Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.585
Filter
1.
Arkh Patol ; 86(2): 37-41, 2024.
Article in Russian | MEDLINE | ID: mdl-38591905

ABSTRACT

Primary pulmonary myxoid sarcoma with EWSR1-CREB1 fusion is an extremely rare tumor. Its clinical manifestation is unspecific and only molecular genetic method can proof this diagnosis. This paper describes an unusual clinical presentation of primary pulmonary myxoid sarcoma in a 68-year-old patient with involvement of both lungs.


Subject(s)
Lung Neoplasms , Sarcoma , Humans , Aged , Sarcoma/genetics , Sarcoma/diagnosis , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Oncogene Proteins, Fusion/genetics , Cyclic AMP Response Element-Binding Protein/genetics , RNA-Binding Protein EWS/genetics
2.
Exp Cell Res ; 438(1): 114006, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38599542

ABSTRACT

The aim of this study was to explore the functions and molecular mechanisms of the WNK lysine deficient protein kinase 1 (WNK1) in the development of ovarian cancer. Firstly, loss- and gain-of-function assays were carried out and subsequently cell proliferation, apoptosis, invasion and migration were detected. Furthermore, WNK1 action on glucose uptake, lactate production and adenosine triphosphate (ATP) level were assessed. The roles of WNK1 on cisplatin resistance were explored using CCK-8, colony formation, and flow cytometry in vitro. Immunohistochemistry, Western blot and qRT-PCR were conducted to determine the protein and mRNA expression. Additionally, tumor growth in vivo was also monitored. We found that the overexpression of WNK1 predicted a bad prognosis of ovarian cancer patients. WNK1 enhanced the malignant behavior and facilitated glycolysis of ovarian cancer cells. Moreover, WNK1 increased cisplatin resistance in ovarian cancer cells. Mechanistically, we found that WNK1 expression was promoted by CREB1 at the transcriptional level. And CREB1 could facilitate ovarian cancer cells malignant behavior through target upregulating WNK1. Besides, we also showed that WNK1 facilitated the malignant behavior by accelerating HIF-1 expression. In xenograft tumor tissues, the downregulation of WNK1 significantly reduced HIF-1α expression. These data demonstrated that the CREB1/WNK1 axis could promote the tumorigenesis of ovarian cancer via accelerating HIF-1 expression, suggesting that the CREB1/WNK1 axis could be a potential target during the therapy of ovarian cancer.


Subject(s)
Carcinogenesis , Cyclic AMP Response Element-Binding Protein , Hypoxia-Inducible Factor 1, alpha Subunit , Ovarian Neoplasms , WNK Lysine-Deficient Protein Kinase 1 , Animals , Female , Humans , Mice , Apoptosis , Carcinogenesis/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Cisplatin/pharmacology , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP Response Element-Binding Protein/genetics , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice, Nude , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/genetics , WNK Lysine-Deficient Protein Kinase 1/metabolism , WNK Lysine-Deficient Protein Kinase 1/genetics
3.
Article in English | MEDLINE | ID: mdl-38604561

ABSTRACT

Colorful shells in mollusks are commonly attributable to the presence of biological pigments. In Pacific oysters, the inheritance patterns of several shell colors have been investigated, but little is known about the molecular mechanisms of melanogenesis and pigmentation. cAMP-response element binding proteins (CREB) are important transcription factors in the cAMP-mediated melanogenesis pathway. In this study, we characterized two CREB genes (CREB3L2 and CREB3L3) from Pacific oysters. Both of them contained a conserved DNA-binding and dimerization domain (a basic-leucine zipper domain). CREB3L2 and CREB3L3 were expressed highly in the mantle tissues and exhibited higher expression levels in the black-shell oyster than in the white. Masson-Fontana melanin staining and immunofluorescence analysis showed that the location of CREB3L2 protein was generally consistent with the distribution of melanin in oyster edge mantle. Dual-luciferase reporter assays revealed that CREB3L2 and CREB3L3 could activate the microphthalmia-associated transcription factor (MITF) promoter and this process was regulated by the level of cAMP. Additionally, we found that cAMP regulated melanogenic gene expression through the CREB-MITF-TYR axis. These results implied that CREB3L2 and CREB3L3 play important roles in melanin synthesis and pigmentation in Pacific oysters.


Subject(s)
Crassostrea , Cyclic AMP Response Element-Binding Protein , Melanins , Animals , Melanins/metabolism , Melanins/biosynthesis , Crassostrea/genetics , Crassostrea/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP Response Element-Binding Protein/genetics , Amino Acid Sequence , Pigmentation/genetics , Phylogeny , Gene Expression Regulation , Microphthalmia-Associated Transcription Factor/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Melanogenesis
4.
Am J Physiol Cell Physiol ; 326(6): C1753-C1768, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38682239

