Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73.004
Filter
1.
Plant Cell Rep ; 43(6): 137, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713285

ABSTRACT

KEY MESSAGE: cAMP modulates the phosphorylation status of highly conserved phosphosites in RNA-binding proteins crucial for mRNA metabolism and reprogramming in response to heat stress. In plants, 3',5'-cyclic adenosine monophosphate (3',5'-cAMP) is a second messenger that modulates multiple cellular targets, thereby participating in plant developmental and adaptive processes. Although its role in ameliorating heat-related damage has been demonstrated, mechanisms that govern cAMP-dependent responses to heat have remained elusive. Here we analyze the role cAMP-dependent phosphorylation during prolonged heat stress (HS) with a view to gain insight into processes that govern plant responses to HS. To do so, we performed quantitative phosphoproteomic analyses in Nicotiana tabacum Bright Yellow-2 cells grown at 27 °C or 35 °C for 3 days overexpressing a molecular "sponge" that reduces free intracellular cAMP levels. Our phosphorylation data and analyses reveal that the presence of cAMP is an essential factor that governs specific protein phosphorylation events that occur during prolonged HS in BY-2 cells. Notably, cAMP modulates HS-dependent phosphorylation of proteins that functions in mRNA processing, transcriptional control, vesicular trafficking, and cell cycle regulation and this is indicative for a systemic role of the messenger. In particular, changes of cAMP levels affect the phosphorylation status of highly conserved phosphosites in 19 RNA-binding proteins that are crucial during the reprogramming of the mRNA metabolism in response to HS. Furthermore, phosphorylation site motifs and molecular docking suggest that some proteins, including kinases and phosphatases, are conceivably able to directly interact with cAMP thus further supporting a regulatory role of cAMP in plant HS responses.


Subject(s)
Cyclic AMP , Heat-Shock Response , Nicotiana , Plant Proteins , Phosphorylation , Nicotiana/genetics , Nicotiana/metabolism , Heat-Shock Response/physiology , Cyclic AMP/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant
2.
Elife ; 132024 May 13.
Article in English | MEDLINE | ID: mdl-38739431

ABSTRACT

Survival of Mycobacterium tuberculosis within the host macrophages requires the bacterial virulence regulator PhoP, but the underlying reason remains unknown. 3',5'-Cyclic adenosine monophosphate (cAMP) is one of the most widely used second messengers, which impacts a wide range of cellular responses in microbial pathogens including M. tuberculosis. Herein, we hypothesized that intra-bacterial cAMP level could be controlled by PhoP since this major regulator plays a key role in bacterial responses against numerous stress conditions. A transcriptomic analysis reveals that PhoP functions as a repressor of cAMP-specific phosphodiesterase (PDE) Rv0805, which hydrolyzes cAMP. In keeping with these results, we find specific recruitment of the regulator within the promoter region of rv0805 PDE, and absence of phoP or ectopic expression of rv0805 independently accounts for elevated PDE synthesis, leading to the depletion of intra-bacterial cAMP level. Thus, genetic manipulation to inactivate PhoP-rv0805-cAMP pathway decreases cAMP level, stress tolerance, and intracellular survival of the bacillus.


Subject(s)
Bacterial Proteins , Cyclic AMP , Gene Expression Regulation, Bacterial , Mycobacterium tuberculosis , Stress, Physiological , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/physiology , Cyclic AMP/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Microbial Viability , Macrophages/microbiology , Macrophages/metabolism
3.
PLoS One ; 19(5): e0303507, 2024.
Article in English | MEDLINE | ID: mdl-38748623

ABSTRACT

Loss-of-function mutations in the type 2 vasopressin receptor (V2R) are a major cause of congenital nephrogenic diabetes insipidus (cNDI). In the context of partial cNDI, the response to desmopressin (dDAVP) is partially, but not entirely, diminished. For those with the partial cNDI, restoration of V2R function would offer a prospective therapeutic approach. In this study, we revealed that OPC-51803 (OPC5) and its structurally related V2R agonists could functionally restore V2R mutants causing partial cNDI by inducing prolonged signal activation. The OPC5-related agonists exhibited functional selectivity by inducing signaling through the Gs-cAMP pathway while not recruiting ß-arrestin1/2. We found that six cNDI-related V2R partial mutants (V882.53M, Y1283.41S, L1614.47P, T2736.37M, S3298.47R and S3338.51del) displayed varying degrees of plasma membrane expression levels and exhibited moderately impaired signaling function. Several OPC5-related agonists induced higher cAMP responses than AVP at V2R mutants after prolonged agonist stimulation, suggesting their potential effectiveness in compensating impaired V2R-mediated function. Furthermore, docking analysis revealed that the differential interaction of agonists with L3127.40 caused altered coordination of TM7, potentially contributing to the functional selectivity of signaling. These findings suggest that nonpeptide V2R agonists could hold promise as potential drug candidates for addressing partial cNDI.


