Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39.996
Filter
1.
Plant Cell Rep ; 43(6): 137, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713285

ABSTRACT

KEY MESSAGE: cAMP modulates the phosphorylation status of highly conserved phosphosites in RNA-binding proteins crucial for mRNA metabolism and reprogramming in response to heat stress. In plants, 3',5'-cyclic adenosine monophosphate (3',5'-cAMP) is a second messenger that modulates multiple cellular targets, thereby participating in plant developmental and adaptive processes. Although its role in ameliorating heat-related damage has been demonstrated, mechanisms that govern cAMP-dependent responses to heat have remained elusive. Here we analyze the role cAMP-dependent phosphorylation during prolonged heat stress (HS) with a view to gain insight into processes that govern plant responses to HS. To do so, we performed quantitative phosphoproteomic analyses in Nicotiana tabacum Bright Yellow-2 cells grown at 27 °C or 35 °C for 3 days overexpressing a molecular "sponge" that reduces free intracellular cAMP levels. Our phosphorylation data and analyses reveal that the presence of cAMP is an essential factor that governs specific protein phosphorylation events that occur during prolonged HS in BY-2 cells. Notably, cAMP modulates HS-dependent phosphorylation of proteins that functions in mRNA processing, transcriptional control, vesicular trafficking, and cell cycle regulation and this is indicative for a systemic role of the messenger. In particular, changes of cAMP levels affect the phosphorylation status of highly conserved phosphosites in 19 RNA-binding proteins that are crucial during the reprogramming of the mRNA metabolism in response to HS. Furthermore, phosphorylation site motifs and molecular docking suggest that some proteins, including kinases and phosphatases, are conceivably able to directly interact with cAMP thus further supporting a regulatory role of cAMP in plant HS responses.


Subject(s)
Cyclic AMP , Heat-Shock Response , Nicotiana , Plant Proteins , Phosphorylation , Nicotiana/genetics , Nicotiana/metabolism , Heat-Shock Response/physiology , Cyclic AMP/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant
2.
Cell Mol Life Sci ; 81(1): 241, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38806811

ABSTRACT

Aspergillus ochraceus is the traditional ochratoxin A (OTA)-producing fungus with density-dependent behaviors, which is known as quorum sensing (QS) that is mediated by signaling molecules. Individual cells trend to adapt environmental changes in a "whole" flora through communications, allowing fungus to occupy an important ecological niche. Signals perception, transmission, and feedback are all rely on a signal network that constituted by membrane receptors and intracellular effectors. However, the interference of density information in signal transduction, which regulates most life activities of Aspergillus, have yet to be elucidated. Here we show that the G protein-coupled receptor (GPCR) to cAMP pathway is responsible for transmitting density information, and regulates the key point in life cycle of A. ochraceus. Firstly, the quorum sensing phenomenon of A. ochraceus is confirmed, and identified the density threshold is 103 spores/mL, which represents the low density that produces the most OTA in a series quorum density. Moreover, the GprC that classified as sugar sensor, and intracellular adenylate cyclase (AcyA)-cAMP-PKA pathway that in response to ligands glucose and HODEs are verified. Furthermore, GprC and AcyA regulate the primary metabolism as well as secondary metabolism, and further affects the growth of A. ochraceus during the entire life cycle. These studies highlight a crucial G protein signaling pathway for cell communication that is mediated by carbohydrate and oxylipins, and clarified a comprehensive effect of fungal development, which include the direct gene regulation and indirect substrate or energy supply. Our work revealed more signal molecules that mediated density information and connected effects on important adaptive behaviors of Aspergillus ochraceus, hoping to achieve comprehensive prevention and control of mycotoxin pollution from interrupting cell communication.


Subject(s)
Aspergillus ochraceus , Cyclic AMP , Glucose , Quorum Sensing , Signal Transduction , Aspergillus ochraceus/metabolism , Aspergillus ochraceus/genetics , Glucose/metabolism , Cyclic AMP/metabolism , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Ochratoxins/metabolism
3.
J Nanobiotechnology ; 22(1): 294, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807127