ABSTRACT

This study investigated mogrol's impact on non-small cell lung cancer (NSCLC) radiosensitivity and underlying mechanisms, using various methods including assays, bioinformatics, and xenograft models. CCK-8, clonogenic, flow cytometry, TUNEL, and Western blot assays evaluated mogrol and radiation effects on NSCLC viability and apoptosis. Ubiquitin-specific protease 22 (USP22) expression in NSCLC patient tissues was determined by RT-qPCR and Western blot. A xenograft model validated mogrol's effects on tumor growth. Bioinformatics identified four ubiquitin-specific proteases, including USP22, in NSCLC. Kaplan-Meier analysis confirmed USP22's value in lung cancer survival. Human Protein Atlas (HPA) database analysis indicated higher USP22 expression in lung cancer tissues. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis implicated ERK1/2 in NSCLC progression, and molecular docking showed stability between mogrol and ERK1/2. Further in vivo and in vitro experiments have demonstrated that mogrol enhances the inhibitory effect of radiation on NSCLC cell viability and clonogenic capacity. Cell viability and clonogenic capacity are reduced by >50%, and an increase in cellular apoptosis is observed, with apoptotic levels reaching 10%. USP22 expression was significantly elevated in NSCLC tissues, particularly in radiotherapy-resistant patients. Mogrol downregulated USP22 expression by inhibiting the ERK/CREB pathway, lowering COX2 expression. Mogrol also enhanced radiation's inhibition of tumor growth in mice. Mogrol enhances NSCLC radiosensitivity by downregulating USP22 via the ERK/CREB pathway, leading to reduced COX2 expression.NEW & NOTEWORTHY Mogrol enhances non-small cell lung cancer (NSCLC) cell sensitivity to radiotherapy by downregulating USP22 through the ERK/CREB pathway, reducing COX2 expression. These findings highlight mogrol's potential as an adjunct to improve NSCLC radiotherapy and open avenues for further research and clinical applications.


Subject(s)
Apoptosis , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Radiation Tolerance , Ubiquitin Thiolesterase , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Humans , Lung Neoplasms/pathology , Lung Neoplasms/radiotherapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Animals , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Radiation Tolerance/drug effects , Apoptosis/drug effects , Mice , Xenograft Model Antitumor Assays , Mice, Nude , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP Response Element-Binding Protein/genetics , A549 Cells , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Male , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic , Female , Radiation-Sensitizing Agents/pharmacology
5.
Zhen Ci Yan Jiu ; 49(3): 265-273, 2024 Mar 25.
Article in English, Chinese | MEDLINE | ID: mdl-38500323

ABSTRACT

OBJECTIVES: To observe the effects of electroacupuncture (EA) on the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/cAMP response element binding protein (CREB) signaling pathway-related proteins and hippocampal neuron apoptosis in diabetic cognitive impairment (DCI) rats, and to explore the mechanisms of EA in treating DCI. METHODS: Adult male SD rats were randomly divided into normal, model, and EA groups, with 12 rats in each group. The animal model of DCI was replicated using a high-fat, high-sugar diet combined with low-dose streptozotocin. The EA group received EA stimulation at "Yishu" (EX-B6), "Zusanli" (ST36), "Baihui" (GV20), and "Dazhui" (GV14). Blood glucose contents of the rats in each group were measured. The Morris water maze test was used to assess the learning and memory abilities of rats. Transmission electron microscopy was used to observe the ultrastructure of hippocampal CA1 neurons. Nissl staining was used to observe the pathological changes in hippocampal CA1 neurons. TUNEL staining was used to detect the apoptosis in hippocampal CA1 neurons. Western blot was used to detect the protein expression levels of p-PI3K/PI3K and p-Akt/Akt, as well as CREB, p-CREB, cysteine aspartate pro-tease (Caspase)-3, B-cell lymphoma-2 (Bcl-2), and Bcl-2 related X protein (Bax) in the hippocampal tissue of rats. RESULTS: Compared with the normal group, the rats' random blood glucose contents were significantly increased (P<0.01), the escape latency prolonged (P<0.01), and the original platform crossing counts reduced (P<0.01) in the model group. Significant damage to hippocampal CA1 neurons, a significantly increased neuronal apoptosis index (P<0.01), decreased ratio of p-PI3K/PI3K and p-Akt/Akt and expression of CREB, p-CREB and Bcl-2 proteins, increased expression of Caspase-3 and Bax proteins (P<0.01) were observed in the hippocampal tissue of rats in the model group. Compared with the model group, the rats in the EA group showed decreased random blood glucose content (P<0.01), shortened escape latency (P<0.01), increased original platform crossing counts (P<0.01), improved quantity and pathological morphology and ultrastructure of hippocampal CA1 neurons, reduced neuronal apoptosis index (P<0.01), increased ratio of p-PI3K/PI3K and p-Akt/Akt, and expression of CREB, p-CREB and Bcl-2 proteins (P<0.05, P<0.01) in the hippocampal tissue, and decreased expression of Caspase-3 and Bax proteins (P<0.01). CONCLUSIONS: EA can improve the learning and memory abilities of rats with DCI, and the mechanism may be related to the regulation of the expression of PI3K/Akt/CREB signaling pathway-related proteins, which attenuates the neuronal apoptosis in the hippocampus of rats, and improves the neural function.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus , Electroacupuncture , Rats , Male , Animals , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Phosphatidylinositol 3-Kinases/genetics , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , Caspase 3/metabolism , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Blood Glucose , Signal Transduction , Hippocampus/metabolism , Apoptosis , Cognitive Dysfunction/genetics , Cognitive Dysfunction/therapy
6.
J Virol ; 98(4): e0156523, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38445884