Subject(s)
Diabetes Insipidus, Nephrogenic , Receptors, Vasopressin , Receptors, Vasopressin/genetics , Receptors, Vasopressin/agonists , Receptors, Vasopressin/metabolism , Humans , HEK293 Cells , Diabetes Insipidus, Nephrogenic/drug therapy , Diabetes Insipidus, Nephrogenic/genetics , Diabetes Insipidus, Nephrogenic/metabolism , Mutation , Signal Transduction/drug effects , Cyclic AMP/metabolism , Deamino Arginine Vasopressin/pharmacology , beta-Arrestins/metabolism , Animals
4.
Biosensors (Basel) ; 14(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38785726

ABSTRACT

Phosphodiesterases (PDEs), a superfamily of enzymes that hydrolyze cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), are recognized as a therapeutic target for various diseases. However, the current screening methods for PDE inhibitors usually experience problems due to complex operations and/or high costs, which are not conducive to drug development in respect of this target. In this study, a new method for screening PDE inhibitors based on GloSensor technology was successfully established and applied, resulting in the discovery of several novel compounds of different structural types with PDE inhibitory activity. Compared with traditional screening methods, this method is low-cost, capable of dynamically detecting changes in substrate concentration in live cells, and can be used to preliminarily determine the type of PDEs affected by the detected active compounds, making it more suitable for high-throughput screening for PDE inhibitors.


Subject(s)
Phosphodiesterase Inhibitors , Phosphodiesterase Inhibitors/pharmacology , Humans , Cyclic AMP/metabolism , Phosphoric Diester Hydrolases/metabolism , High-Throughput Screening Assays , Biosensing Techniques , Cyclic GMP/metabolism , Drug Evaluation, Preclinical
5.
J Cell Biol ; 223(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38748250

ABSTRACT

Dynamic presynaptic actin remodeling drives structural and functional plasticity at synapses, but the underlying mechanisms remain largely unknown. Previous work has shown that actin regulation via Rac1 guanine exchange factor (GEF) Vav signaling restrains synaptic growth via bone morphogenetic protein (BMP)-induced receptor macropinocytosis and mediates synaptic potentiation via mobilization of reserve pool vesicles in presynaptic boutons. Here, we find that Gef26/PDZ-GEF and small GTPase Rap1 signaling couples the BMP-induced activation of Abelson kinase to this Vav-mediated macropinocytosis. Moreover, we find that adenylate cyclase Rutabaga (Rut) signaling via exchange protein activated by cAMP (Epac) drives the mobilization of reserve pool vesicles during post-tetanic potentiation (PTP). We discover that Rap1 couples activation of Rut-cAMP-Epac signaling to Vav-mediated synaptic potentiation. These findings indicate that Rap1 acts as an essential, convergent node for Abelson kinase and cAMP signaling to mediate BMP-induced structural plasticity and activity-induced functional plasticity via Vav-dependent regulation of the presynaptic actin cytoskeleton.


Subject(s)
Neuronal Plasticity , Presynaptic Terminals , Signal Transduction , Animals , Actin Cytoskeleton/metabolism , Bone Morphogenetic Proteins/metabolism , Cyclic AMP/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , Presynaptic Terminals/metabolism , Proto-Oncogene Proteins c-vav/metabolism , Proto-Oncogene Proteins c-vav/genetics , rap1 GTP-Binding Proteins/metabolism , rap1 GTP-Binding Proteins/genetics , Shelterin Complex/metabolism , Pinocytosis , Drosophila
6.
Bull Exp Biol Med ; 176(5): 576-580, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38724808

ABSTRACT

We performed a comparative in vitro study of the involvement of NF-κB, PI3K, cAMP, ERK1/2, p38, JAKs, STAT3, JNK, and p53-dependent intracellular signaling in the functioning of neural stem cells (NSC) under the influence of basic fibroblast growth factor (FGF) and FGF receptor agonist, diterpene alkaloid songorine. The significant differences in FGFR-mediated intracellular signaling in NSC were revealed for these ligands. In both cases, stimulation of progenitor cell proliferation occurs with the participation of NF-κB, PI3K, ERK1/2, JAKs, and STAT3, while JNK and p53, on the contrary, inhibit cell cycle progression. However, under the influence of songorin, cAMP- and p38-mediated cascades are additionally involved in the transmission of the NSC division-activating signal. In addition, unlike FGF, the alkaloid stimulates progenitor cell differentiation by activating ERK1/2, p38, JNK, p53, and STAT3.