ABSTRACT

BACKGROUND: Ulcerative colitis (UC) is one chronic and relapsing inflammatory bowel disease. Macrophage has been reputed as one trigger for UC. Recently, phosphodiesterase 4 (PDE4) inhibitors, for instance roflumilast, have been regarded as one latent approach to modulating macrophage in UC treatment. Roflumilast can decelerate cyclic adenosine monophosphate (cAMP) degradation, which impedes TNF-α synthesis in macrophage. However, roflumilast is devoid of macrophage-target and consequently causes some unavoidable adverse reactions, which restrict the utilization in UC. RESULTS: Membrane vesicles (MVs) from probiotic Escherichia coli Nissle 1917 (EcN 1917) served as a drug delivery platform for targeting macrophage. As model drugs, roflumilast and MnO2 were encapsulated in MVs (Rof&MnO2@MVs). Roflumilast inhibited cAMP degradation via PDE4 deactivation and MnO2 boosted cAMP generation by activating adenylate cyclase (AC). Compared with roflumilast, co-delivery of roflumilast and MnO2 apparently produced more cAMP and less TNF-α in macrophage. Besides, Rof&MnO2@MVs could ameliorate colitis in mouse model and regulate gut microbe such as mitigating pathogenic Escherichia-Shigella and elevating probiotic Akkermansia. CONCLUSIONS: A probiotic-based nanoparticle was prepared for precise codelivery of roflumilast and MnO2 into macrophage. This biomimetic nanoparticle could synergistically modulate cAMP in macrophage and ameliorate experimental colitis.


Subject(s)
Aminopyridines , Benzamides , Cyclic AMP , Cyclopropanes , Macrophages , Manganese Compounds , Oxides , Probiotics , Animals , Aminopyridines/pharmacology , Mice , Cyclic AMP/metabolism , Probiotics/pharmacology , Cyclopropanes/pharmacology , Cyclopropanes/chemistry , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Benzamides/pharmacology , Benzamides/chemistry , Oxides/pharmacology , Oxides/chemistry , Macrophages/drug effects , Macrophages/metabolism , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/chemistry , Colitis/drug therapy , Colitis/chemically induced , RAW 264.7 Cells , Escherichia coli/drug effects , Tumor Necrosis Factor-alpha/metabolism , Mice, Inbred C57BL , Male , Disease Models, Animal
4.
J Cell Biol ; 223(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38748250

ABSTRACT

Dynamic presynaptic actin remodeling drives structural and functional plasticity at synapses, but the underlying mechanisms remain largely unknown. Previous work has shown that actin regulation via Rac1 guanine exchange factor (GEF) Vav signaling restrains synaptic growth via bone morphogenetic protein (BMP)-induced receptor macropinocytosis and mediates synaptic potentiation via mobilization of reserve pool vesicles in presynaptic boutons. Here, we find that Gef26/PDZ-GEF and small GTPase Rap1 signaling couples the BMP-induced activation of Abelson kinase to this Vav-mediated macropinocytosis. Moreover, we find that adenylate cyclase Rutabaga (Rut) signaling via exchange protein activated by cAMP (Epac) drives the mobilization of reserve pool vesicles during post-tetanic potentiation (PTP). We discover that Rap1 couples activation of Rut-cAMP-Epac signaling to Vav-mediated synaptic potentiation. These findings indicate that Rap1 acts as an essential, convergent node for Abelson kinase and cAMP signaling to mediate BMP-induced structural plasticity and activity-induced functional plasticity via Vav-dependent regulation of the presynaptic actin cytoskeleton.


Subject(s)
Neuronal Plasticity , Presynaptic Terminals , Signal Transduction , Animals , Actin Cytoskeleton/metabolism , Bone Morphogenetic Proteins/metabolism , Cyclic AMP/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , Presynaptic Terminals/metabolism , Proto-Oncogene Proteins c-vav/metabolism , Proto-Oncogene Proteins c-vav/genetics , rap1 GTP-Binding Proteins/metabolism , rap1 GTP-Binding Proteins/genetics , Shelterin Complex/metabolism , Pinocytosis , Drosophila
5.
Bull Exp Biol Med ; 176(5): 576-580, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38724808

ABSTRACT

We performed a comparative in vitro study of the involvement of NF-κB, PI3K, cAMP, ERK1/2, p38, JAKs, STAT3, JNK, and p53-dependent intracellular signaling in the functioning of neural stem cells (NSC) under the influence of basic fibroblast growth factor (FGF) and FGF receptor agonist, diterpene alkaloid songorine. The significant differences in FGFR-mediated intracellular signaling in NSC were revealed for these ligands. In both cases, stimulation of progenitor cell proliferation occurs with the participation of NF-κB, PI3K, ERK1/2, JAKs, and STAT3, while JNK and p53, on the contrary, inhibit cell cycle progression. However, under the influence of songorin, cAMP- and p38-mediated cascades are additionally involved in the transmission of the NSC division-activating signal. In addition, unlike FGF, the alkaloid stimulates progenitor cell differentiation by activating ERK1/2, p38, JNK, p53, and STAT3.