ABSTRACT

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a worldwide threat in the past 3 years. Although it has been widely and intensively investigated, the mechanism underlying the coronavirus-host interaction requires further elucidation, which may contribute to the development of new antiviral strategies. Here, we demonstrated that the host cAMP-responsive element-binding protein (CREB1) interacts with the non-structural protein 13 (nsp13) of SARS-CoV-2, a conserved helicase for coronavirus replication, both in cells and in lung tissues subjected to SARS-CoV-2 infection. The ATPase and helicase activity of viral nsp13 were shown to be potentiated by CREB1 association, as well as by Protein kinase A (PKA)-mediated CREB1 activation. SARS-CoV-2 replication is significantly suppressed by PKA Cα, cAMP-activated protein kinase catalytic subunit alpha (PRKACA), and CREB1 knockdown or inhibition. Consistently, the CREB1 inhibitor 666-15 has shown significant antiviral effects against both the WIV04 strain and the Omicron strain of the SARS-CoV-2. Our findings indicate that the PKA-CREB1 signaling axis may serve as a novel therapeutic target against coronavirus infection. IMPORTANCE: In this study, we provide solid evidence that host transcription factor cAMP-responsive element-binding protein (CREB1) interacts directly with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) helicase non-structural protein 13 (nsp13) and potentiate its ATPase and helicase activity. And by live SARS-CoV-2 virus infection, the inhibition of CREB1 dramatically impairs SARS-CoV-2 replication in vivo. Notably, the IC50 of CREB1 inhibitor 666-15 is comparable to that of remdesivir. These results may extend to all highly pathogenic coronaviruses due to the conserved nsp13 sequences in the virus.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase , Cyclic AMP Response Element-Binding Protein , Cyclic AMP-Dependent Protein Kinases , Host Microbial Interactions , SARS-CoV-2 , Viral Nonstructural Proteins , Virus Replication , Humans , Adenosine Triphosphatases/metabolism , Antiviral Agents/pharmacology , Coronavirus RNA-Dependent RNA Polymerase/metabolism , COVID-19/virology , Cyclic AMP Response Element-Binding Protein/antagonists & inhibitors , Cyclic AMP Response Element-Binding Protein/deficiency , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , DNA Helicases/metabolism , Inhibitory Concentration 50 , RNA Helicases/metabolism , SARS-CoV-2/classification , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , SARS-CoV-2/growth & development , Signal Transduction/drug effects , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects , Female , Animals , Mice
7.
Int J Mol Sci ; 25(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38473754

ABSTRACT

Muscle formation directly determines meat production and quality. The non-SMC condensin I complex subunit G (NCAPG) is strongly linked to the growth features of domestic animals because it is essential in controlling muscle growth and development. This study aims to elucidate the tissue expression level of the bovine NCAPG gene, and determine the key transcription factors for regulating the bovine NCAPG gene. In this study, we observed that the bovine NCAPG gene exhibited high expression levels in longissimus dorsi and spleen tissues. Subsequently, we cloned and characterized the promoter region of the bovine NCAPG gene, consisting of a 2039 bp sequence, through constructing the deletion fragment double-luciferase reporter vector and site-directed mutation-identifying core promoter region with its key transcription factor binding site. In addition, the key transcription factors of the core promoter sequence of the bovine NCAPG gene were analyzed and predicted using online software. Furthermore, by integrating overexpression experiments and the electrophoretic mobility shift assay (EMSA), we have shown that cAMP response element binding protein 1 (CREB1) and myogenic differentiation 1 (MYOD1) bind to the core promoter region (-598/+87), activating transcription activity in the bovine NCAPG gene. In conclusion, these findings shed important light on the regulatory network mechanism that underlies the expression of the NCAPG gene throughout the development of the muscles in beef cattle.


Subject(s)
Cyclic AMP Response Element-Binding Protein , Gene Expression Regulation , Cattle , Animals , Cyclic AMP Response Element-Binding Protein/genetics , Promoter Regions, Genetic , Myoblasts
8.
J Cancer Res Clin Oncol ; 150(3): 108, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421462

ABSTRACT

PURPOSE: This review primarily aims to review the epidemiology, clinical characteristics, imaging, pathology, immunohistochemistry, diagnosis, differential diagnosis, treatment, and prognosis of Primary pulmonary myxoid sarcoma (PPMS) with EWS RNA binding protein 1::cAMP response element binding protein 1 (EWSR1::CREB1) fusion. It provides reference for the diagnosis and treatment of this disease. METHODS: Retrospectively collected the literature about PPMS with EWSR1::CREB1 fusion, its clinical, radiology, histology, molecular characteristics and current treatment strategies were collated and analyzed. This review provides a detailed differential diagnosis of the disease. RESULTS: PPMS is an exceptionally rare, low-grade malignant tumor of the lung. This tumor commonly infiltrates lung tissue and develops within bronchial passages. It is identified by a genetic rearrangement involving the EWSR1 gene and a distinct chromosomal translocation t(2; 22)(q33; q12). Variants include EWSR1::CREB1 fusion and EWS RNA binding protein 1::activating transcription factors (EWSR1::ATF1) fusion. PPMS with EWSR1::CREB1 fusion is more prevalent among middle-aged individuals and affects both sexes almost equally. Clinical symptoms are relatively non-specific, primarily including cough, hemoptysis, and weight loss. Most patients undergo surgery and experience a favorable prognosis. Further research is required to validate the effectiveness of alternative treatments for PPMS with EWSR1::CREB1 fusion. CONCLUSION: EWSR1 rearrangement and EWSR1::CREB1 fusion are crucial genetic features of PPMS and serve as important diagnostic markers. Immunohistochemically, PPMS tests positive for EMA. In terms of treatment, surgery has been the primary approach in recent years. Therefore, the efficacy of other treatments still requires further investigation.


