Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.363
Filter
1.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(5): 491-495, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38845495

ABSTRACT

OBJECTIVE: To investigate the effect of nuclear factor E2-related factor 2 (Nrf2) protein on ferroptosis in mice with sepsis-associated liver injury (SALI). METHODS: he male Sprague-Dawley (SD) mice were divided into 6 groups according to the random number table method, with 6 mice in each group. The SALI model of mice was established by cecal ligation and puncture (CLP), and the Sham group was only treated with laparotomy. CLP+Fer-1 group, CLP+Erastin group, CLP+ML385 group and CLP+Curcumin group were intraperitoneally injected with iron death inhibitor Ferrostatin-1 (Fer-1) 10 mg×kg-1×d-1, iron death activator Erastin 20 mg×kg-1×d-1, Nrf2 inhibitor ML385 30 mg×kg-1×d-1 and Nrf2 activator Curcumin 100 mg×kg-1×d-1 after CLP, respectively; Sham group and CLP group were given normal saline 10 mg×kg-1×d-1, each group was administered continuously for 10 days. Ten days after operation, the serum and liver tissues of mice were collected to detect the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum, and the levels of malondialdehyde (MDA), glutathione (GSH) and Fe2+; in liver homogenate. The pathological changes of liver tissue were observed under light microscope after hematoxylin-eosin (HE) staining. The shape and length of mitochondria in liver cells were observed under transmission electron microscope. The protein expressions of Nrf2, glutathione peroxidase 4 (GPX4) and prostaglandin-endoperoxide synthase 2 (PTGS2) in liver tissue were detected by Western blotting. RESULTS: Compared with Sham group, the serum levels of ALT and AST in the CLP group were significantly increased; histologically, the hepatic cord was disordered, the cells were swollen and necrotic, and the length of mitochondria was significantly shortened; the levels of MDA and Fe2+ in liver tissue increased significantly, and the content of GSH decreased significantly; the protein expressions of Nrf2 and GPX4 in liver tissue decreased, and the protein expression of PTGS2 increased significantly. Compared with CLP group, the serum levels of ALT and AST in CLP+Fer-1 group and CLP+Curcumin group were significantly decreased [ALT (U/L): 80.65±19.44, 103.45±20.52 vs. 283.50±37.12, AST (U/L): 103.33±11.90, 127.33±15.79 vs. 288.67±36.82, all P < 0.05]; microscopically, the hepatic cord was irregular, the cells were slightly swollen, and the mitochondrial length was significantly increased (µm: 1.42±0.09, 1.43±0.21 vs. 1.07±0.25, both P < 0.05); the levels of MDA and Fe2+; in liver tissue decreased significantly, and the content of GSH increased significantly [MDA (mol/g): 0.87±0.23, 1.85±0.43 vs. 4.47±0.95, Fe2+ (µg/g): 63.80±7.15, 67.48±6.28 vs. 134.52±14.32, GSH (mol/g): 1.95±0.29, 1.95±0.45 vs. 0.55±0.29, all P < 0.05]; the protein expressions of Nrf2 and GPX4 in liver tissue were significantly increased, and the protein expression of PTGS2 was significantly decreased (Nrf2/GAPDH: 1.80±0.28, 2.10±0.43 vs. 0.70±0.24, GPX4/GAPDH: 0.80±0.06, 0.93±0.07 vs. 0.48±0.02, PTGS2/GAPDH: 0.76±0.05, 0.84±0.01 vs. 1.02±0.09, all P < 0.05). However, the results of the above indexes in the CLP+Erastin group and CLP+ML385 group were opposite, and the serum levels of ALT and AST were significantly increased [ALT (U/L): 344.52±40.79, 321.70±21.10 vs. 283.50±37.12, AST (U/L): 333.50±27.90, 333.00±16.67 vs. 288.67±36.82, all P < 0.05]; microscopically, the arrangement of hepatic cords was disordered, the cells were obviously swollen and necrotic, and the length of mitochondria was significantly shortened (µm: 0.78±0.13, 0.67±0.07 vs. 1.07±0.25, both P < 0.05); the levels of MDA and Fe2+ in liver tissue increased significantly, and the content of GSH decreased significantly [MDA (mol/g): 5.92±1.06, 5.62±0.56 vs. 4.47±0.95, Fe2+ (µg/g): 151.40±8.03, 151.88±8.68 vs. 134.52±14.32, GSH (mol/g): 0.25±0.08, 0.23±0.11 vs. 0.55±0.29, all P < 0.05]; the protein expressions of Nrf2 and GPX4 in liver tissue were significantly decreased, and the protein expression of PTGS2 was significantly increased (Nrf2/GAPDH: 0.46±0.09, 0.46±0.11 vs. 0.70±0.24, GPX4/GAPDH: 0.34±0.05, 0.40±0.01 vs. 0.48±0.02, PTGS2/GAPDH: 1.24±0.13, 1.16±0.11 vs. 1.02±0.09, all P < 0.05). CONCLUSIONS: CLP-induced SALI can lead to ferroptosis in mice hepatocytes, and Nrf2 protein in liver tissue can mediate SALI by regulating ferroptosis.