Subject(s)
Cell Differentiation , Cell Proliferation , Diterpenes , Neural Stem Cells , Receptors, Fibroblast Growth Factor , STAT3 Transcription Factor , Signal Transduction , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Animals , STAT3 Transcription Factor/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Receptors, Fibroblast Growth Factor/agonists , Signal Transduction/drug effects , Cell Proliferation/drug effects , Diterpenes/pharmacology , Cell Differentiation/drug effects , NF-kappa B/metabolism , Fibroblast Growth Factor 2/metabolism , Fibroblast Growth Factor 2/pharmacology , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/agonists , Phosphatidylinositol 3-Kinases/metabolism , Alkaloids/pharmacology , MAP Kinase Signaling System/drug effects , Janus Kinases/metabolism , Cyclic AMP/metabolism , Cells, Cultured , Rats
7.
Int J Biol Macromol ; 270(Pt 2): 132256, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729481

ABSTRACT

Gut microbiota variances reflecting the severity type 2 diabetes mellitus (T2DM). Achyranthes bidentata polysaccharide (ABP) can regulate gut microbiota. However, the hypoglycemic effect and underlying mechanism of ABP remain unclear. Herein, we characterized the structure of ABP and revealed the hypoglycemic effect of ABP in mice with T2DM. ABP repaired the intestinal barrier in T2DM mice and regulated the composition and abundance of gut microbiota, especially increasing bacteria which producing short-chain fatty acids (SCFAs), then increasing glucagon-like peptide-1 (GLP-1) level. The abundance of these bacteria was positively correlated with blood lipid and INS levels, negatively correlated with FBG levels. Colon transcriptome data and immunohistochemistry demonstrated that the alleviating T2DM effect of ABP was related to activation of the GLP-1/GLP-1 receptor (GLP-1R)/cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/cAMP-response element binding protein (CREB)/INS pathway. Fecal microbiota transplantation (FMT) confirmed the transmissible efficacy of ABP through gut microbiota. Overall, our research shows that ABP plays a hypoglycemic role by increasing gut microbiota-derived SCFAs levels, and activating the GLP-1/GLP-1R/cAMP/PKA/CREB/INS pathway, emphasizing ABP as promising T2DM therapeutic candidates.


Subject(s)
Achyranthes , Cyclic AMP Response Element-Binding Protein , Cyclic AMP-Dependent Protein Kinases , Cyclic AMP , Diabetes Mellitus, Type 2 , Fatty Acids, Volatile , Gastrointestinal Microbiome , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Polysaccharides , Gastrointestinal Microbiome/drug effects , Animals , Fatty Acids, Volatile/metabolism , Polysaccharides/pharmacology , Polysaccharides/chemistry , Mice , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Glucagon-Like Peptide 1/metabolism , Cyclic AMP/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Achyranthes/chemistry , Glucagon-Like Peptide-1 Receptor/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Male , Signal Transduction/drug effects , Insulin/metabolism , Insulin/blood , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism
8.
Endocrinology ; 165(7)2024 May 27.
Article in English | MEDLINE | ID: mdl-38735763

ABSTRACT

Follicle-stimulating hormone (FSH) binds to its membrane receptor (FSHR) in granulosa cells to activate various signal transduction pathways and drive the gonadotropin-dependent phase of folliculogenesis. Both FSH insufficiency (due to genetic or nongenetic factors) and FSH excess (as encountered with ovarian stimulation in assisted reproductive technology [ART]) can cause poor female reproductive outcomes, but the underlying molecular mechanisms remain elusive. Herein, we conducted single-follicle and single-oocyte RNA sequencing analysis along with other approaches in an ex vivo mouse folliculogenesis and oogenesis system to investigate the effects of different concentrations of FSH on key follicular events. Our study revealed that a minimum FSH threshold is required for follicle maturation into the high estradiol-secreting preovulatory stage, and such threshold is moderately variable among individual follicles between 5 and 10 mIU/mL. FSH at 5, 10, 20, and 30 mIU/mL induced distinct expression patterns of follicle maturation-related genes, follicular transcriptomics, and follicular cAMP levels. RNA sequencing analysis identified FSH-stimulated activation of G proteins and downstream canonical and novel signaling pathways that may critically regulate follicle maturation, including the cAMP/PKA/CREB, PI3K/AKT/FOXO1, and glycolysis pathways. High FSH at 20 and 30 mIU/mL resulted in noncanonical FSH responses, including premature luteinization, high production of androgen and proinflammatory factors, and reduced expression of energy metabolism-related genes in oocytes. Together, this study improves our understanding of gonadotropin-dependent folliculogenesis and provides crucial insights into how high doses of FSH used in ART may impact follicular health, oocyte quality, pregnancy outcome, and systemic health.