Subject(s)
Cell Differentiation , Cell Proliferation , Diterpenes , Neural Stem Cells , Receptors, Fibroblast Growth Factor , STAT3 Transcription Factor , Signal Transduction , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Animals , STAT3 Transcription Factor/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Receptors, Fibroblast Growth Factor/agonists , Signal Transduction/drug effects , Cell Proliferation/drug effects , Diterpenes/pharmacology , Cell Differentiation/drug effects , NF-kappa B/metabolism , Fibroblast Growth Factor 2/metabolism , Fibroblast Growth Factor 2/pharmacology , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/agonists , Phosphatidylinositol 3-Kinases/metabolism , Alkaloids/pharmacology , MAP Kinase Signaling System/drug effects , Janus Kinases/metabolism , Cyclic AMP/metabolism , Cells, Cultured , Rats
6.
PLoS One ; 19(5): e0303507, 2024.
Article in English | MEDLINE | ID: mdl-38748623

ABSTRACT

Loss-of-function mutations in the type 2 vasopressin receptor (V2R) are a major cause of congenital nephrogenic diabetes insipidus (cNDI). In the context of partial cNDI, the response to desmopressin (dDAVP) is partially, but not entirely, diminished. For those with the partial cNDI, restoration of V2R function would offer a prospective therapeutic approach. In this study, we revealed that OPC-51803 (OPC5) and its structurally related V2R agonists could functionally restore V2R mutants causing partial cNDI by inducing prolonged signal activation. The OPC5-related agonists exhibited functional selectivity by inducing signaling through the Gs-cAMP pathway while not recruiting ß-arrestin1/2. We found that six cNDI-related V2R partial mutants (V882.53M, Y1283.41S, L1614.47P, T2736.37M, S3298.47R and S3338.51del) displayed varying degrees of plasma membrane expression levels and exhibited moderately impaired signaling function. Several OPC5-related agonists induced higher cAMP responses than AVP at V2R mutants after prolonged agonist stimulation, suggesting their potential effectiveness in compensating impaired V2R-mediated function. Furthermore, docking analysis revealed that the differential interaction of agonists with L3127.40 caused altered coordination of TM7, potentially contributing to the functional selectivity of signaling. These findings suggest that nonpeptide V2R agonists could hold promise as potential drug candidates for addressing partial cNDI.


Subject(s)
Diabetes Insipidus, Nephrogenic , Receptors, Vasopressin , Receptors, Vasopressin/genetics , Receptors, Vasopressin/agonists , Receptors, Vasopressin/metabolism , Humans , HEK293 Cells , Diabetes Insipidus, Nephrogenic/drug therapy , Diabetes Insipidus, Nephrogenic/genetics , Diabetes Insipidus, Nephrogenic/metabolism , Mutation , Signal Transduction/drug effects , Cyclic AMP/metabolism , Deamino Arginine Vasopressin/pharmacology , beta-Arrestins/metabolism , Animals
7.
Acta Biochim Pol ; 71: 12185, 2024.
Article in English | MEDLINE | ID: mdl-38721308

ABSTRACT

Human chemokine receptor 8 (CCR8) is a promising drug target for immunotherapy of cancer and autoimmune diseases. Monoclonal antibody-based CCR8 targeted treatment shows significant inhibition in tumor growth. The inhibition of CCR8 results in the improvement of antitumor immunity and patient survival rates by regulating tumor-resident regulatory T cells. Recently monoclonal antibody drug development targeting CCR8 has become a research hotspot, which also promotes the advancement of antibody evaluation methods. Therefore, we constructed a novel engineered customized cell line HEK293-cAMP-biosensor-CCR8 combined with CCR8 and a cAMP-biosensor reporter. It can be used for the detection of anti-CCR8 antibody functions like specificity and biological activity, in addition to the detection of antibody-dependent cell-mediated cytotoxicity and antibody-dependent-cellular-phagocytosis. We obtained a new CCR8 mAb 22H9 and successfully verified its biological activities with HEK293-cAMP-biosensor-CCR8. Our reporter cell line has high sensitivity and specificity, and also offers a rapid kinetic detection platform for evaluating anti-CCR8 antibody functions.