Subject(s)
Ferroptosis , NF-E2-Related Factor 2 , Sepsis , Animals , Male , Mice , NF-E2-Related Factor 2/metabolism , Sepsis/metabolism , Sepsis/complications , Disease Models, Animal , Liver/metabolism , Rats, Sprague-Dawley , Liver Diseases/etiology , Liver Diseases/metabolism , Glutathione Peroxidase/metabolism , Malondialdehyde/metabolism , Curcumin/pharmacology , Phenylenediamines/pharmacology , Cyclohexylamines
2.
Microb Cell Fact ; 23(1): 121, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725068

ABSTRACT

BACKGROUND: Mycosporine-like amino acids (MAAs) are a class of strongly UV-absorbing compounds produced by cyanobacteria, algae and corals and are promising candidates for natural sunscreen components. Low MAA yields from natural sources, coupled with difficulties in culturing its native producers, have catalyzed synthetic biology-guided approaches to produce MAAs in tractable microbial hosts like Escherichia coli, Saccharomyces cerevisiae and Corynebacterium glutamicum. However, the MAA titres obtained in these hosts are still low, necessitating a thorough understanding of cellular factors regulating MAA production. RESULTS: To delineate factors that regulate MAA production, we constructed a shinorine (mycosporine-glycine-serine) producing yeast strain by expressing the four MAA biosynthetic enzymes from Nostoc punctiforme in Saccharomyces cerevisiae. We show that shinorine is produced from the pentose phosphate pathway intermediate sedoheptulose 7-phosphate (S7P), and not from the shikimate pathway intermediate 3-dehydroquinate (3DHQ) as previously suggested. Deletions of transaldolase (TAL1) and phosphofructokinase (PFK1/PFK2) genes boosted S7P/shinorine production via independent mechanisms. Unexpectedly, the enhanced S7P/shinorine production in the PFK mutants was not entirely due to increased flux towards the pentose phosphate pathway. We provide multiple lines of evidence in support of a reversed pathway between glycolysis and the non-oxidative pentose phosphate pathway (NOPPP) that boosts S7P/shinorine production in the phosphofructokinase mutant cells. CONCLUSION: Reversing the direction of flux between glycolysis and the NOPPP offers a novel metabolic engineering strategy in Saccharomyces cerevisiae.


Subject(s)
Amino Acids , Glycolysis , Pentose Phosphate Pathway , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Amino Acids/metabolism , Metabolic Engineering/methods , Nostoc/metabolism , Nostoc/genetics , Sugar Phosphates/metabolism , Glycine/metabolism , Glycine/analogs & derivatives , Cyclohexylamines
3.
Free Radic Biol Med ; 220: 271-287, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38734267

ABSTRACT

Bilirubin-induced brain damage is a serious clinical consequence of hyperbilirubinemia, yet the underlying molecular mechanisms remain largely unknown. Ferroptosis, an iron-dependent cell death, is characterized by iron overload and lipid peroxidation. Here, we report a novel regulatory mechanism of demethylase AlkB homolog 5 (ALKBH5) in acyl-coenzyme A synthetase long-chain family member 4 (ACSL4)-mediated ferroptosis in hyperbilirubinemia. Hyperdifferential PC12 cells and newborn Sprague-Dawley rats were used to establish in vitro and in vivo hyperbilirubinemia models, respectively. Proteomics, coupled with bioinformatics analysis, first suggested the important role of ferroptosis in hyperbilirubinemia-induced brain damage. In vitro experiments showed that ferroptosis is activated in hyperbilirubinemia, and ferroptosis inhibitors (desferrioxamine and ferrostatin-1) treatment effectively alleviates hyperbilirubinemia-induced oxidative damage. Notably, we observed that the ferroptosis in hyperbilirubinemia was regulated by m6A modification through the downregulation of ALKBH5 expression. MeRIP-seq and RIP-seq showed that ALKBH5 may trigger hyperbilirubinemia ferroptosis by stabilizing ACSL4 mRNA via m6A modification. Further, hyperbilirubinemia-induced oxidative damage was alleviated through ACSL4 genetic knockdown or rosiglitazone-mediated chemical repression but was exacerbated by ACSL4 overexpression. Mechanistically, ALKBH5 promotes ACSL4 mRNA stability and ferroptosis by combining the 669 and 2015 m6A modified sites within 3' UTR of ACSL4 mRNA. Our findings unveil a novel molecular mechanism of ferroptosis and suggest that m6A-dependent ferroptosis could be an underlying clinical target for the therapy of hyperbilirubinemia.