Subject(s)
Follicle Stimulating Hormone , Ovarian Follicle , Transcriptome , Animals , Female , Follicle Stimulating Hormone/pharmacology , Mice , Ovarian Follicle/drug effects , Ovarian Follicle/metabolism , Transcriptome/drug effects , Dose-Response Relationship, Drug , Oocytes/drug effects , Oocytes/metabolism , Oogenesis/drug effects , Oogenesis/genetics , Signal Transduction/drug effects , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Cyclic AMP/metabolism
9.
Cell Rep ; 43(5): 114229, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38758649

ABSTRACT

GPR133 (ADGRD1) is an adhesion G-protein-coupled receptor that signals through Gαs/cyclic AMP (cAMP) and is required for the growth of glioblastoma (GBM), an aggressive brain malignancy. The regulation of GPR133 signaling is incompletely understood. Here, we use proximity biotinylation proteomics to identify ESYT1, a Ca2+-dependent mediator of endoplasmic reticulum-plasma membrane bridge formation, as an intracellular interactor of GPR133. ESYT1 knockdown or knockout increases GPR133 signaling, while its overexpression has the opposite effect, without altering GPR133 levels in the plasma membrane. The GPR133-ESYT1 interaction requires the Ca2+-sensing C2C domain of ESYT1. Thapsigargin-mediated increases in cytosolic Ca2+ relieve signaling-suppressive effects of ESYT1 by promoting ESYT1-GPR133 dissociation. ESYT1 knockdown or knockout in GBM slows tumor growth, suggesting tumorigenic functions of ESYT1. Our findings demonstrate a mechanism for the modulation of GPR133 signaling by increased cytosolic Ca2+, which reduces the signaling-suppressive interaction between GPR133 and ESYT1 to raise cAMP levels.


Subject(s)
Calcium , Glioblastoma , Receptors, G-Protein-Coupled , Signal Transduction , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Humans , Animals , Calcium/metabolism , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Mice , Cyclic AMP/metabolism , Cell Line, Tumor , HEK293 Cells , Protein Binding , Mice, Nude , Oncogene Proteins
10.
Cell Mol Life Sci ; 81(1): 241, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38806811

ABSTRACT

Aspergillus ochraceus is the traditional ochratoxin A (OTA)-producing fungus with density-dependent behaviors, which is known as quorum sensing (QS) that is mediated by signaling molecules. Individual cells trend to adapt environmental changes in a "whole" flora through communications, allowing fungus to occupy an important ecological niche. Signals perception, transmission, and feedback are all rely on a signal network that constituted by membrane receptors and intracellular effectors. However, the interference of density information in signal transduction, which regulates most life activities of Aspergillus, have yet to be elucidated. Here we show that the G protein-coupled receptor (GPCR) to cAMP pathway is responsible for transmitting density information, and regulates the key point in life cycle of A. ochraceus. Firstly, the quorum sensing phenomenon of A. ochraceus is confirmed, and identified the density threshold is 103 spores/mL, which represents the low density that produces the most OTA in a series quorum density. Moreover, the GprC that classified as sugar sensor, and intracellular adenylate cyclase (AcyA)-cAMP-PKA pathway that in response to ligands glucose and HODEs are verified. Furthermore, GprC and AcyA regulate the primary metabolism as well as secondary metabolism, and further affects the growth of A. ochraceus during the entire life cycle. These studies highlight a crucial G protein signaling pathway for cell communication that is mediated by carbohydrate and oxylipins, and clarified a comprehensive effect of fungal development, which include the direct gene regulation and indirect substrate or energy supply. Our work revealed more signal molecules that mediated density information and connected effects on important adaptive behaviors of Aspergillus ochraceus, hoping to achieve comprehensive prevention and control of mycotoxin pollution from interrupting cell communication.


Subject(s)
Aspergillus ochraceus , Cyclic AMP , Glucose , Quorum Sensing , Signal Transduction , Aspergillus ochraceus/metabolism , Aspergillus ochraceus/genetics , Glucose/metabolism , Cyclic AMP/metabolism , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Ochratoxins/metabolism
11.
J Nanobiotechnology ; 22(1): 294, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807127

