Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 352(6293): 1542-7, 2016 Jun 24.
Article in English | MEDLINE | ID: mdl-27339980

ABSTRACT

The Hsp90 molecular chaperone and its Cdc37 cochaperone help stabilize and activate more than half of the human kinome. However, both the mechanism by which these chaperones assist their "client" kinases and the reason why some kinases are addicted to Hsp90 while closely related family members are independent are unknown. Our structural understanding of these interactions is lacking, as no full-length structures of human Hsp90, Cdc37, or either of these proteins with a kinase have been elucidated. Here we report a 3.9 angstrom cryo-electron microscopy structure of the Hsp90-Cdc37-Cdk4 kinase complex. Surprisingly, the two lobes of Cdk4 are completely separated with the ß4-ß5 sheet unfolded. Cdc37 mimics part of the kinase N lobe, stabilizing an open kinase conformation by wedging itself between the two lobes. Finally, Hsp90 clamps around the unfolded kinase ß5 strand and interacts with exposed N- and C-lobe interfaces, protecting the kinase in a trapped unfolded state. On the basis of this structure and an extensive amount of previously collected data, we propose unifying conceptual and mechanistic models of chaperone-kinase interactions.


Subject(s)
Cell Cycle Proteins/chemistry , Chaperonins/chemistry , Cyclin-Dependent Kinase 4/chemistry , HSP90 Heat-Shock Proteins/chemistry , Multiprotein Complexes/chemistry , Protein Unfolding , Animals , Cell Cycle Proteins/ultrastructure , Chaperonins/ultrastructure , Cyclin-Dependent Kinase 4/ultrastructure , Enzyme Stability , HSP90 Heat-Shock Proteins/ultrastructure , Humans , Models, Molecular , Multiprotein Complexes/ultrastructure , Protein Structure, Secondary , Sf9 Cells
2.
Mol Cell ; 23(5): 697-707, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16949366

ABSTRACT

Activation of many protein kinases depends on their interaction with the Hsp90 molecular chaperone system. Recruitment of protein kinase clients to the Hsp90 chaperone system is mediated by the cochaperone adaptor protein Cdc37, which acts as a scaffold, simultaneously binding protein kinases and Hsp90. We have now expressed and purified an Hsp90-Cdc37-Cdk4 complex, defined its stoichiometry, and determined its 3D structure by single-particle electron microscopy. Comparison with the crystal structure of Hsp90 allows us to identify the locations of Cdc37 and Cdk4 in the complex and suggests a mechanism by which conformational changes in the kinase are coupled to the Hsp90 ATPase cycle.


Subject(s)
Cell Cycle Proteins/chemistry , Cell Cycle Proteins/ultrastructure , Chaperonins/chemistry , Chaperonins/ultrastructure , Cyclin-Dependent Kinase 4/chemistry , Cyclin-Dependent Kinase 4/ultrastructure , HSP90 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/ultrastructure , Cell Cycle Proteins/isolation & purification , Chaperonins/isolation & purification , Cyclin-Dependent Kinase 4/isolation & purification , HSP90 Heat-Shock Proteins/isolation & purification , Humans , Microscopy, Electron , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/isolation & purification , Multiprotein Complexes/ultrastructure , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...