Subject(s)
AlkB Homolog 5, RNA Demethylase , Coenzyme A Ligases , Ferroptosis , RNA Stability , Rats, Sprague-Dawley , Animals , Ferroptosis/genetics , Rats , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , AlkB Homolog 5, RNA Demethylase/metabolism , AlkB Homolog 5, RNA Demethylase/genetics , PC12 Cells , Cyclohexylamines/pharmacology , Humans , Deferoxamine/pharmacology , Oxidative Stress , Brain Injuries/metabolism , Brain Injuries/genetics , Brain Injuries/pathology , Brain Injuries/etiology , Phenylenediamines/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Male , Disease Models, Animal , Lipid Peroxidation
4.
Ecotoxicol Environ Saf ; 279: 116481, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38788562

ABSTRACT

Manganese (Mn) overexposure has been associated with the development of neurological damage reminiscent of Parkinson's disease, while the underlying mechanisms have yet to be fully characterized. This study aimed to investigate the mechanisms leading to injury in dopaminergic neurons induced by Mn and identify novel treatment approaches. In the in vivo and in vitro models, ICR mice and dopaminergic neuron-like PC12 cells were exposed to Mn, respectively. We treated them with anti-ferroptotic agents ferrostatin-1 (Fer-1), deferoxamine (DFO), HIF-1α activator dimethyloxalylglycine (DMOG) and inhibitor LW6. We also used p53-siRNA to verify the mechanism underlying Mn-induced neurotoxicity. Fe and Mn concentrations increased in ICR mice brains overexposed to Mn. Additionally, Mn-exposed mice exhibited movement impairment and encephalic pathological changes, with decreased HIF-1α, SLC7A11, and GPX4 proteins and increased p53 protein levels. Fer-1 exhibited protective effects against Mn-induced both behavioral and biochemical changes. Consistently, in vitro, Mn exposure caused ferroptosis-related changes and decreased HIF-1α levels, all ameliorated by Fer-1. Upregulation of HIF-1α by DMOG alleviated the Mn-associated ferroptosis, while LW6 exacerbated Mn-induced neurotoxicity through downregulating HIF-1α. p53 knock-down also rescued Mn-induced ferroptosis without altering HIF-1α protein expression. Mn overexposure resulted in ferroptosis in dopaminergic neurons, mediated through the HIF-1α/p53/SLC7A11 pathway.


Subject(s)
Amino Acid Transport System y+ , Brain , Ferroptosis , Hypoxia-Inducible Factor 1, alpha Subunit , Manganese , Mice, Inbred ICR , Tumor Suppressor Protein p53 , Animals , Ferroptosis/drug effects , PC12 Cells , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Manganese/toxicity , Brain/drug effects , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Rats , Male , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Cyclohexylamines/pharmacology , Phenylenediamines/toxicity , Phenylenediamines/pharmacology , Deferoxamine/pharmacology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Amino Acids, Dicarboxylic
5.
Ann Clin Lab Sci ; 54(2): 190-200, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38802151

ABSTRACT

OBJECTIVE: Polydopamine nanoparticles (PDA NPs) are a promising topic in the fields of drug delivery, tissue engineering, bioimaging, etc. The present study aims to explore the impact of PDA NPs carrying ferroptosis inhibitor ferstatin-1 (Fer-1) on myocardial ischemia-reperfusion injury (MIRI). METHODS: After establishment of a rat model of MIRI and PDA NPs, the rats were divided into 4 groups: model group, sham operation group, Fer-1 group, and nano+Fer-1 group (n=8). To detect the effect of PDA NPs encapsulating Fer-1 on ferroptosis in MIRI rats, we further set up NOX4 overexpression group (pc-NOX4 group), NOX4 inhibitor group (Fulvene-5 group), nano+Fer-1+pc-NOX4 group, and nano+Fer-1+Fulvene-5 group (n=8). A CCK-8 assay was conducted to assess cell viability and staining to detect cardiomyocyte apoptosis and observe myocardial infraction. RESULTS: PDA NPs loaded with Fer-1 were successfully prepared with good safety and biocompatibility. Administration of PDA NPs carrying Fer-1 notably alleviated myocardial injury and hindered the process of ferroptosis in MIRI rats when inducing downregulation of NOX4 expression. Additionally, overexpression of GPX4 significantly attenuated myocardial injury in MIRI rats. While Fer-1 was shown to inhibit the expression of NOX4, the NOX4 inhibitor Fulvene-5 greatly elevated GPX4 and FTH1 expression in cardiomyocytes, and down-regulated the content of Fe2+, especially in the nanometer+Fer-1+Fulvene-5 group. CONCLUSION: With promising safety and biocompatibility, PDA NPs encapsulated Fer-1 decrease GPX4 and FTH1 expression by inhibiting the level of NOX4 in myocardial cells of MIRI rats, thereby suppressing ferroptosis of cardiomyocytes and alleviating myocardial injury.