Subject(s)
Antibodies, Monoclonal , Biosensing Techniques , Cyclic AMP , Receptors, CCR8 , Humans , HEK293 Cells , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Receptors, CCR8/immunology , Receptors, CCR8/metabolism , Cyclic AMP/metabolism , Biosensing Techniques/methods , Antibody-Dependent Cell Cytotoxicity/immunology , Cell Engineering/methods
8.
Elife ; 132024 May 13.
Article in English | MEDLINE | ID: mdl-38739431

ABSTRACT

Survival of Mycobacterium tuberculosis within the host macrophages requires the bacterial virulence regulator PhoP, but the underlying reason remains unknown. 3',5'-Cyclic adenosine monophosphate (cAMP) is one of the most widely used second messengers, which impacts a wide range of cellular responses in microbial pathogens including M. tuberculosis. Herein, we hypothesized that intra-bacterial cAMP level could be controlled by PhoP since this major regulator plays a key role in bacterial responses against numerous stress conditions. A transcriptomic analysis reveals that PhoP functions as a repressor of cAMP-specific phosphodiesterase (PDE) Rv0805, which hydrolyzes cAMP. In keeping with these results, we find specific recruitment of the regulator within the promoter region of rv0805 PDE, and absence of phoP or ectopic expression of rv0805 independently accounts for elevated PDE synthesis, leading to the depletion of intra-bacterial cAMP level. Thus, genetic manipulation to inactivate PhoP-rv0805-cAMP pathway decreases cAMP level, stress tolerance, and intracellular survival of the bacillus.


Subject(s)
Bacterial Proteins , Cyclic AMP , Gene Expression Regulation, Bacterial , Mycobacterium tuberculosis , Stress, Physiological , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/physiology , Cyclic AMP/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Microbial Viability , Macrophages/microbiology , Macrophages/metabolism
9.
Biosensors (Basel) ; 14(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38785726

ABSTRACT

Phosphodiesterases (PDEs), a superfamily of enzymes that hydrolyze cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), are recognized as a therapeutic target for various diseases. However, the current screening methods for PDE inhibitors usually experience problems due to complex operations and/or high costs, which are not conducive to drug development in respect of this target. In this study, a new method for screening PDE inhibitors based on GloSensor technology was successfully established and applied, resulting in the discovery of several novel compounds of different structural types with PDE inhibitory activity. Compared with traditional screening methods, this method is low-cost, capable of dynamically detecting changes in substrate concentration in live cells, and can be used to preliminarily determine the type of PDEs affected by the detected active compounds, making it more suitable for high-throughput screening for PDE inhibitors.


Subject(s)
Phosphodiesterase Inhibitors , Phosphodiesterase Inhibitors/pharmacology , Humans , Cyclic AMP/metabolism , Phosphoric Diester Hydrolases/metabolism , High-Throughput Screening Assays , Biosensing Techniques , Cyclic GMP/metabolism , Drug Evaluation, Preclinical
10.
Commun Biol ; 7(1): 627, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789513

ABSTRACT

In recombinant protein-producing yeast strains, cells experience high production-related stresses similar to high temperatures. It is possible to increase recombinant protein production by enhancing thermotolerance, but few studies have focused on this topic. Here we aim to identify cellular regulators that can simultaneously activate thermotolerance and high yield of recombinant protein. Through screening at 46 °C, a heat-resistant Kluyveromyces marxianus (K. marxianus) strain FDHY23 is isolated. It also exhibits enhanced recombinant protein productivity at both 30 °C and high temperatures. The CYR1N1546K mutation is identified as responsible for FDHY23's improved phenotype, characterized by weakened adenylate cyclase activity and reduced cAMP production. Introducing this mutation into the wild-type strain greatly enhances both thermotolerance and recombinant protein yields. RNA-seq analysis reveals that under high temperature and recombinant protein production conditions, CYR1 mutation-induced reduction in cAMP levels can stimulate cells to improve its energy supply system and optimize material synthesis, meanwhile enhance stress resistance, based on the altered cAMP signaling cascades. Our study provides CYR1 mutation as a novel target to overcome the bottleneck in achieving high production of recombinant proteins under high temperature conditions, and also offers a convenient approach for high-throughput screening of recombinant proteins with high yields.