Subject(s)
Chromosome Aberrations , Sarcoma , Female , Male , Middle Aged , Humans , RNA-Binding Protein EWS/genetics , Retrospective Studies , Diagnosis, Differential , Sarcoma/diagnosis , Sarcoma/genetics , Sarcoma/therapy , Cyclic AMP Response Element-Binding Protein/genetics
9.
ACS Chem Biol ; 19(3): 753-762, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38412264

ABSTRACT

Activating transcription factor 3 (ATF3) is an activation transcription factor/cyclic adenosine monophosphate (cAMP) responsive element-binding (CREB) protein family member. It is recognized as an important regulator of cancer progression by repressing expression of key inflammatory factors such as interferon-γ and chemokine (C-C motif) ligand 4 (CCL4). Here, we describe a novel library screening approach that probes individual leucine zipper components before combining them to search exponentially larger sequence spaces not normally accessible to intracellular screening. To do so, we employ two individual semirational library design approaches and screen using a protein-fragment complementation assay (PCA). First, a 248,832-member library explored 12 amino acid positions at all five a positions to identify those that provided improved binding, with all e/g positions fixed as Q, placing selection pressure onto the library options provided. Next, a 59,049-member library probed all ten e/g positions with 3 options. Similarly, during e/g library screening, a positions were locked into a generically bindable sequence pattern (AIAIA), weakly favoring leucine zipper formation, while placing selection pressure onto e/g options provided. The combined a/e/g library represents ∼14.7 billion members, with the resulting peptide, ATF3W_aeg, binding ATF3 with high affinity (Tm = 60 °C; Kd = 151 nM) while strongly disfavoring homodimerization. Moreover, ATF3W_aeg is notably improved over component PCA hits, with target specificity found to be driven predominantly by electrostatic interactions. The combined a/e/g exponential library screening approach provides a robust, accelerated platform for exploring larger peptide libraries, toward derivation of potent yet selective antagonists that avoid homoassociation to provide new insight into rational peptide design.


Subject(s)
Activating Transcription Factor 3 , Peptide Library , Activating Transcription Factor 3/metabolism , Cyclic AMP Response Element-Binding Protein/chemistry , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Gene Expression Regulation , Peptides/metabolism
10.
J Immunol Res ; 2024: 4817924, 2024.
Article in English | MEDLINE | ID: mdl-38380081

ABSTRACT

Background: Ovarian cancer (OV) is characteristic of high incidence rate and fatality rate in the malignant tumors of female reproductive system. Researches on pathogenesis and therapeutic targets for OV need to be continued. This study mainly analyzed the immune-related pathogenesis and discovered the key immunotherapy targets for OV. Methods: WGCNA was used for excavating hub gene modules and hub genes related to the immunity of OV. Enrichment analysis was aimed to analyze the related pathways of hub gene modules. Biological experiments were used for exploring the effect of hub genes on SKOV3 cells. Results: We identified two hub gene modules related to the immunoscore of OV and found that these genes in the modules were related to the extracellular matrix and viral infections. At the same time, we also discovered six hub genes related to the immunity of OV. Among them, KIF26B and CREB3L1 can affect the proliferation, migration, and invasion of SKOV3 cells by the Wnt/ß-catenin pathway. Conclusions: The local infection or inflammation of ovarian may affect the immunity of OV. KIF26B and CREB3L1 are expected to be potential targets for the immunotherapy of OV.


Subject(s)
Ovarian Neoplasms , Female , Humans , Ovarian Neoplasms/genetics , Extracellular Matrix , Gene Regulatory Networks , Immunotherapy , Nerve Tissue Proteins , Cyclic AMP Response Element-Binding Protein/genetics , Kinesins/genetics
11.
Biotechnol J ; 19(2): e2300446, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38403442

ABSTRACT

Accumulation of the ribonucleoside, adenosine (ADO), triggers a cAMP response element binding protein (CREB)-mediated signaling pathway to suppress the function of immune cells in tumors. Here, we describe a collection of CREB-activated promoters that allow for strong and tunable ADO-induced gene expression in human cells. By optimizing number of CREB transcription factor binding sites and altering the core promoter region of CREB-based hybrid promoters, we created synthetic constructs that drive gene expression to higher levels than strong, endogenous mammalian promoters in the presence of ADO. These synthetic promoters are induced up to 47-fold by ADO, with minimal expression in their "off" state. We further determine that our CREB-based promoters are activated by other compounds that act as signaling analogs, and that combinatorial addition of ADO and these compounds has a synergistic impact on gene expression. Surprisingly, we also detail how background ADO degradation caused by the common cell culture media additive, fetal bovine serum (FBS), confounds experiments designed to determine ADO dose-responsiveness. We show that only after long-term heat deactivation of FBS can our synthetic promoters enable gene expression induction at physiologically relevant levels of ADO. Finally, we demonstrate that the strength of a CREB-based promoter is enhanced by incorporating other transcription factor binding sites.