Subject(s)
Ferroptosis , Indoles , Myocardial Reperfusion Injury , NADPH Oxidase 4 , Nanoparticles , Phospholipid Hydroperoxide Glutathione Peroxidase , Polymers , Animals , NADPH Oxidase 4/metabolism , Myocardial Reperfusion Injury/drug therapy , Indoles/pharmacology , Ferroptosis/drug effects , Rats , Polymers/chemistry , Nanoparticles/chemistry , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Male , Rats, Sprague-Dawley , Cyclohexylamines/pharmacology , Down-Regulation/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Apoptosis/drug effects , Phenylenediamines
6.
J Vis Exp ; (205)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38557602

ABSTRACT

The interaction of iron and oxygen is an integral part of the development of life on Earth. Nonetheless, this unique chemistry continues to fascinate and puzzle, leading to new biological ventures. In 2012, a Columbia University group recognized this interaction as a central event leading to a new type of regulated cell death named "ferroptosis." The major feature of ferroptosis is the accumulation of lipid hydroperoxides due to (1) dysfunctional antioxidant defense and/or (2) overwhelming oxidative stress, which most frequently coincides with increased content of free labile iron in the cell. This is normally prevented by the canonical anti-ferroptotic axis comprising the cystine transporter xCT, glutathione (GSH), and GSH peroxidase 4 (GPx4). Since ferroptosis is not a programmed type of cell death, it does not involve signaling pathways characteristic of apoptosis. The most common way to prove this type of cell death is by using lipophilic antioxidants (vitamin E, ferrostatin-1, etc.) to prevent it. These molecules can approach and detoxify oxidative damage in the plasma membrane. Another important aspect in revealing the ferroptotic phenotype is detecting the preceding accumulation of lipid hydroperoxides, for which the specific dye BODIPY C11 is used. The present manuscript will show how ferroptosis can be induced in wild-type medulloblastoma cells by using different inducers: erastin, RSL3, and iron-donor. Similarly, the xCT-KO cells that grow in the presence of NAC, and which undergo ferroptosis once NAC is removed, will be used. The characteristic "bubbling" phenotype is visible under the light microscope within 12-16 h from the moment of ferroptosis triggering. Furthermore, BODIPY C11 staining followed by FACS analysis to show the accumulation of lipid hydroperoxides and consequent cell death using the PI staining method will be used. To prove the ferroptotic nature of cell death, ferrostatin-1 will be used as a specific ferroptosis-preventing agent.


Subject(s)
Boron Compounds , Cerebellar Neoplasms , Cyclohexylamines , Medulloblastoma , Phenylenediamines , Humans , Lipid Peroxidation/physiology , Antioxidants/pharmacology , Iron/metabolism , Glutathione/metabolism , Lipid Peroxides , Phenotype
7.
FASEB J ; 38(7): e23592, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38581243

ABSTRACT

Vascular calcification is an actively regulated biological process resembling bone formation, and osteogenic differentiation of vascular smooth muscle cells (VSMCs) plays a crucial role in this process. 1-Palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC), an oxidized phospholipid, is found in atherosclerotic plaques and has been shown to induce oxidative stress. However, the effects of POVPC on osteogenic differentiation and calcification of VSMCs have yet to be studied. In the present study, we investigated the role of POVPC in vascular calcification using in vitro and ex vivo models. POVPC increased mineralization of VSMCs and arterial rings, as shown by alizarin red staining. In addition, POVPC treatment increased expression of osteogenic markers Runx2 and BMP2, indicating that POVPC promotes osteogenic transition of VSMCs. Moreover, POVPC increased oxidative stress and impaired mitochondria function of VSMCs, as shown by increased ROS levels, impairment of mitochondrial membrane potential, and decreased ATP levels. Notably, ferroptosis triggered by POVPC was confirmed by increased levels of intracellular ROS, lipid ROS, and MDA, which were decreased by ferrostatin-1, a ferroptosis inhibitor. Furthermore, ferrostatin-1 attenuated POVPC-induced calcification of VSMCs. Taken together, our study for the first time demonstrates that POVPC promotes vascular calcification via activation of VSMC ferroptosis. Reducing the levels of POVPC or inhibiting ferroptosis might provide a novel strategy to treat vascular calcification.


Subject(s)
Cyclohexylamines , Ferroptosis , Phenylenediamines , Vascular Calcification , Humans , Muscle, Smooth, Vascular/metabolism , Phospholipids/metabolism , Phosphorylcholine/metabolism , Reactive Oxygen Species/metabolism , Osteogenesis , Vascular Calcification/metabolism , Myocytes, Smooth Muscle/metabolism , Cells, Cultured
8.
Sci Rep ; 14(1): 9548, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664508