ABSTRACT

BACKGROUND: Ulcerative colitis (UC) is one chronic and relapsing inflammatory bowel disease. Macrophage has been reputed as one trigger for UC. Recently, phosphodiesterase 4 (PDE4) inhibitors, for instance roflumilast, have been regarded as one latent approach to modulating macrophage in UC treatment. Roflumilast can decelerate cyclic adenosine monophosphate (cAMP) degradation, which impedes TNF-α synthesis in macrophage. However, roflumilast is devoid of macrophage-target and consequently causes some unavoidable adverse reactions, which restrict the utilization in UC. RESULTS: Membrane vesicles (MVs) from probiotic Escherichia coli Nissle 1917 (EcN 1917) served as a drug delivery platform for targeting macrophage. As model drugs, roflumilast and MnO2 were encapsulated in MVs (Rof&MnO2@MVs). Roflumilast inhibited cAMP degradation via PDE4 deactivation and MnO2 boosted cAMP generation by activating adenylate cyclase (AC). Compared with roflumilast, co-delivery of roflumilast and MnO2 apparently produced more cAMP and less TNF-α in macrophage. Besides, Rof&MnO2@MVs could ameliorate colitis in mouse model and regulate gut microbe such as mitigating pathogenic Escherichia-Shigella and elevating probiotic Akkermansia. CONCLUSIONS: A probiotic-based nanoparticle was prepared for precise codelivery of roflumilast and MnO2 into macrophage. This biomimetic nanoparticle could synergistically modulate cAMP in macrophage and ameliorate experimental colitis.


Subject(s)
Aminopyridines , Benzamides , Cyclic AMP , Cyclopropanes , Macrophages , Manganese Compounds , Oxides , Probiotics , Animals , Aminopyridines/pharmacology , Mice , Cyclic AMP/metabolism , Probiotics/pharmacology , Cyclopropanes/pharmacology , Cyclopropanes/chemistry , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Benzamides/pharmacology , Benzamides/chemistry , Oxides/pharmacology , Oxides/chemistry , Macrophages/drug effects , Macrophages/metabolism , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/chemistry , Colitis/drug therapy , Colitis/chemically induced , RAW 264.7 Cells , Escherichia coli/drug effects , Tumor Necrosis Factor-alpha/metabolism , Mice, Inbred C57BL , Male , Disease Models, Animal
12.
Theriogenology ; 224: 50-57, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38733814

ABSTRACT

The classic way to produce single-chain (sc) glycoprotein hormones is to fuse their two subunits through the carboxy-terminal peptide (CTP) from human Choriogonadotropin (hCG). The CTP confers a longer half-life to single-chain hormones thanks to its four O-glycosyl side chains. However, unlike syncytiotrophoblastic cells, most cells used for recombinant protein production do not transfer O-glycosyl chains efficiently. We thus choose to fuse the hFSH subunits with a linker comprising two N-glycosyl side chains (sc-hFSH LNN) or none (sc-hFSH L0N), that were generated using two expression systems, HEK293 and CHO K1 cells. Their production levels and biological activities were tested and compared. Both expression systems successfully produced biologically active sc-hFSH, but, in our hands, CHO K1 cells yielded about 30-fold higher amounts of recombinant protein than HEK293 cells. Moreover, sc-hFSH L0N was considerably less expressed than sc-hFSH LNN in both cell types. Our data show that sc-hFSH L0N and sc-hFSH LNN produced from both cell lines stimulate cAMP and progesterone production in mLTC cells expressing hFSH receptors and exhibit similar B/I (in vitro Bioactivity/Immuno activity) ratios. Finally, the ratio of in vivo/in vitro bioactivities for sc-hFSH LNN relative to natural pituitary heterodimeric hFSH increased 8-fold, most likely because of a longer half-life in the blood.


Subject(s)
Cricetulus , Follicle Stimulating Hormone, Human , Humans , CHO Cells , HEK293 Cells , Animals , Follicle Stimulating Hormone, Human/chemistry , Follicle Stimulating Hormone, Human/pharmacology , Glycosylation , Cricetinae , Recombinant Proteins/metabolism , Cyclic AMP/metabolism , Progesterone/metabolism
13.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791377

ABSTRACT

Phosphodiesterases (PDEs) are ubiquitous enzymes that hydrolyse cAMP and cGMP second messengers temporally, spatially, and integratedly according to their expression and compartmentalization inside the cell [...].


Subject(s)
Phosphoric Diester Hydrolases , Phosphoric Diester Hydrolases/metabolism , Humans , Animals , Cyclic AMP/metabolism , Cyclic GMP/metabolism
14.
Proc Natl Acad Sci U S A ; 121(21): e2316006121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38748577