Subject(s)
Cyclic AMP , Kluyveromyces , Recombinant Proteins , Signal Transduction , Cyclic AMP/metabolism , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Kluyveromyces/genetics , Kluyveromyces/metabolism , Thermotolerance/genetics , Mutation , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hot Temperature
11.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791223

ABSTRACT

Amyloid beta peptides (Aß) have been identified as the main pathogenic agents in Alzheimer's disease (AD). Soluble Aß oligomers, rather than monomer or insoluble amyloid fibrils, show red blood cell (RBC) membrane-binding capacity and trigger several morphological and functional alterations in RBCs that can result in impaired oxygen transport and delivery. Since bioactive lipids have been recently proposed as potent protective agents against Aß toxicity, we investigated the role of sphingosine-1-phosphate (S1P) in signaling pathways involved in the mechanism underlying ATP release in Ab-treated RBCs. In RBCs following different treatments, the ATP, 2,3 DPG and cAMP levels and caspase 3 activity were determined by spectrophotometric and immunoassay. S1P rescued the inhibition of ATP release from RBCs triggered by Ab, through a mechanism involving caspase-3 and restoring 2,3 DPG and cAMP levels within the cell. These findings reveal the molecular basis of S1P protection against Aß in RBCs and suggest new therapeutic avenues in AD.


Subject(s)
Adenosine Triphosphate , Amyloid beta-Peptides , Caspase 3 , Cyclic AMP , Erythrocytes , Lysophospholipids , Sphingosine , Lysophospholipids/metabolism , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Amyloid beta-Peptides/metabolism , Erythrocytes/metabolism , Erythrocytes/drug effects , Humans , Cyclic AMP/metabolism , Adenosine Triphosphate/metabolism , Caspase 3/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , 2,3-Diphosphoglycerate/metabolism , Signal Transduction/drug effects
12.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791377

ABSTRACT

Phosphodiesterases (PDEs) are ubiquitous enzymes that hydrolyse cAMP and cGMP second messengers temporally, spatially, and integratedly according to their expression and compartmentalization inside the cell [...].


Subject(s)
Phosphoric Diester Hydrolases , Phosphoric Diester Hydrolases/metabolism , Humans , Animals , Cyclic AMP/metabolism , Cyclic GMP/metabolism
13.
Proc Natl Acad Sci U S A ; 121(21): e2316006121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38748577

ABSTRACT

Blood-brain barrier (BBB) models derived from human stem cells are powerful tools to improve our understanding of cerebrovascular diseases and to facilitate drug development for the human brain. Yet providing stem cell-derived endothelial cells with the right signaling cues to acquire BBB characteristics while also retaining their vascular identity remains challenging. Here, we show that the simultaneous activation of cyclic AMP and Wnt/ß-catenin signaling and inhibition of the TGF-ß pathway in endothelial cells robustly induce BBB properties in vitro. To target this interaction, we present a small-molecule cocktail named cARLA, which synergistically enhances barrier tightness in a range of BBB models across species. Mechanistically, we reveal that the three pathways converge on Wnt/ß-catenin signaling to mediate the effect of cARLA via the tight junction protein claudin-5. We demonstrate that cARLA shifts the gene expressional profile of human stem cell-derived endothelial cells toward the in vivo brain endothelial signature, with a higher glycocalyx density and efflux pump activity, lower rates of endocytosis, and a characteristic endothelial response to proinflammatory cytokines. Finally, we illustrate how cARLA can improve the predictive value of human BBB models regarding the brain penetration of drugs and targeted nanoparticles. Due to its synergistic effect, high reproducibility, and ease of use, cARLA has the potential to advance drug development for the human brain by improving BBB models across laboratories.


Subject(s)
Blood-Brain Barrier , Endothelial Cells , Blood-Brain Barrier/metabolism , Humans , Endothelial Cells/metabolism , Animals , Wnt Signaling Pathway , Claudin-5/metabolism , Claudin-5/genetics , Cyclic AMP/metabolism , Mice , Stem Cells/metabolism , Stem Cells/cytology , Tight Junctions/metabolism , beta Catenin/metabolism
14.
Endocrinology ; 165(7)2024 May 27.
Article in English | MEDLINE | ID: mdl-38735763

ABSTRACT

Follicle-stimulating hormone (FSH) binds to its membrane receptor (FSHR) in granulosa cells to activate various signal transduction pathways and drive the gonadotropin-dependent phase of folliculogenesis. Both FSH insufficiency (due to genetic or nongenetic factors) and FSH excess (as encountered with ovarian stimulation in assisted reproductive technology [ART]) can cause poor female reproductive outcomes, but the underlying molecular mechanisms remain elusive. Herein, we conducted single-follicle and single-oocyte RNA sequencing analysis along with other approaches in an ex vivo mouse folliculogenesis and oogenesis system to investigate the effects of different concentrations of FSH on key follicular events. Our study revealed that a minimum FSH threshold is required for follicle maturation into the high estradiol-secreting preovulatory stage, and such threshold is moderately variable among individual follicles between 5 and 10 mIU/mL. FSH at 5, 10, 20, and 30 mIU/mL induced distinct expression patterns of follicle maturation-related genes, follicular transcriptomics, and follicular cAMP levels. RNA sequencing analysis identified FSH-stimulated activation of G proteins and downstream canonical and novel signaling pathways that may critically regulate follicle maturation, including the cAMP/PKA/CREB, PI3K/AKT/FOXO1, and glycolysis pathways. High FSH at 20 and 30 mIU/mL resulted in noncanonical FSH responses, including premature luteinization, high production of androgen and proinflammatory factors, and reduced expression of energy metabolism-related genes in oocytes. Together, this study improves our understanding of gonadotropin-dependent folliculogenesis and provides crucial insights into how high doses of FSH used in ART may impact follicular health, oocyte quality, pregnancy outcome, and systemic health.