Subject(s)
Adenosine , Cyclic AMP Response Element-Binding Protein , Animals , Humans , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Adenosine/genetics , Cyclic AMP/metabolism , Promoter Regions, Genetic/genetics , Gene Expression , Transcription, Genetic , Mammals/genetics
12.
Mol Cancer Res ; 22(4): 373-385, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38236913

ABSTRACT

Breast cancer ranks first in incidence and fifth in cancer-related deaths among all types of cancer globally. Among breast cancer, triple-negative breast cancer (TNBC) has few known therapeutic targets and a poor prognosis. Therefore, new therapeutic targets and strategies against TNBC are required. We found that androgen-induced basic leucine zipper (AIbZIP), also known as cyclic AMP-responsive element-binding protein 3-like protein 4 (CREB3L4), which is encoded by Creb3l4, is highly upregulated in a particular subtype of TNBC, luminal androgen receptor (LAR) subtype. We analyzed the function of AIbZIP through depletion of AIbZIP by siRNA knockdown in LAR subtype TNBC cell lines, MFM223 and MDAMB453. In AIbZIP-depleted cells, the proliferation ratios of cells were greatly suppressed. Moreover, G1-S transition was inhibited in AIbZIP-depleted cells. We comprehensively analyzed the expression levels of proteins that regulate G1-S transition and found that p27 was specifically upregulated in AIbZIP-depleted cells. Furthermore, we identified that this p27 downregulation was caused by protein degradation modulated by the ubiquitin-proteasome system via F-box protein S-phase kinase-associated protein 2 (SKP2) upregulation. Our findings demonstrate that AIbZIP is a novel p27-SKP2 pathway-regulating factor and a potential molecule that contributes to LAR subtype TNBC progression. IMPLICATIONS: This research shows a new mechanism for the proliferation of LAR subtype TNBC regulated by AIbZIP, that may provide novel insight into the LAR subtype TNBC progression and the molecular mechanisms involved in cell proliferation.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Cell Line, Tumor , Cell Proliferation/genetics , Cyclic AMP Response Element-Binding Protein/genetics , Receptors, Androgen/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/drug therapy , Up-Regulation
13.
Cell Prolif ; 57(5): e13593, 2024 May.
Article in English | MEDLINE | ID: mdl-38185757

ABSTRACT

Ischemic heart disease, especially myocardial infarction (MI), is one of the leading causes of death worldwide, and desperately needs effective treatments, such as cell therapy. Cardiopulmonary progenitors (CPPs) are stem cells for both heart and lung, but their repairing role in damaged heart is still unknown. Here, we obtained CPPs from E9.5 mouse embryos, maintained their stemness while expanding, and identified their characteristics by scRNA-seq, flow cytometry, quantitative reverse transcription-polymerase chain reaction, and differentiation assays. Moreover, we employed mouse MI model to investigate whether CPPs could repair the injured heart. Our data identified that CPPs exhibit hybrid fibroblastic, endothelial, and mesenchymal state, and they could differentiate into cell lineages within the cardiopulmonary system. Moreover, intramyocardial injection of CPPs improves cardiac function through CPPs exosomes (CPPs-Exo) by promotion of cardiomyocytic proliferation and vascularization. To uncover the underlying mechanism, we used miRNA-seq, bulk RNA-seq, and bioinformatic approaches, and found the highly expressed miR-27b-3p in CPPs-Exo and its target gene Sik1, which can influence the transcriptional activity of CREB1. Therefore, we postulate that CPPs facilitate cardiac repair partially through the SIK1-CREB1 axis via exosomal miR-27b-3p. Our study offers a novel insight into the role of CPPs-Exo in heart repair and highlights the potential of CPPs-Exo as a promising therapeutic strategy for MI.


Subject(s)
Cyclic AMP Response Element-Binding Protein , Exosomes , MicroRNAs , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Exosomes/metabolism , Mice , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP Response Element-Binding Protein/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/therapy , Stem Cells/metabolism , Stem Cells/cytology , Cell Proliferation , Cell Differentiation , Lung/metabolism , Mice, Inbred C57BL , Myocardium/metabolism , Myocardium/cytology
14.
Ecotoxicol Environ Saf ; 271: 115989, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38242047