ABSTRACT

Blood-brain barrier (BBB) models derived from human stem cells are powerful tools to improve our understanding of cerebrovascular diseases and to facilitate drug development for the human brain. Yet providing stem cell-derived endothelial cells with the right signaling cues to acquire BBB characteristics while also retaining their vascular identity remains challenging. Here, we show that the simultaneous activation of cyclic AMP and Wnt/ß-catenin signaling and inhibition of the TGF-ß pathway in endothelial cells robustly induce BBB properties in vitro. To target this interaction, we present a small-molecule cocktail named cARLA, which synergistically enhances barrier tightness in a range of BBB models across species. Mechanistically, we reveal that the three pathways converge on Wnt/ß-catenin signaling to mediate the effect of cARLA via the tight junction protein claudin-5. We demonstrate that cARLA shifts the gene expressional profile of human stem cell-derived endothelial cells toward the in vivo brain endothelial signature, with a higher glycocalyx density and efflux pump activity, lower rates of endocytosis, and a characteristic endothelial response to proinflammatory cytokines. Finally, we illustrate how cARLA can improve the predictive value of human BBB models regarding the brain penetration of drugs and targeted nanoparticles. Due to its synergistic effect, high reproducibility, and ease of use, cARLA has the potential to advance drug development for the human brain by improving BBB models across laboratories.


Subject(s)
Blood-Brain Barrier , Endothelial Cells , Blood-Brain Barrier/metabolism , Humans , Endothelial Cells/metabolism , Animals , Wnt Signaling Pathway , Claudin-5/metabolism , Claudin-5/genetics , Cyclic AMP/metabolism , Mice , Stem Cells/metabolism , Stem Cells/cytology , Tight Junctions/metabolism , beta Catenin/metabolism
15.
Commun Biol ; 7(1): 627, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789513

ABSTRACT

In recombinant protein-producing yeast strains, cells experience high production-related stresses similar to high temperatures. It is possible to increase recombinant protein production by enhancing thermotolerance, but few studies have focused on this topic. Here we aim to identify cellular regulators that can simultaneously activate thermotolerance and high yield of recombinant protein. Through screening at 46 °C, a heat-resistant Kluyveromyces marxianus (K. marxianus) strain FDHY23 is isolated. It also exhibits enhanced recombinant protein productivity at both 30 °C and high temperatures. The CYR1N1546K mutation is identified as responsible for FDHY23's improved phenotype, characterized by weakened adenylate cyclase activity and reduced cAMP production. Introducing this mutation into the wild-type strain greatly enhances both thermotolerance and recombinant protein yields. RNA-seq analysis reveals that under high temperature and recombinant protein production conditions, CYR1 mutation-induced reduction in cAMP levels can stimulate cells to improve its energy supply system and optimize material synthesis, meanwhile enhance stress resistance, based on the altered cAMP signaling cascades. Our study provides CYR1 mutation as a novel target to overcome the bottleneck in achieving high production of recombinant proteins under high temperature conditions, and also offers a convenient approach for high-throughput screening of recombinant proteins with high yields.


Subject(s)
Cyclic AMP , Kluyveromyces , Recombinant Proteins , Signal Transduction , Cyclic AMP/metabolism , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Kluyveromyces/genetics , Kluyveromyces/metabolism , Thermotolerance/genetics , Mutation , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hot Temperature
16.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 220-225, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814212

ABSTRACT

This study explored the impact of penehyclidine hydrochloride on cognitive function in rats with brain injury. Sprague-Dawley rats (n=36) were randomly assigned to sham-operation, model, and penehyclidine hydrochloride groups. Rats in the sham-operation group underwent craniotomy, while the model and penehyclidine hydrochloride groups received brain injury models and interventions with normal saline and penehyclidine hydrochloride, respectively. Specimens were obtained two weeks post-intervention. Neurological deficits were evaluated using Zea-Longa scores, and memory was assessed with the Morris water maze test. ELISA determined brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) content. mRNA expressions of BDNF and NGF were assessed via qPCR, and phosphorylated CREB (p-CREB) protein expression was measured by Western blotting. Compared to the sham-operation group, both model and penehyclidine hydrochloride groups showed increased Zea-Longa scores. Escape latencies were longer and platform crossings were fewer in model and penehyclidine hydrochloride groups compared to the sham-operation group, but penehyclidine hydrochloride demonstrated a shorter latency and more platform crossings than the model group. BDNF and NGF content decreased in model and penehyclidine hydrochloride groups compared to the sham-operation group, with an increase in the penehyclidine hydrochloride group compared to the model group. mRNA expression levels declined in model and penehyclidine hydrochloride groups but were higher in the latter. p-CREB protein expression was lower in model and penehyclidine hydrochloride groups compared to the sham-operation group but higher in the penehyclidine hydrochloride group than the model group. Penehyclidine hydrochloride exhibited neuroprotective effects by upregulating the cAMP/CREB signaling pathway, improving cognitive function in rats with brain injury.