Subject(s)
Follicle Stimulating Hormone , Ovarian Follicle , Transcriptome , Animals , Female , Follicle Stimulating Hormone/pharmacology , Mice , Ovarian Follicle/drug effects , Ovarian Follicle/metabolism , Transcriptome/drug effects , Dose-Response Relationship, Drug , Oocytes/drug effects , Oocytes/metabolism , Oogenesis/drug effects , Oogenesis/genetics , Signal Transduction/drug effects , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Cyclic AMP/metabolism
15.
Eur J Pharmacol ; 974: 176617, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38679120

ABSTRACT

Acute kidney injury and other renal disorders are thought to be primarily caused by renal ischemia-reperfusion (RIR). Cyclic adenosine monophosphate (cAMP) has plenty of physiological pleiotropic effects and preserves tissue integrity and functions. This research aimed to examine the potential protective effects of the ß3-adrenergic receptors agonist mirabegron in a rat model of RIR and its underlying mechanisms. Male rats enrolled in this work were given an oral dose of 30 mg/kg mirabegron for two days before surgical induction of RIR. Renal levels of kidney injury molecule-1 (KIM-1), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), Interleukin-10 (IL-10), cAMP, cAMP-responsive element binding protein (pCREB), and glycogen synthase kinase-3 beta (GSK-3ß) were assessed along with blood urea nitrogen and serum creatinine. Additionally, caspase-3 and nuclear factor-kappa B (NF-κB) p65 were explored by immunohistochemical analysis. Renal specimens were inspected for histopathological changes. RIR led to renal tissue damage with elevated blood urea nitrogen and serum creatinine levels. The renal KIM-1, MCP-1, TNF-α, and GSK-3ß were significantly increased, while IL-10, cAMP, and pCREB levels were reduced. Moreover, upregulation of caspase-3 and NF-κB p65 protein expression was seen in RIR rats. Mirabegron significantly reduced kidney dysfunction, histological abnormalities, inflammation, and apoptosis in the rat renal tissues. Mechanistically, mirabegron mediated these effects via modulation of cAMP/pCREB and GSK-3ß/NF-κB p65 signaling pathways. Mirabegron administration could protect renal tissue and maintain renal function against RIR.


Subject(s)
Acetanilides , Cyclic AMP Response Element-Binding Protein , Cyclic AMP , Glycogen Synthase Kinase 3 beta , Kidney , Reperfusion Injury , Signal Transduction , Thiazoles , Transcription Factor RelA , Animals , Male , Thiazoles/pharmacology , Thiazoles/therapeutic use , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Reperfusion Injury/pathology , Reperfusion Injury/drug therapy , Signal Transduction/drug effects , Transcription Factor RelA/metabolism , Rats , Glycogen Synthase Kinase 3 beta/metabolism , Cyclic AMP/metabolism , Acetanilides/pharmacology , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Rats, Sprague-Dawley , Adrenergic beta-3 Receptor Agonists/pharmacology , Acute Kidney Injury/prevention & control , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/drug therapy
16.
Biomolecules ; 14(4)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38672440