ABSTRACT

Ferroptosis is closely associated with inflammatory diseases, including acute pancreatitis (AP); however, the involvement of ferroptosis in hypertriglyceridemic pancreatitis (HTGP) remains unclear. In the present study, we aimed to explore the relationship between lipid metabolism and ferroptosis in HTGP and the alleviating effect of liproxstatin-1 (Lip-1) in vivo. This study represents the first exploration of lipid metabolism and endoplasmic reticulum stress (ERS) in HTGP, targeting ferroptosis as a key factor in HTGP. Hypertriglyceridemia (HTG) was induced under high-fat diet conditions. Cerulein was then injected to establish AP and HTGP models. Lip-1, a specific ferroptosis inhibitor, was administered before the induction of AP and HTGP in rats, respectively. Serum triglyceride, amylase, inflammatory factors, pathological and ultrastructural structures, lipid peroxidation, and iron overload indicators related to ferroptosis were tested. Moreover, the interaction between ferroptosis and ERS was assessed. We found HTG can exacerbate the development of AP, with an increased inflammatory response and intensified ferroptosis process. Lip-1 treatment can attenuate pancreatic injury by inhibiting ferroptosis through lipid metabolism and further resisting activations of ERS-related proteins. Totally, our results proved lipid metabolism can promote ferroptosis in HTGP by regulating ACSL4/LPCAT3 protein levels. Additionally, ERS may participate in ferroptosis via the Bip/p-EIF2α/CHOP pathway, followed by the alleviating effect of Lip-1 in the rat model.


Subject(s)
Endoplasmic Reticulum Stress , Ferroptosis , Hypertriglyceridemia , Lipid Metabolism , Pancreatitis , Quinoxalines , Spiro Compounds , Animals , Ferroptosis/drug effects , Pancreatitis/drug therapy , Pancreatitis/metabolism , Pancreatitis/pathology , Hypertriglyceridemia/drug therapy , Hypertriglyceridemia/metabolism , Rats , Endoplasmic Reticulum Stress/drug effects , Male , Lipid Metabolism/drug effects , Cyclohexylamines/pharmacology , Disease Models, Animal , Rats, Sprague-Dawley , Lipid Peroxidation/drug effects , Diet, High-Fat/adverse effects , Pancreas/drug effects , Pancreas/pathology , Pancreas/metabolism , Triglycerides/blood , Triglycerides/metabolism
9.
Free Radic Biol Med ; 219: 49-63, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38608823

ABSTRACT

Previous studies have shown that ferroptosis of vascular smooth muscle cells (VSMCs) is involved in the development of aortic dissection (AD) and that histone methylation regulates this process. SP2509 acts as a specific inhibitor of lysine-specific demethylase 1 (LSD1), which governs a variety of biological processes. However, the effect of SP2509 on VSMC ferroptosis and AD remains to be elucidated. This aim of this study was to investigate the role and underlying mechanism of SP2509-mediated histone methylation on VSMC ferroptosis. Here, a mouse model of AD was established, and significantly reduced levels of H3K4me1 and H3K4me2 (target of SP2509) were found in the aortas of AD mice. In VSMCs, SP2509 treatment led to a dose-dependent increase in H3K4me2 levels. Furthermore, we found that SP2509 provided equivalent protection to ferrostatin-1 against VSMC ferroptosis, as evidenced by increased cell viability, decreased cell death and lipid peroxidation. RNA-sequencing analysis and subsequent experiments revealed that SP2509 counteracted cystine deficiency-induced response to inflammation and oxidative stress. More importantly, we demonstrated that SP2509 inhibited the expression of TFR and ferritin to reduce intracellular iron levels, thereby effectively blocking the process of ferroptosis. Therefore, our findings indicate that SP2509 protects VSMCs from multiple stimulus-induced ferroptosis by reducing intracellular iron levels, thereby preventing lipid peroxidation and cell death. These findings suggest that SP2509 may be a promising drug to alleviate AD by reducing iron deposition and VSMC ferroptosis.


Subject(s)
Ferroptosis , Iron , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Ferroptosis/drug effects , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Mice , Iron/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Oxidative Stress/drug effects , Humans , Disease Models, Animal , Lipid Peroxidation/drug effects , Phenylenediamines/pharmacology , Male , Cell Survival/drug effects , Histones/metabolism , Histones/genetics , Histone Demethylases/metabolism , Histone Demethylases/genetics , Mice, Inbred C57BL , Cyclohexylamines
10.
J Photochem Photobiol B ; 255: 112908, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663336

ABSTRACT

The prevalence of Light-emitting diodes (LEDs) has exposed us to an excessive amount of blue light (BL) which causes various ophthalmic diseases. Previous studies have shown that conjunctiva is vulnerable to BL. In this study, we aimed to investigate the underlying mechanism of BL-induced injury in conjunctiva. We placed C57BL/6 mice and human conjunctival epithelial cell lines (HCECs) under BL (440 nm ± 15 nm, 0.2 mW/cm2) to establish a BL injury model in vivo and in vitro. Immunohistochemistry and MDA assay were used to identify lipid peroxidation (LPO) in vivo. HE staining was applied to detect morphological damage of conjunctival epithelium. DCFH-DA, C11-BODIPY 581/591, Calcein-AM, and FeRhoNox™-1 probes were performed to identify ferroptosis levels in vitro. Real-time qPCR and Western blotting techniques were employed to uncover signaling pathways of blue light-induced ferroptosis. Our findings demonstrated that BL affected tear film instability and induced conjunctival epithelium injury in vivo. Ferrostatin-1 significantly alleviated blue light-induced ferroptosis in vivo and in vitro. BL downregulates the levels of solute carrier family 7 member 11 (SLC7A11), Ferritin heavy chain (FTH1), and glutathione peroxidase (GPX4) by inhibiting the activation and translocation of the Signal transducer and activator of transcription 3 (STAT3) from inducing Fe2+ burst, ROS and LPO accumulation, ultimately resulting in ferroptosis. This study will offer new insight into BL-induced conjunctival injury and LED-induced dry eye.


