V. coralliilyticus. Looking at the phenoloxidase activity in the infected mussels, it was observed that the addition of PHB-A significantly increased the activity.


Subject(s)
Cupriavidus necator/chemistry , Gene Expression Regulation/immunology , Hydroxybutyrates/pharmacology , Immunity, Innate/genetics , Mytilus edulis/genetics , Mytilus edulis/immunology , Polyesters/pharmacology , Vibrio/physiology , Animals , Antimicrobial Cationic Peptides/genetics , Defensins/genetics , Gene Expression Profiling , Larva/genetics , Larva/immunology , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism , Muramidase/genetics , Mytilus edulis/growth & development
20.
Environ Microbiol ; 21(1): 72-80, 2019 01.
Article in English | MEDLINE | ID: mdl-30246324

ABSTRACT

RubisCO, the CO2 fixing enzyme of the Calvin-Benson-Bassham (CBB) cycle, is responsible for the majority of carbon fixation on Earth. RubisCO fixes 12 CO2 faster than 13 CO2 resulting in 13 C-depleted biomass, enabling the use of δ13 C values to trace CBB activity in contemporary and ancient environments. Enzymatic fractionation is expressed as an ε value, and is routinely used in modelling, for example, the global carbon cycle and climate change, and for interpreting trophic interactions. Although values for spinach RubisCO (ε = ~29‰) have routinely been used in such efforts, there are five different forms of RubisCO utilized by diverse photolithoautotrophs and chemolithoautotrophs and ε values, now known for four forms (IA, B, D and II), vary substantially with ε = 11‰ to 27‰. Given the importance of ε values in δ13 C evaluation, we measured enzymatic fractionation of the fifth form, form IC RubisCO, which is found widely in aquatic and terrestrial environments. Values were determined for two model organisms, the 'Proteobacteria' Ralstonia eutropha (ε = 19.0‰) and Rhodobacter sphaeroides (ε = 22.4‰). It is apparent from these measurements that all RubisCO forms measured to date discriminate less than commonly assumed based on spinach, and that enzyme ε values must be considered when interpreting and modelling variability of δ13 C values in nature.


Subject(s)
Bacterial Proteins/chemistry , Cupriavidus necator/enzymology , Rhodobacter sphaeroides/enzymology , Ribulose-Bisphosphate Carboxylase/chemistry , Bacterial Proteins/metabolism , Carbon Cycle , Carbon Isotopes/chemistry , Cupriavidus necator/chemistry , Cupriavidus necator/isolation & purification , Ecosystem , Photosynthesis , Rhodobacter sphaeroides/chemistry , Rhodobacter sphaeroides/isolation & purification , Ribulose-Bisphosphate Carboxylase/metabolism , Soil Microbiology , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...