ABSTRACT

This study assessed the suitability of the complementarity-determining region 2 (CDR2) of the nanobody (Nb) as a template for the derivation of nanobody-derived peptides (NDPs) targeting active-state ß2-adrenergic receptor (ß2AR) conformation. Sequences of conformationally selective Nbs favoring the agonist-occupied ß2AR were initially analyzed by the informational spectrum method (ISM). The derived NDPs in complex with ß2AR were subjected to protein-peptide docking, molecular dynamics (MD) simulations, and metadynamics-based free-energy binding calculations. Computational analyses identified a 25-amino-acid-long CDR2-NDP of Nb71, designated P4, which exhibited the following binding free-energy for the formation of the ß2AR:P4 complex (ΔG = -6.8 ± 0.8 kcal/mol or a Ki = 16.5 µM at 310 K) and mapped the ß2AR:P4 amino acid interaction network. In vitro characterization showed that P4 (i) can cross the plasma membrane, (ii) reduces the maximum isoproterenol-induced cAMP level by approximately 40% and the isoproterenol potency by up to 20-fold at micromolar concentration, (iii) has a very low affinity to interact with unstimulated ß2AR in the cAMP assay, and (iv) cannot reduce the efficacy and potency of the isoproterenol-mediated ß2AR/ß-arrestin-2 interaction in the BRET2-based recruitment assay. In summary, the CDR2-NDP, P4, binds preferentially to agonist-activated ß2AR and disrupts Gαs-mediated signaling.


Subject(s)
Peptides , Receptors, Adrenergic, beta-2 , Single-Domain Antibodies , Humans , Amino Acid Sequence , Complementarity Determining Regions/chemistry , Cyclic AMP/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism , Protein Binding , Protein Conformation , Receptors, Adrenergic, beta-2/metabolism , Receptors, Adrenergic, beta-2/chemistry , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/pharmacology , Single-Domain Antibodies/metabolism
17.
Elife ; 122024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652113

ABSTRACT

Lymphoid restricted membrane protein (LRMP) is a specific regulator of the hyperpolarization-activated cyclic nucleotide-sensitive isoform 4 (HCN4) channel. LRMP prevents cAMP-dependent potentiation of HCN4, but the interaction domains, mechanisms of action, and basis for isoform-specificity remain unknown. Here, we identify the domains of LRMP essential for this regulation, show that LRMP acts by disrupting the intramolecular signal transduction between cyclic nucleotide binding and gating, and demonstrate that multiple unique regions in HCN4 are required for LRMP isoform-specificity. Using patch clamp electrophysiology and Förster resonance energy transfer (FRET), we identified the initial 227 residues of LRMP and the N-terminus of HCN4 as necessary for LRMP to associate with HCN4. We found that the HCN4 N-terminus and HCN4-specific residues in the C-linker are necessary for regulation of HCN4 by LRMP. Finally, we demonstrated that LRMP-regulation can be conferred to HCN2 by addition of the HCN4 N-terminus along with mutation of five residues in the S5 region and C-linker to the cognate HCN4 residues. Taken together, these results suggest that LRMP inhibits HCN4 through an isoform-specific interaction involving the N-terminals of both proteins that prevents the transduction of cAMP binding into a change in channel gating, most likely via an HCN4-specific orientation of the N-terminus, C-linker, and S4-S5 linker.


Subject(s)
Cyclic AMP , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Membrane Proteins , Muscle Proteins , Receptors, Cytoplasmic and Nuclear , Signal Transduction , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Cyclic AMP/metabolism , Humans , Membrane Proteins/metabolism , Membrane Proteins/genetics , Animals , Protein Binding , HEK293 Cells , Potassium Channels/metabolism , Potassium Channels/genetics , Potassium Channels/chemistry , Patch-Clamp Techniques , Fluorescence Resonance Energy Transfer , Protein Isoforms/metabolism , Protein Isoforms/genetics
18.
J Mol Endocrinol ; 73(1)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38639976

ABSTRACT

The prostanoid G protein-coupled receptor (GPCR) EP2 is widely expressed and implicated in endometriosis, osteoporosis, obesity, pre-term labour and cancer. Internalisation and intracellular trafficking are critical for shaping GPCR activity, yet little is known regarding the spatial programming of EP2 signalling and whether this can be exploited pharmacologically. Using three EP2-selective ligands that favour activation of different EP2 pathways, we show that EP2 undergoes limited agonist-driven internalisation but is constitutively internalised via dynamin-dependent, ß-arrestin-independent pathways. EP2 was constitutively trafficked to early and very early endosomes (VEE), which was not altered by ligand activation. APPL1, a key adaptor and regulatory protein of the VEE, did not impact EP2 agonist-mediated cAMP. Internalisation was required for ~70% of the acute butaprost- and AH13205-mediated cAMP signalling, yet PGN9856i, a Gαs-biased agonist, was less dependent on receptor internalisation for its cAMP signalling, particularly in human term pregnant myometrial cells that endogenously express EP2. Inhibition of EP2 internalisation partially reduced calcium signalling activated by butaprost or AH13205 and had no effect on PGE2 secretion. This indicates an agonist-dependent differential spatial requirement for Gαs and Gαq/11 signalling and a role for plasma membrane-initiated Gαq/11-Ca2+-mediated PGE2 secretion. These findings reveal a key role for EP2 constitutive internalisation in its signalling and potential spatial bias in mediating its downstream functions. This, in turn, could highlight important considerations for future selective targeting of EP2 signalling pathways.