Subject(s)
Conjunctiva , Ferroptosis , Light , Mice, Inbred C57BL , Phospholipid Hydroperoxide Glutathione Peroxidase , STAT3 Transcription Factor , Animals , Conjunctiva/metabolism , Conjunctiva/radiation effects , Conjunctiva/pathology , Mice , Ferroptosis/radiation effects , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Humans , STAT3 Transcription Factor/metabolism , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Lipid Peroxidation/radiation effects , Cell Line , Epithelium/radiation effects , Epithelium/metabolism , Epithelium/pathology , Signal Transduction/radiation effects , Epithelial Cells/metabolism , Epithelial Cells/radiation effects , Epithelial Cells/pathology , Reactive Oxygen Species/metabolism , Phenylenediamines/pharmacology , Blue Light , Cyclohexylamines
11.
Bioorg Med Chem ; 105: 117716, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38608329

ABSTRACT

In this study, a series of new formylpiperazine-derived ferroptosis inhibitors were designed and synthesized based on the structure of a known ferroptosis inhibitor, ferrostatin-1 (Fer-1). The anti-ferroptosis activity of these synthetic compounds in human umbilical vein endothelial cells (HUVECs) induced by Erastin was evaluated. It was found that some of the new compounds, especially compound 26, showed potent anti-ferroptosis activity, as evidenced by its ability to restore cell viability, reduce iron accumulation, scavenge reactive oxygen species, maintain mitochondrial membrane potential, increase GSH levels, decrease LPO and MDA content, and upregulate GPX4 expression. Moreover, compound 26 exhibited superior microsomal stability than Fer-1. The present results suggest that compound 26 is a promising lead compound for the development of new ferroptosis inhibitors for the treatment of vascular diseases.


Subject(s)
Cell Survival , Cyclohexylamines , Drug Design , Ferroptosis , Human Umbilical Vein Endothelial Cells , Piperazines , Humans , Ferroptosis/drug effects , Piperazines/pharmacology , Piperazines/chemical synthesis , Piperazines/chemistry , Human Umbilical Vein Endothelial Cells/drug effects , Structure-Activity Relationship , Cyclohexylamines/pharmacology , Cyclohexylamines/chemistry , Cyclohexylamines/chemical synthesis , Cell Survival/drug effects , Molecular Structure , Phenylenediamines/pharmacology , Phenylenediamines/chemistry , Phenylenediamines/chemical synthesis , Dose-Response Relationship, Drug , Reactive Oxygen Species/metabolism , Ferrous Compounds/pharmacology , Ferrous Compounds/chemistry , Ferrous Compounds/chemical synthesis , Membrane Potential, Mitochondrial/drug effects
12.
Exp Cell Res ; 438(1): 114029, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38608805

ABSTRACT

Aberrant expression of airway epithelial E-cadherin is a key feature of asthma, yet the underlying mechanisms are largely unknown. Ferroptosis is a novel form of regulated cell death involved in asthma pathogenesis. This study was aimed to evaluate the role of ferroptosis and to investigate whether ferroptosis mediates E-cadherin disruption in mixed granulocyte asthma (MGA). Two murine models of MGA were established using toluene diisocyanate (TDI) or ovalbumin with Complete Freund's Adjuvant (OVA/CFA). Specific antagonists of ferroptosis, including Liproxstatin-1 (Lip-1) and Ferrostatin-1 (Fer-1) were given to the mice. The allergen-exposed mice displayed markedly shrunk mitochondria in the airway epithelia, with decreased volume and denser staining accompanied by down-regulated GPX4 as well as up-regulated FTH1 and malondialdehyde, which are markers of ferroptosis. Decreased pulmonary expression of E-cadherin was also observed, with profound loss of membrane E-cadherin in the airway epithelia, as well as increased secretion of sE-cadherin. Treatment with Lip-1 not only showed potent protective effects against the allergen-induced airway hyperresponsiveness and inflammatory responses, but also rescued airway epithelial E-cadherin expression and inhibited the release of sE-cadherin. Taken together, our data demonstrated that ferroptosis mediates airway epithelial E-cadherin dysfunction in MGA.