ABSTRACT

Exposure to cigarette smoke (CS) adversely affects ovarian health and it is currently unknown how CS exposure causes ovarian injury. This study compared the differences in proteomics between CS exposure and healthy control groups using liquid chromatography-tandem mass spectrometry quantitative proteomics to further understand the molecular mechanism of ovarian cell injury in mice exposed to CS. Furthermore, western blotting and qPCR were carried out to validate the proteomic analysis outcomes. CREB1 was selected from the differentially expressed proteins, and then the down-regulation of CREB1 and phosphorylated CREB1(Ser133) expressions were confirmed in mice ovarian tissue and human ovarian granulosa cells (KGN cells) after CS exposure. In addition, the expressions of apoptosis-related proteins BCL-2 and BCL-XL were downregulated, and BAX expression was up-regulated. Moreover, the results of cellular immunofluorescence, flow cytometry, and transmission electron microscopy (TEM) showed that cigarette smoke extract (CSE) efficiently stimulated the production of reactive oxygen species, apoptosis, G1 phase arrest, mitochondrial membrane potential decreases, and ultrastructural changes in KGN cells. KG-501 (CREB inhibitor) aggravated CSE-induced mitochondrial dysfunction and apoptosis-proliferation imbalance in KGN cells mediated by down-regulated CREB1/BCL-2 axis. In addition, CREB1 over-expression partially restores mitochondrial dysfunction and apoptosis-proliferation imbalance of KGN cells induced by CSE. The results suggested that CSE diminished ovarian reserve in mice by disrupting the CREB1-mediated ovarian granulosa cell (GCs) proliferation-apoptosis balance and provided possible therapeutic targets for the clinical intervention of premature ovarian failure (POI) caused by CS exposure.


Subject(s)
Cigarette Smoking , Mitochondrial Diseases , Ovarian Reserve , Female , Humans , Animals , Mice , Proteomics , Granulosa Cells/metabolism , Cell Proliferation/physiology , Apoptosis/physiology , Apoptosis Regulatory Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Mitochondrial Diseases/metabolism , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Tobacco Products
15.
Free Radic Biol Med ; 213: 343-358, 2024 03.
Article in English | MEDLINE | ID: mdl-38272326

ABSTRACT

Neuronal ferroptosis has been found to contribute to degenerative brain disorders and traumatic and hemorrhagic brain injury, but whether radiation-induced brain injury (RIBI), a critical deleterious effect of cranial radiation therapy for primary and metastatic brain tumors, involves neuronal ferroptosis remains unclear. We have recently discovered that deletion of reprimo (RPRM), a tumor suppressor gene, ameliorates RIBI, in which its protective effect on neurons is one of the underlying mechanisms. In this study, we found that whole brain irradiation (WBI) induced ferroptosis in mouse brain, manifesting as alterations in mitochondrial morphology, iron accumulation, lipid peroxidation and a dramatic reduction in glutathione peroxidase 4 (GPX4) level. Moreover, the hippocampal ferroptosis induced by ionizing irradiation (IR) mainly happened in neurons. Intriguingly, RPRM deletion protected the brain and primary neurons against IR-induced ferroptosis. Mechanistically, RPRM deletion prevented iron accumulation by reversing the significant increase in the expression of iron storage protein ferritin heavy chain (Fth), ferritin light chain (Ftl) and iron importer transferrin receptor 1 (Tfr1), as well as enhancing the expression of iron exporter ferroportin (Fpn) after IR. RPRM deletion also inhibited lipid peroxidation by abolishing the reduction of GPX4 and stearoyl coenzyme A desaturase-1 (SCD1) induced by IR. Importantly, RPRM deletion restored or even increased the expression of nuclear factor, erythroid 2 like 2 (Nrf2) in irradiated neurons. On top of that, compromised cyclic AMP response element (CRE)-binding protein (CREB) signaling was found to be responsible for the down-regulation of Nrf2 and SCD1 after irradiation, specifically, RPRM bound to CREB and promoted its degradation after IR, leading to a reduction of CREB protein level, which in turn down-regulated Nrf2 and SCD1. Thus, RPRM deletion recovered Nrf2 and SCD1 through its impact on CREB. Taken together, neuronal ferroptosis is involved in RIBI, RPRM deletion prevents IR-induced neuronal ferroptosis through restoring CREB-Nrf2/SCD1 pathways.


Subject(s)
Brain Injuries , Ferroptosis , Radiation Injuries , Animals , Mice , Apoferritins , Brain , Brain Injuries/genetics , Cyclic AMP Response Element-Binding Protein/genetics , Ferroptosis/genetics , Iron , NF-E2-Related Factor 2/genetics
16.
Int J Med Sci ; 21(1): 123-136, 2024.
Article in English | MEDLINE | ID: mdl-38164349

ABSTRACT

CREB3 subfamily belongs to the bZIP transcription factor family and comprises five members. Normally they are located on the endoplasmic reticulum (ER) membranes and proteolytically activated through RIP (regulated intramembrane proteolysis) on Golgi apparatus to liberate the N-terminus to serve as transcription factors. CREB3L1 acting as one of them transcriptionally regulates the expressions of target genes and exhibits distinct functions from the other members of CREB3 family in eukaryotes. Physiologically, CREB3L1 involves in the regulation of bone morphogenesis, neurogenesis, neuroendocrine, secretory cell differentiation, and angiogenesis. Pathologically, CREB3L1 implicates in the modulation of osteogenesis imperfecta, low grade fibro myxoid sarcoma (LGFMS), sclerosing epithelioid fibrosarcoma (SEF), glioma, breast cancer, thyroid cancer, and tissue fibrosis. This review summarizes the upstream and downstream regulatory network of CREB3L1 and thoroughly presents our current understanding of CREB3L1 research progress in both physiological and pathological conditions with special focus on the novel findings of CREB3L1 in cancers.


