Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem Toxicol ; 161 Suppl 1: 112912, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35278499

ABSTRACT

Therefore, the (-)-(R)-α-phellandrene MOE for the repeated dose toxicity endpoint can be calculated by dividing the (-)-(R)-α-phellandrene NOAEL in mg/kg/day by the total systemic exposure to (-)-(R)-α-phellandrene, 8.33/0.00040, or 20825.


Subject(s)
Cyclohexane Monoterpenes/toxicity , Odorants , Humans , Mutagenicity Tests , Toxicity Tests
2.
Food Funct ; 13(6): 3110-3132, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35212344

ABSTRACT

Spearmint belongs to the genus Mentha in the family Labiatae (Lamiaceae), which is cultivated worldwide for its remarkable aroma and commercial value. The aromatic molecules of spearmint essential oil, including carvone, carveol, dihydrocarvone, dihydrocarveol and dihydrocarvyl acetate, have been widely used in the flavors and fragrances industry. Besides their traditional use, these aromatic molecules have attracted great interest in other application fields (e.g., medicine, agriculture, food, and beverages) especially due to their antimicrobial, antioxidant, insecticidal, antitumor, anti-inflammatory and antidiabetic activities. This review presents the sources, properties, synthesis and application of spearmint aromatic molecules. Furthermore, this review focuses on the biological properties so far described for these compounds, their therapeutic effect on some diseases, and future directions of research. This review will, therefore, contribute to the rational and economic exploration of spearmint aromatic molecules as natural and safe alternative therapeutics.


Subject(s)
Cyclohexane Monoterpenes/pharmacology , Mentha spicata/chemistry , Oils, Volatile/chemistry , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/chemistry , Antioxidants/metabolism , Antioxidants/pharmacology , Biosynthetic Pathways , Central Nervous System Agents/chemistry , Central Nervous System Agents/pharmacology , Cyclohexane Monoterpenes/chemistry , Cyclohexane Monoterpenes/metabolism , Cyclohexane Monoterpenes/toxicity , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypolipidemic Agents/chemistry , Hypolipidemic Agents/pharmacology , Insecticides , Protective Agents/chemistry , Protective Agents/pharmacology
3.
Molecules ; 26(23)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34885940

ABSTRACT

Peperomia Ruiz and Pav, the second largest genus of the Piperaceae, has over the years shown potential biological activities. In this sense, the present work aimed to carry out a seasonal and circadian study on the chemical composition of Peperomia circinata essential oils and aromas, as well as to evaluate the preliminary toxicity in Artemia salina Leach and carry out an in silico study on the interaction mechanism. The chemical composition was characterized by gas chromatography (GC/MS and GC-FID). In the seasonal study the essential oil yields had a variation of 1.2-7.9%, and in the circadian study the variation was 1.5-5.6%. The major compounds in the seasonal study were ß-phellandrene and elemicin, in the circadian they were ß-phellandrene and myrcene, and the aroma was characterized by the presence of ß-phellandrene. The multivariate analysis showed that the period and time of collection influenced the essential oil and aroma chemical composition. The highest toxicity value was observed for the essential oil obtained from the dry material, collected in July with a value of 14.45 ± 0.25 µg·mL-1, the in silico study showed that the major compounds may be related to potential biological activity demonstrated by the present study.


Subject(s)
Artemia/drug effects , Oils, Volatile/analysis , Oils, Volatile/toxicity , Peperomia/chemistry , Acyclic Monoterpenes/analysis , Acyclic Monoterpenes/toxicity , Alkenes/analysis , Alkenes/toxicity , Animals , Cyclohexane Monoterpenes/analysis , Cyclohexane Monoterpenes/toxicity , Pyrogallol/analogs & derivatives , Pyrogallol/analysis , Pyrogallol/toxicity , Seasons
6.
Bull Entomol Res ; 110(3): 406-416, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31813390