Subject(s)
Asthma , Cadherins , Disease Models, Animal , Ferroptosis , Granulocytes , Animals , Female , Mice , Asthma/metabolism , Asthma/pathology , Asthma/chemically induced , Cadherins/metabolism , Cyclohexylamines/pharmacology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial Cells/drug effects , Ferroptosis/drug effects , Granulocytes/metabolism , Granulocytes/pathology , Mice, Inbred BALB C , Ovalbumin , Phenylenediamines/pharmacology , Quinoxalines , Spiro Compounds
13.
Food Chem Toxicol ; 188: 114682, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657941

ABSTRACT

Butylated hydroxyanisole (BHA) is one of the most commonly used antioxidants and is widely used in food, but whether it causes vascular damage has not been clearly studied. The present study demonstrated for the first time that BHA reduced the viability of human umbilical vein endothelial cells (HUVECs) and mouse brain microvascular endothelial cells (BEND3) in a dose- and time-dependent manner. Moreover, BHA inhibited the migration and proliferation of vascular endothelial cells (ECs). Further analysis revealed that in ECs, the ferroptosis inhibitor ferrostatin-1 (Fer-1) reversed the BHA-induced increase in Fe2+ and malonaldehyde (MDA) levels. Acridine orange staining demonstrated that BHA increased lysosomal permeability. At the protein level, BHA increased the expression of transcription factor EB (TFEB) and decreased the expression of glutathione peroxidase (GPX4), solute carrier family 7 member 11 (SLC7A11, xCT), and ferritin heavy chain 1 (FTH1). Moreover, these effects of BHA could be reversed by knocking down TFEB. In vivo experiments confirmed that BHA caused elevated pulse wave velocity (PWV) and reduced acetylcholine-dependent vascular endothelial diastole. In conclusion, BHA degrades GPX4, xCT, and FTH1 through activation of the TFEB-mediated lysosomal pathway and promotes ferroptosis, ultimately leading to vascular endothelial cell injury.


Subject(s)
Butylated Hydroxyanisole , Human Umbilical Vein Endothelial Cells , Phospholipid Hydroperoxide Glutathione Peroxidase , Animals , Humans , Mice , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Butylated Hydroxyanisole/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Ferroptosis/drug effects , Cell Proliferation/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Cell Movement/drug effects , Ferritins/metabolism , Ferritins/genetics , Cyclohexylamines , Oxidoreductases , Phenylenediamines
14.
J Integr Med ; 22(3): 286-294, 2024 May.
Article in English | MEDLINE | ID: mdl-38565435

ABSTRACT

OBJECTIVE: Research has shown that celastrol can effectively treat a variety of diseases, yet when passing a certain dosage threshold, celastrol becomes toxic, causing complications such as liver and kidney damage and erythrocytopenia, among others. With this dichotomy in mind, it is extremely important to find ways to preserve celastrol's efficacy while reducing or preventing its toxicity. METHODS: In this study, insulin-resistant HepG2 (IR-HepG2) cells were prepared using palmitic acid and used for in vitro experiments. IR-HepG2 cells were treated with celastrol alone or in combination with N-acetylcysteine (NAC) or ferrostatin-1 (Fer-1) for 12, 24 or 48 h, at a range of doses. Cell counting kit-8 assay, Western blotting, quantitative reverse transcription-polymerase chain reaction, glucose consumption assessment, and flow cytometry were performed to measure celastrol's cytotoxicity and whether the cell death was linked to ferroptosis. RESULTS: Celastrol treatment increased lipid oxidation and decreased expression of anti-ferroptosis proteins in IR-HepG2 cells. Celastrol downregulated glutathione peroxidase 4 (GPX4) mRNA. Molecular docking models predicted that solute carrier family 7 member 11 (SLC7A11) and GPX4 were covalently bound by celastrol. Importantly, we found for the first time that the application of ferroptosis inhibitors (especially NAC) was able to reduce celastrol's toxicity while preserving its ability to improve insulin sensitivity in IR-HepG2 cells. CONCLUSION: One potential mechanism of celastrol's cytotoxicity is the induction of ferroptosis, which can be alleviated by treatment with ferroptosis inhibitors. These findings provide a new strategy to block celastrol's toxicity while preserving its therapeutic effects. Please cite this article as: Liu JJ, Zhang X, Qi MM, Chi YB, Cai BL, Peng B, Zhang DH. Ferroptosis inhibitors reduce celastrol toxicity and preserve its insulin sensitizing effects in insulin resistant HepG2 cells. J Integr Med. 2024; 22(3): 286-294.