Subject(s)
Fibrosarcoma , Humans , Fibrosarcoma/genetics , Fibrosarcoma/metabolism , Fibrosarcoma/pathology , Basic-Leucine Zipper Transcription Factors , Biomarkers, Tumor/genetics , Nerve Tissue Proteins , Cyclic AMP Response Element-Binding Protein/genetics
17.
FEBS J ; 291(1): 142-157, 2024 01.
Article in English | MEDLINE | ID: mdl-37786383

ABSTRACT

Decidualization of endometrial stroma is a key step in embryo implantation and its abnormality often leads to pregnancy failure. Stromal decidualization is a very complex process that is co-regulated by estrogen, progesterone and many local factors. The signaling protein SHP2 encoded by PTPN11 is dynamically expressed in decidualized endometrial stroma and mediates and integrates various signals to govern the decidualization. In the present study, we investigate the mechanism of PTPN11 gene transcription. Estrogen, progesterone and cAMP co-induced decidualization of human endometrial stromal cell in vitro, but only progesterone and cAMP induced SHP2 expression. Using the luciferase reporter, we refined a region from -229 bp to +1 bp in the PTPN11 gene promoter comprising the transcriptional core regions that respond to progesterone and cAMP. Progesterone receptor (PGR) and cAMP-responsive element-binding protein 1 (CREB1) were predicted to be transcription factors in this core region by bioinformatic methods. The direct binding of PGR and CREB1 on the PTPN11 promoter was confirmed by electrophoretic mobility and chromatin immunoprecipitation in vitro. Knockdown of PGR and CREB1 protein significantly inhibited the expression of SHP2 induced by medroxyprogesterone acetate and cAMP. These results demonstrate that transcription factors PGR and CREB1 bind to the PTPN11 promoter to regulate the expression of SHP2 in response to decidual signals. Our results explain the transcriptional expression mechanism of SHP2 during decidualization and promote the understanding of the mechanism of decidualization of stromal cells.


Subject(s)
Progesterone , Receptors, Progesterone , Female , Humans , Pregnancy , Cells, Cultured , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Decidua/metabolism , Endometrium/metabolism , Estrogens , Progesterone/pharmacology , Progesterone/metabolism , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism , Stromal Cells/metabolism
18.
Mod Pathol ; 37(1): 100358, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37871652

ABSTRACT

Intraductal oncocytic papillary neoplasms (IOPNs) are distinct from intraductal papillary mucinous neoplasms based on characteristic morphologic and genetic features represented by fusion genes involving PRKACA or PRKACB (PRKACA/B). However, pancreatic and biliary tumors with partial oncocytic features are often encountered clinically, and their molecular features are yet to be clarified. This study included 80 intraductal papillary neoplasms: 32 tumors with mature IOPN morphology (typical), 28 with partial or subclonal oncocytic features (atypical), and 20 without oncocytic features (control). We analyzed PRKACA/B fusion genes, including ATP1B1::PRKACA, DNAJB1::PRKACA, and ATP1B1::PRKACB, by reverse-transcription PCR; mRNA expression of fusion genes and nonrearranged PRKACA/B genes by quantitative reverse-transcription PCR; mutations in KRAS, BRAF, and GNAS by targeted sequencing or droplet digital PCR; and the expression of cyclic adenosine monophosphate (cAMP)-dependent protein kinase catalytic subunits α (PRKACA) and ß (PRKACB), phosphorylated cAMP response element-binding protein, and aberrations of p16, p53, SMAD4, STK11, and ß-catenin by immunohistochemistry. PRKACA/B fusion genes were detected in 100% (32/32) of typical, 46% (13/28) of atypical, and 0% (0/20) of control (P < .05). Expression of PRKACA, PRKACB, and phosphorylated cAMP response element-binding protein was upregulated in neoplasms with PRKACA/B fusion genes (P < .05). mRNA expression of the PRKACA/B fusion genes and protein expression of PRKACA or PRKACB tended to be higher in typical than in atypical cases (mRNA, P = .002; protein expression, P = .054). In some atypical neoplasms with mixed subtypes, PRKACA/B fusion genes were superimposed exclusively on oncocytic components. Typical IOPNs harbored fewer KRAS and GNAS mutations than control samples and fewer alterations in p53 and STK11 than atypical samples (P < .05). In conclusion, PRKACA/B fusion genes not only are the characteristic drivers of IOPNs but also play a crucial role in the development of subclonal oncocytic neoplasms. Moreover, oncocytic morphology is strongly associated with upregulation of PRKACA/B, which may provide clues for potential therapeutic options.


