Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 191(12): 6273-80, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24227782

ABSTRACT

Adenosine, a purine nucleoside, is present at high concentrations in tumors, where it contributes to the failure of immune cells to eliminate cancer cells. The mechanisms responsible for the immunosuppressive properties of adenosine are not fully understood. We tested the hypothesis that adenosine's immunosuppressive functions in human T lymphocytes are in part mediated via modulation of ion channels. The activity of T lymphocytes relies on ion channels. KCa3.1 and Kv1.3 channels control cytokine release and, together with TRPM7, regulate T cell motility. Adenosine selectively inhibited KCa3.1, but not Kv1.3 and TRPM7, in activated human T cells. This effect of adenosine was mainly mediated by A2A receptors, as KCa3.1 inhibition was reversed by SCH58261 (selective A2A receptor antagonist), but not by MRS1754 (A2B receptor antagonist), and it was mimicked by the A2A receptor agonist CGS21680. Furthermore, it was mediated by the cAMP/protein kinase A isoform (PKAI) signaling pathway, as adenylyl-cyclase and PKAI inhibition prevented adenosine effect on KCa3.1. The functional implication of the effect of adenosine on KCa3.1 was determined by measuring T cell motility on ICAM-1 surfaces. Adenosine and CGS21680 inhibited T cell migration. Comparable effects were obtained by KCa3.1 blockade with TRAM-34. Furthermore, the effect of adenosine on cell migration was abolished by pre-exposure to TRAM-34. Additionally, adenosine suppresses IL-2 secretion via KCa3.1 inhibition. Our data indicate that adenosine inhibits KCa3.1 in human T cells via A2A receptor and PKAI, thereby resulting in decreased T cell motility and cytokine release. This mechanism is likely to contribute to decreased immune surveillance in solid tumors.


Subject(s)
Adenosine/pharmacology , Intermediate-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , T-Lymphocytes/drug effects , 8-Bromo Cyclic Adenosine Monophosphate/pharmacology , Adenosine/analogs & derivatives , Calcium/physiology , Calcium Channel Blockers/pharmacology , Cell Movement/drug effects , Cells, Cultured , Cyclic AMP-Dependent Protein Kinase Type I/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinase Type I/physiology , Female , Humans , Immunologic Surveillance/physiology , Intercellular Adhesion Molecule-1 , Interleukin-2/metabolism , Intermediate-Conductance Calcium-Activated Potassium Channels/physiology , Ion Transport/drug effects , Kv1.3 Potassium Channel/physiology , Lymphocyte Activation , Male , Patch-Clamp Techniques , Phenethylamines/pharmacology , Protein Serine-Threonine Kinases , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Receptor, Adenosine A2A/physiology , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , TRPM Cation Channels/physiology , Triazoles/pharmacology
2.
Am J Physiol Cell Physiol ; 302(10): C1504-12, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22378744

ABSTRACT

The cAMP/PKA signaling system constitutes an inhibitory pathway in T cells and, although its biochemistry has been thoroughly investigated, its possible effects on ion channels are still not fully understood. K(V)1.3 channels play an important role in T-cell activation, and their inhibition suppresses T-cell function. It has been reported that PKA modulates K(V)1.3 activity. Two PKA isoforms are expressed in human T cells: PKAI and PKAII. PKAI has been shown to inhibit T-cell activation via suppression of the tyrosine kinase Lck. The aim of this study was to determine the PKA isoform modulating K(V)1.3 and the signaling pathway underneath. 8-Bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP), a nonselective activator of PKA, inhibited K(V)1.3 currents both in primary human T and in Jurkat cells. This inhibition was prevented by the PKA blocker PKI(6-22). Selective knockdown of PKAI, but not PKAII, with siRNAs abolished the response to 8-BrcAMP. Additional studies were performed to determine the signaling pathway mediating PKAI effect on K(V)1.3. Overexpression of a constitutively active mutant of Lck reduced the response of K(V)1.3 to 8-Br-cAMP. Moreover, knockdown of the scaffolding protein disc large 1 (Dlg1), which binds K(V)1.3 to Lck, abolished PKA modulation of K(V)1.3 channels. Immunohistochemistry studies showed that PKAI, but not PKAII, colocalizes with K(V)1.3 and Dlg1 indicating a close proximity between these proteins. These results indicate that PKAI selectively regulates K(V)1.3 channels in human T lymphocytes. This effect is mediated by Lck and Dlg1. We thus propose that the K(V)1.3/Dlg1/Lck complex is part of the membrane pathway that cAMP utilizes to regulate T-cell function.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Cyclic AMP-Dependent Protein Kinase Type I/physiology , Kv1.3 Potassium Channel/metabolism , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/physiology , Membrane Proteins/physiology , T-Lymphocytes/enzymology , 8-Bromo Cyclic Adenosine Monophosphate/pharmacology , Cells, Cultured , Discs Large Homolog 1 Protein , Humans , Immunosuppressive Agents/pharmacology , Jurkat Cells , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/antagonists & inhibitors , Signal Transduction/drug effects , Signal Transduction/physiology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
3.
Biochem Pharmacol ; 80(6): 838-45, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20470757