ABSTRACT

Sitophilus zeamais is a key pest of stored grains. Its control is made, usually, using synthetic insecticides, despite their negative impacts. Botanical insecticides with fumigant/repellent properties may offer an alternative solution. This work describes the effects of Anethum graveolens, Petroselinum crispum, Foeniculum vulgare and Cuminum cyminum essential oils (EOs) and (S)-carvone, cuminaldehyde, estragole and (+)-fenchone towards adults of S. zeamais. Acute toxicity was assessed by fumigation and topical application. Repellence was evaluated by an area preference bioassay and two-choice test, using maize grains. LC50 determined by fumigation ranged from 51.8 to 535.8 mg L-1 air, with (S)-carvone being the most active. LD50 values for topical applications varied from 23 to 128 µg per adult for (S)-carvone > cuminaldehyde > A. graveolens > C. cyminum > P. crispum. All EOs/standard compounds reduced significantly the percentage of insects attracted to maize grains (65-80%) in the two-choice repellence test, whereas in the area preference bioassay RD50 varied from 1.4 to 45.2 µg cm-2, with cuminaldehyde, (S)-carvone and estragole being strongly repellents. Petroselinum crispum EO and cuminaldehyde affected the nutritional parameters relative growth rate, efficiency conversion index of ingested food and antifeeding effect, displaying antinutritional effects toward S. zeamais. In addition, P. crispum and C. cyminum EOs, as well as cuminaldehyde, showed the highest acetylcholinesterase inhibitory activity in vitro (IC50 = 185, 235 and 214.5 µg mL-1, respectively). EOs/standard compounds exhibited acute toxicity, and some treatments showed antinutritional effects towards S. zeamais. Therefore, the tested plant products might be good candidates to be considered to prevent damages caused by this pest.


Subject(s)
Apiaceae/chemistry , Oils, Volatile/pharmacology , Weevils/drug effects , Allylbenzene Derivatives , Animals , Anisoles/pharmacology , Anisoles/toxicity , Benzaldehydes/pharmacology , Benzaldehydes/toxicity , Camphanes/pharmacology , Camphanes/toxicity , Cyclohexane Monoterpenes/pharmacology , Cyclohexane Monoterpenes/toxicity , Cymenes/pharmacology , Cymenes/toxicity , Feeding Behavior/drug effects , Fumigation , Insect Repellents/pharmacology , Insecticides/pharmacology , Norbornanes/pharmacology , Norbornanes/toxicity , Oils, Volatile/toxicity , Plant Oils/pharmacology , Plant Oils/toxicity
7.
Arch Toxicol ; 93(5): 1337-1347, 2019 05.
Article in English | MEDLINE | ID: mdl-30993377

ABSTRACT

To improve the prediction of the possible allergenicity of chemicals in contact with the skin, investigations of upstream events are required to better understand the molecular mechanisms involved in the initiation of allergic reactions. Ascaridole, one of the compounds responsible for skin sensitization to aged tea tree oil, degrades into intermediates that evolve via different mechanisms involving radical species. We aimed at broadening the knowledge about the contribution of radical intermediates derived from ascaridole to the skin sensitization process by assessing the reactivity profile towards amino acids, identifying whether free radicals are formed in a reconstructed human epidermis (RHE) model and their biological properties to activate the immune system, namely dendritic cells in their natural context of human HaCaT keratinocytes and RHE. Electron paramagnetic resonance combined to spin-trapping in EpiSkin™ RHE confirmed the formation of C-radicals in the epidermal tissue from 10 mM ascaridole concentration, while reactivity studies toward amino acids showed electrophilic intermediates issued from radical rearrangements of ascaridole as the main reactive species. Activation of THP-1 cells, as surrogate for dendritic cells, that were cocultured with HaCaT was significantly upregulated after treatment with low micromolar concentrations based on cell surface expression of the co-stimulatory molecule CD86 and the adhesion molecule CD54. Placing THP-1 cells underneath the RHE allowed us to monitor which of the concentrations that produce radical(s) and/or protein antigens in the epidermal skin environment promote the activation of dendritic cells. We detected no significant upregulation of CD86/CD54 after topical RHE application of concentrations up to 30 mM ascaridole (t = 24 h) but clear upregulation after 60 mM.


Subject(s)
Cyclohexane Monoterpenes/toxicity , Dendritic Cells/drug effects , Epidermis/drug effects , Immunity, Innate/drug effects , Peroxides/toxicity , Cell Line , Coculture Techniques , Cyclohexane Monoterpenes/administration & dosage , Cyclohexane Monoterpenes/immunology , Dendritic Cells/immunology , Dose-Response Relationship, Drug , Epidermis/immunology , Free Radicals/metabolism , Humans , Keratinocytes/drug effects , Keratinocytes/immunology , Peroxides/administration & dosage , Peroxides/immunology , Skin/drug effects , Skin/immunology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...