Subject(s)
Receptors, Prostaglandin E, EP2 Subtype , Signal Transduction , Humans , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Female , Pregnancy , Cyclic AMP/metabolism , GTP-Binding Proteins/metabolism , Endosomes/metabolism , Protein Transport , Myometrium/metabolism , Alprostadil/analogs & derivatives , Alprostadil/pharmacology , Alprostadil/metabolism , HEK293 Cells , Animals
19.
Pharmacol Ther ; 258: 108653, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679204

ABSTRACT

Cyclic nucleotides are important signaling molecules that play many critical physiological roles including controlling cell fate and development, regulation of metabolic processes, and responding to changes in the environment. Cyclic nucleotides are also pivotal regulators in immune signaling, orchestrating intricate processes that maintain homeostasis and defend against pathogenic threats. This review provides a comprehensive examination of the pharmacological potential of cyclic nucleotide signaling pathways within the realm of immunity. Beginning with an overview of the fundamental roles of cAMP and cGMP as ubiquitous second messengers, this review delves into the complexities of their involvement in immune responses. Special attention is given to the challenges associated with modulating these signaling pathways for therapeutic purposes, emphasizing the necessity for achieving cell-type specificity to avert unintended consequences. A major focus of the review is on the recent paradigm-shifting discoveries regarding specialized cyclic nucleotide signals in the innate immune system, notably the cGAS-STING pathway. The significance of cyclic dinucleotides, exemplified by 2'3'-cGAMP, in controlling immune responses against pathogens and cancer, is explored. The evolutionarily conserved nature of cyclic dinucleotides as antiviral agents, spanning across diverse organisms, underscores their potential as targets for innovative immunotherapies. Findings from the last several years have revealed a striking diversity of novel bacterial cyclic nucleotide second messengers which are involved in antiviral responses. Knowledge of the existence and precise identity of these molecules coupled with accurate descriptions of their associated immune defense pathways will be essential to the future development of novel antibacterial therapeutic strategies. The insights presented herein may help researchers navigate the evolving landscape of immunopharmacology as it pertains to cyclic nucleotides and point toward new avenues or lines of thinking about development of therapeutics against the pathways they regulate.


Subject(s)
Nucleotides, Cyclic , Signal Transduction , Humans , Animals , Nucleotides, Cyclic/metabolism , Immunity, Innate , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Neoplasms/drug therapy , Neoplasms/immunology , Nucleotidyltransferases/metabolism , Membrane Proteins/metabolism
20.
Yeast ; 41(5): 349-363, 2024 May.
Article in English | MEDLINE | ID: mdl-38583078

ABSTRACT

The cAMP-PKA signaling pathway plays a crucial role in sensing and responding to nutrient availability in the fission yeast Schizosaccharomyces pombe. This pathway monitors external glucose levels to control cell growth and sexual differentiation. However, the temporal dynamics of the cAMP-PKA pathway in response to external stimuli remains unclear mainly due to the lack of tools to quantitatively visualize the activity of the pathway. Here, we report the development of the kinase translocation reporter (KTR)-based biosensor spPKA-KTR1.0, which allows us to measure the dynamics of PKA activity in fission yeast cells. The spPKA-KTR1.0 is derived from the transcription factor Rst2, which translocates from the nucleus to the cytoplasm upon PKA activation. We found that spPKA-KTR1.0 translocates between the nucleus and cytoplasm in a cAMP-PKA pathway-dependent manner, indicating that the spPKA-KTR1.0 is a reliable indicator of the PKA activity in fission yeast cells. In addition, we implemented a system that simultaneously visualizes and manipulates the cAMP-PKA signaling dynamics by introducing bPAC, a photoactivatable adenylate cyclase, in combination with spPKA-KTR1.0. This system offers an opportunity for investigating the role of the signaling dynamics of the cAMP-PKA pathway in fission yeast cells with higher temporal resolution.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , Optogenetics , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Signal Transduction , Schizosaccharomyces/genetics , Schizosaccharomyces/enzymology , Schizosaccharomyces/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Cyclic AMP/metabolism , Biosensing Techniques , Optical Imaging/methods , Cell Nucleus/metabolism , Cytoplasm/metabolism , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...