Subject(s)
Brain Injuries , Brain-Derived Neurotrophic Factor , Cognition , Cyclic AMP Response Element-Binding Protein , Cyclic AMP , Quinuclidines , Rats, Sprague-Dawley , Signal Transduction , Animals , Signal Transduction/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Quinuclidines/pharmacology , Quinuclidines/therapeutic use , Cognition/drug effects , Male , Brain Injuries/drug therapy , Brain Injuries/metabolism , Cyclic AMP/metabolism , Rats , Nerve Growth Factor/metabolism , Nerve Growth Factor/genetics , Phosphorylation/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Disease Models, Animal
17.
Acta Biochim Pol ; 71: 12185, 2024.
Article in English | MEDLINE | ID: mdl-38721308

ABSTRACT

Human chemokine receptor 8 (CCR8) is a promising drug target for immunotherapy of cancer and autoimmune diseases. Monoclonal antibody-based CCR8 targeted treatment shows significant inhibition in tumor growth. The inhibition of CCR8 results in the improvement of antitumor immunity and patient survival rates by regulating tumor-resident regulatory T cells. Recently monoclonal antibody drug development targeting CCR8 has become a research hotspot, which also promotes the advancement of antibody evaluation methods. Therefore, we constructed a novel engineered customized cell line HEK293-cAMP-biosensor-CCR8 combined with CCR8 and a cAMP-biosensor reporter. It can be used for the detection of anti-CCR8 antibody functions like specificity and biological activity, in addition to the detection of antibody-dependent cell-mediated cytotoxicity and antibody-dependent-cellular-phagocytosis. We obtained a new CCR8 mAb 22H9 and successfully verified its biological activities with HEK293-cAMP-biosensor-CCR8. Our reporter cell line has high sensitivity and specificity, and also offers a rapid kinetic detection platform for evaluating anti-CCR8 antibody functions.


Subject(s)
Antibodies, Monoclonal , Biosensing Techniques , Cyclic AMP , Receptors, CCR8 , Humans , HEK293 Cells , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Receptors, CCR8/immunology , Receptors, CCR8/metabolism , Cyclic AMP/metabolism , Biosensing Techniques/methods , Antibody-Dependent Cell Cytotoxicity/immunology , Cell Engineering/methods
18.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791223

ABSTRACT

Amyloid beta peptides (Aß) have been identified as the main pathogenic agents in Alzheimer's disease (AD). Soluble Aß oligomers, rather than monomer or insoluble amyloid fibrils, show red blood cell (RBC) membrane-binding capacity and trigger several morphological and functional alterations in RBCs that can result in impaired oxygen transport and delivery. Since bioactive lipids have been recently proposed as potent protective agents against Aß toxicity, we investigated the role of sphingosine-1-phosphate (S1P) in signaling pathways involved in the mechanism underlying ATP release in Ab-treated RBCs. In RBCs following different treatments, the ATP, 2,3 DPG and cAMP levels and caspase 3 activity were determined by spectrophotometric and immunoassay. S1P rescued the inhibition of ATP release from RBCs triggered by Ab, through a mechanism involving caspase-3 and restoring 2,3 DPG and cAMP levels within the cell. These findings reveal the molecular basis of S1P protection against Aß in RBCs and suggest new therapeutic avenues in AD.


Subject(s)
Adenosine Triphosphate , Amyloid beta-Peptides , Caspase 3 , Cyclic AMP , Erythrocytes , Lysophospholipids , Sphingosine , Lysophospholipids/metabolism , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Amyloid beta-Peptides/metabolism , Erythrocytes/metabolism , Erythrocytes/drug effects , Humans , Cyclic AMP/metabolism , Adenosine Triphosphate/metabolism , Caspase 3/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , 2,3-Diphosphoglycerate/metabolism , Signal Transduction/drug effects
19.
PLoS One ; 19(5): e0304365, 2024.
Article in English | MEDLINE | ID: mdl-38820434