ABSTRACT

Natural killer (NK) and unconventional gammadelta T cells, by their ability to sense ligands induced by oncogenic stress on cell surface and to kill tumor cells without a need for clonal expansion, show a great therapeutic interest. They use numerous activating and inhibitory receptors which can function with some independence to trigger or inhibit destruction of target cells. Previous reports demonstrated that PGE(2) is able to suppress the destruction of some tumor cell lines by NK and gammadelta T cells but it remained uncertain if PGE(2) interferes with the different activating receptors governing the cytolytic responses of NK and gammadelta T cells. In this report, using the model of specific redirected lysis of the mouse FcgammaR(+) cell line P815, we clearly demonstrate that the major NK receptors (NKR): NKG2D, CD16 and natural cytotoxicity receptors (NCR: NKp30, NKp44, NKp46) and gammadelta T cell receptors TCR Vgamma9Vdelta2, NKG2D and CD16 are all inhibited by PGE(2). As is the case with gammadelta T cells, we show that PGE(2) binds on E-prostanoid 2 (EP2) and EP4 receptors on NK cells. Finally, we delineate that the signaling of the blockade by PGE(2) is mediated through a cAMP-dependent activation of PKA type I which inhibits early signaling protein of cytotoxic cells. In the discussion, we focused on how these data should impact particular approaches in the treatment of cancer.


Subject(s)
Cyclic AMP-Dependent Protein Kinase Type I/physiology , Cytotoxicity, Immunologic/immunology , Dinoprostone/physiology , Killer Cells, Natural/immunology , Receptors, Antigen, T-Cell, gamma-delta/antagonists & inhibitors , Receptors, Antigen, T-Cell, gamma-delta/physiology , Signal Transduction/physiology , T-Lymphocyte Subsets/immunology , Animals , Cell Line, Tumor , Cyclic AMP-Dependent Protein Kinases/physiology , Gene Rearrangement, delta-Chain T-Cell Antigen Receptor/immunology , Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor/immunology , Humans , Killer Cells, Natural/drug effects , Mice , Protein Binding/physiology
4.
J Cell Biochem ; 103(2): 520-7, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-17577214

ABSTRACT

The aim of the current study was to investigate the cAMP-dependent regulation of arginase-1 (ARG1) expression in RAW-macrophages. Basal ARG1 mRNA expression was low and increased upon incubation with the cAMP analogue Br-cAMP. We used selective agonists of protein kinase A type I (PKAI), type II (PKAII) and exchange protein directly activated by cAMP (EPAC) to determine the pathway responsible for ARG1 expression. Activation of PKAI led to a significant up-regulation of ARG1 mRNA expression and arginase enzyme activity. In contrast, neither activation of PKAII nor activation of EPAC affected ARG1 expression. In addition, it has been shown that histone deacetylase (HDAC) activity plays a critical role in cAMP-dependent transcriptional regulation. Incubation with Br-cAMP and the HDAC inhibitor trichostatin A (TSA) led to a concentration-dependent suppression of ARG1 expression. These data indicate that cAMP-dependent activation of ARG1 expression is mediated by PKAI and requires histone deacetylation.


Subject(s)
Arginase/biosynthesis , Cyclic AMP-Dependent Protein Kinase Type I/physiology , Cyclic AMP/physiology , Macrophages/enzymology , Protein Processing, Post-Translational , Acetylation , Animals , Arginase/genetics , Benzamides/pharmacology , Cell Line , Cyclic AMP-Dependent Protein Kinase Type II/physiology , Enzyme Activation , Enzyme Induction/drug effects , Guanine Nucleotide Exchange Factors/physiology , Histone Deacetylase Inhibitors , Histone Deacetylases/metabolism , Hydroxamic Acids/pharmacology , Mice , Pyridines/pharmacology , RNA, Messenger/biosynthesis , Second Messenger Systems/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...