Subject(s)
Adenocarcinoma, Mucinous , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Tumor Suppressor Protein p53/genetics , Protein Kinases/genetics , Catalytic Domain , Cyclic AMP Response Element-Binding Protein/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Pancreatic Neoplasms/pathology , Chromosome Aberrations , Adenocarcinoma, Mucinous/pathology , Gene Rearrangement , RNA, Messenger , Carcinoma, Pancreatic Ductal/pathology , HSP40 Heat-Shock Proteins/genetics , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/genetics
19.
Clin Nutr ; 43(2): 366-378, 2024 02.
Article in English | MEDLINE | ID: mdl-38142481

ABSTRACT

BACKGROUND & AIMS: Hyperglycemia is associated with lipid disorders in patients with diabetes. Ceramides are metabolites involved in sphingolipid metabolism that accumulate during lipid disorders and exert deleterious effects on glucose and lipid metabolism. However, the effects of ceramide on glucagon-mediated hepatic gluconeogenesis remain largely unknown. This study was designed to investigate the impact of ceramides on gluconeogenesis in the context of the hepatic glucagon response, with the aim of finding new pharmacological interventions for hyperglycemia in diabetes. METHODS: Liquid chromatography-mass spectrometry was used to quantify ceramide content in the serum of patients with diabetes. Primary hepatocytes were isolated from male C57BL/6J mice to study the effects of ceramide on hepatic glucose production. Immunofluorescence staining was performed to view cAMP-responsive element-binding protein (CREB)- regulated transcription co-activator 2 (CRTC2) nuclear translocation in hepatocytes. Serine palmitoyl-transferase, long chain base subunit 2 (Sptlc2) knockdown mice were generated using an adeno-associated virus containing shRNA, and hepatic glucose production was assessed glucagon tolerance and pyruvate tolerance tests in mice fed a normal chow diet and high-fat diet. RESULTS: Increased ceramide levels were observed in the serum of patients newly diagnosed with type 2 diabetes. De novo ceramide synthesis was activated in mice with metabolic disorders. Ceramide enhanced hepatic glucose production in primary hepatocytes. In contrast, genetic silencing of Sptlc2 prevented this process. Mechanistically, ceramides de-phosphorylate CRTC2 (Ser 171) and facilitate its translocation into the nucleus for CREB activation, thereby augmenting the hepatic glucagon response. Hepatic Sptlc2 silencing blocked ceramide generation in the liver and thus restrained the hepatic glucagon response in mice fed a normal chow diet and high-fat diet. CONCLUSIONS: These data indicate that ceramide serves as an intracellular messenger that augments hepatic glucose production by regulating CRTC2/CREB activity in the context of the hepatic glucagon response, suggesting that CRTC2 phosphorylation might be a potential node for pharmacological interventions to restrain the hyperglycemic response during fasting in diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Humans , Male , Mice , Animals , Glucagon , Diabetes Mellitus, Type 2/metabolism , Mice, Inbred C57BL , Liver/metabolism , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP Response Element-Binding Protein/pharmacology , Glucose/metabolism , Hyperglycemia/metabolism , Ceramides , Lipids/pharmacology
20.
Mol Psychiatry ; 29(3): 704-717, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38123724

ABSTRACT

The Shank3 gene encodes the major postsynaptic scaffolding protein SHANK3. Its mutation causes a syndromic form of autism spectrum disorder (ASD): Phelan-McDermid Syndrome (PMDS). It is characterized by global developmental delay, intellectual disorders (ID), ASD behavior, affective symptoms, as well as extra-cerebral symptoms. Although Shank3 deficiency causes a variety of molecular alterations, they do not suffice to explain all clinical aspects of this heterogenic syndrome. Since global gene expression alterations in Shank3 deficiency remain inadequately studied, we explored the transcriptome in vitro in primary hippocampal cells from Shank3∆11(-/-) mice, under control and lithium (Li) treatment conditions, and confirmed the findings in vivo. The Shank3∆11(-/-) genotype affected the overall transcriptome. Remarkably, extracellular matrix (ECM) and cell cycle transcriptional programs were disrupted. Accordingly, in the hippocampi of adolescent Shank3∆11(-/-) mice we found proteins of the collagen family and core cell cycle proteins downregulated. In vitro Li treatment of Shank3∆11(-/-) cells had a rescue-like effect on the ECM and cell cycle gene sets. Reversed ECM gene sets were part of a network, regulated by common transcription factors (TF) such as cAMP responsive element binding protein 1 (CREB1) and ß-Catenin (CTNNB1), which are known downstream effectors of synaptic activity and targets of Li. These TFs were less abundant and/or hypo-phosphorylated in hippocampi of Shank3∆11(-/-) mice and could be rescued with Li in vitro and in vivo. Our investigations suggest the ECM compartment and cell cycle genes as new players in the pathophysiology of Shank3 deficiency, and imply involvement of transcriptional regulators, which can be modulated by Li. This work supports Li as potential drug in the management of PMDS symptoms, where a Phase III study is ongoing.


Subject(s)
Extracellular Matrix , Hippocampus , Mice, Knockout , Nerve Tissue Proteins , beta Catenin , Animals , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Hippocampus/metabolism , Extracellular Matrix/metabolism , Mice , beta Catenin/metabolism , beta Catenin/genetics , Chromosome Disorders/genetics , Chromosome Disorders/metabolism , Chromosome Deletion , Cell Cycle/drug effects , Cell Cycle/genetics , Autistic Disorder/genetics , Autistic Disorder/metabolism , Chromosomes, Human, Pair 22/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP Response Element-Binding Protein/genetics , Male , Transcriptome/genetics , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/drug therapy , Mice, Inbred C57BL , Lithium/pharmacology , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...