ABSTRACT

OBJECTIVE: To explore the molecular mechanism of Astragaloside IV (AS-IV) in alleviating renal fibrosis by inhibiting Urotensin II-induced pyroptosis and epithelial-mesenchymal transition of renal tubular epithelial cells. METHODS: Forty SD rats were randomly divided into control group without operation: gavage with 5ml/kg/d water for injection and UUO model group: gavage with 5ml/kg/d water for injection; UUO+ AS-IV group (gavage with AS-IV 20mg/kg/d; and UUO+ losartan potassium group (gavage with losartan potassium 10.3mg/kg/d, with 10 rats in each group. After 2 weeks, Kidney pathology, serum Urotensin II, and cAMP concentration were detected, and the expressions of NLRP3, GSDMD-N, Caspase-1, and IL-1ß were detected by immunohistochemistry. Rat renal tubular epithelial cells were cultured in vitro, and different concentrations of Urotensin II were used to intervene for 24h and 48h. Cell proliferation activity was detected using the CCK8 assay. Suitable concentrations of Urotensin II and intervention time were selected, and Urotensin II receptor antagonist (SB-611812), inhibitor of PKA(H-89), and AS-IV (15ug/ml) were simultaneously administered. After 24 hours, cells and cell supernatants from each group were collected. The cAMP concentration was detected using the ELISA kit, and the expression of PKA, α-SMA, FN, IL-1ß, NLRP3, GSDMD-N, and Caspase-1 was detected using cell immunofluorescence, Western blotting, and RT-PCR. RESULTS: Renal tissue of UUO rats showed renal interstitial infiltration, tubule dilation and atrophy, renal interstitial collagen fiber hyperplasia, and serum Urotensin II and cAMP concentrations were significantly higher than those in the sham operation group (p <0.05). AS-IV and losartan potassium intervention could alleviate renal pathological changes, and decrease serum Urotensin II, cAMP concentration levels, and the expressions of NLRP3, GSDMD-N, Caspase-1, and IL-1ß in renal tissues (p <0.05). Urotensin II at a concentration of 10-8 mol/L could lead to the decrease of cell proliferation, (p<0.05). Compared with the normal group, the cAMP level and the PKA expression were significantly increased (p<0.05). After intervention with AS-IV and Urotensin II receptor antagonist, the cAMP level and the expression of PKA were remarkably decreased (p<0.05). Compared with the normal group, the expression of IL-1ß, NLRP3, GSDMD-N, and Caspase-1 in the Urotensin II group was increased (p<0.05), which decreased in the AS-IV and H-89 groups. CONCLUSION: AS-IV can alleviate renal fibrosis by inhibiting Urotensin II-induced pyroptosis of renal tubular epithelial cells by regulating the cAMP/PKA signaling pathway.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , Cyclic AMP , Epithelial Cells , Fibrosis , Kidney Tubules , Pyroptosis , Rats, Sprague-Dawley , Saponins , Signal Transduction , Triterpenes , Urotensins , Animals , Saponins/pharmacology , Cyclic AMP/metabolism , Urotensins/metabolism , Rats , Cyclic AMP-Dependent Protein Kinases/metabolism , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Kidney Tubules/pathology , Kidney Tubules/metabolism , Kidney Tubules/drug effects , Triterpenes/pharmacology , Signal Transduction/drug effects , Pyroptosis/drug effects , Male , Epithelial-Mesenchymal Transition/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Kidney Diseases/metabolism , Kidney Diseases/drug therapy , Kidney Diseases/pathology , Kidney Diseases/etiology
20.
PLoS One ; 19(4): e0302223, 2024.
Article in English | MEDLINE | ID: mdl-38625986

ABSTRACT

Although Schwann cells have been found to play a key role in inflammation and repair following nerve injury, the exact pathway is still unknown. To explore the mechanism by which Schwann cells exert their effects in the neuron microenvironment, we investigated two main inflammatory pathways: the NF-κB and cAMP pathways, and their downstream signaling molecules. In this study, lipopolysaccharide (LPS), a bacterial endotoxin, was used to activate the NF-κB pathway, and forskolin, a plant extract, was used to activate the cAMP pathway. The rat RT4-D6P2T Schwann cell line was treated with 0.1, 1, or 10 µg/mL of LPS, with or without 2 µM of forskolin, for 1, 3, 12, and 24 hours to determine the effects of elevated cAMP levels on LPS-treated cell viability. To investigate the effects of elevated cAMP levels on the expression of downstream signaling effector proteins, specifically NF-κB, TNF-α, AKAP95, and cyclin D3, as well as TNF-α secretion, RT4-D6P2T cells were incubated in the various treatment combinations for a 3-hour time period. Overall, results from the CellTiter-Glo viability assay revealed that forskolin increased viability in cells treated with smaller doses of LPS for 1 and 24 hours. For all time points, 10 µg/mL of LPS noticeably reduced viability regardless of forskolin treatment. Results from the Western blot analysis revealed that, at 10 µg/mL of LPS, forskolin upregulated the expression of TNF-α despite a downregulation of NF-κB, which was also accompanied by a decrease in TNF-α secretion. These results provide evidence that cAMP might regulate TNF-α expression through alternate pathways. Furthermore, although cAMP activation altered AKAP95 and cyclin D3 expression at different doses of LPS, there does not appear to be an association between the expression of AKAP95 or cyclin D3 and the expression of TNF-α. Exploring the possible interactions between cAMP, NF-κB, and other key inflammatory signaling pathways might reveal a potential therapeutic target for the treatment of nerve injury and inflammation.


Subject(s)
Lipopolysaccharides , NF-kappa B , Rats , Animals , NF-kappa B/metabolism , Lipopolysaccharides/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Colforsin/pharmacology , Down-Regulation , Cyclin D3/metabolism , Cyclic AMP/metabolism , Inflammation , Schwann Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...