Subject(s)
Ferroptosis , Insulin Resistance , Pentacyclic Triterpenes , Humans , Hep G2 Cells , Pentacyclic Triterpenes/pharmacology , Ferroptosis/drug effects , Triterpenes/pharmacology , Cyclohexylamines/pharmacology , Acetylcysteine/pharmacology , Phenylenediamines/pharmacology , Molecular Docking Simulation , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
15.
Acta Biomater ; 181: 362-374, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663684

ABSTRACT

Ferroptosis induced by lipid peroxide (LPO) accumulation is an effective cell death pathway for cancer therapy. However, how to effectively induce ferroptosis at tumor sites and improve its therapeutic effectiveness remains challenging. Here, MnFe2O4@NaGdF4@NLG919@HA (MGNH) nanocomplex with tumor-specific targeting and TME response is constructed to overcome immunosuppressive tumor microenvironment (TME) to potentiate the curative effect of ferroptosis by coupling the immune checkpoint indoleamine 2,3-dioxygenase (IDO) inhibitor, NLG919, and hyaluronic acid (HA) to novel ultra-small MnFe2O4@NaGdF4 (MG) nanoparticles with a Janus structure. Firstly, tumor site-precise delivery of MG and NLG919 is achieved with HA targeting. Secondly, MG acts as a magnetic resonance imaging contrast agent, which not only has a good photothermal effect to realize tumor photothermal therapy, but also depletes glutathione and catalyzes the production of reactive oxygen species from endogenous H2O2, which effectively promotes the accumulation of LPO and inhibits the expression of glutathione peroxidase 4, achieving enhanced ferroptosis. Thirdly, NLG919 inhibits the differentiation of Tregs by blocking the tryptophan/kynurenine immune escape pathway, thereby reversing immunosuppressive TME together with the Mn2+-activated cGAS-STING pathway. This work contributes new perspectives for the development of novel ultra-small Janus nanoparticles to reshape immunosuppressive TME and ferroptosis activation. STATEMENT OF SIGNIFICANCE: The Janus structured MnFe2O4@NaGdF4@NLG919@HA (MGNH) nanocomplex was synthesized, which can realize the precise delivery of T1/T2 contrast agents MnFe2O4@NaGdF4 (MG) and NLG919 at the tumor site under the ultra-small Janus structural characteristics and targeted molecule HA. The production of ROS, consumption of GSH, and photothermal properties of MGNH make it possible for CDT/PTT activated ferroptosis, and synergistically disrupt and reprogram tumor growth and immunosuppressive tumor microenvironment with NLG919 and Mn2+-mediated activation of cGAS-STING pathway, achieving CDT/PTT/immunotherapy activated by ferroptosis. Meanwhile, ultra-small structural properties of MGNH facilitate subsequent metabolic clearance by the body, allowing for the minimization of potential biotoxicity associated with its prolonged retention.


Subject(s)
Ferroptosis , Immunotherapy , Nanoparticles , Tumor Microenvironment , Ferroptosis/drug effects , Immunotherapy/methods , Animals , Nanoparticles/chemistry , Mice , Tumor Microenvironment/drug effects , Humans , Cell Line, Tumor , Neoplasms/pathology , Neoplasms/therapy , Neoplasms/drug therapy , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Cyclohexylamines/pharmacology , Cyclohexylamines/chemistry , Imidazoles , Isoindoles
16.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167182, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653359

ABSTRACT

OBJECTIVE: This work aimed to investigate the role of rhythm gene PER1 in mediating granulosa cell ferroptosis and lipid metabolism of polycystic ovary syndrome (PCOS). METHODS: We injected dehydroepiandrosterone and Ferrostatin-1 (Fer-1) into mice to explore the mechanism of ferroptosis in PCOS. The effect of PER1 on ferroptosis-like changes in granulosa cells was explored by overexpression of PER1 plasmid transfection and Fer-1 treatment. RESULTS: We found that Fer-1 ameliorated the characteristic polycystic ovary morphology, suppressed ferroptosis in the PCOS mice. PER1 and ALOX15 were highly expressed in PCOS, whereas SREBF2 was lowly expressed. Overexpression of PER1 decreased granulosa cell viability and inhibited proliferation. Meanwhile, overexpression of PER1 increased lipid reactive oxygen species, 4-Hydroxynonenal (4-HNE), Malondialdehyde (MDA), total Fe, and Fe2+ levels in granulosa cells and decreased Glutathione (GSH) content. Fer-1, SREBF2 overexpression, or ALOX15 silencing treatment reversed the effects of PER1 overexpression on granulosa cells. PER1 binds to the SREBF2 promoter and represses SREBF2 transcription. SREBF2 binds to the ALOX15 promoter and represses ALOX15 transcription. Correlation analysis of clinical trials showed that PER1 was positively correlated with total cholesterol, low-density lipoprotein cholesterol, luteinizing hormone, testosterone, 4-HNE, MDA, total Fe, Fe2+, and ALOX15. In contrast, PER1 was negatively correlated with SREBF2, high-density lipoprotein cholesterol, follicle-stimulating hormone, progesterone, and GSH. CONCLUSION: This study demonstrates that the rhythm gene PER1 promotes ferroptosis and dysfunctional lipid metabolism in granulosa cells in PCOS by inhibiting SREBF2/ALOX15 signaling.


Subject(s)
Ferroptosis , Granulosa Cells , Lipid Metabolism , Polycystic Ovary Syndrome , Animals , Female , Humans , Mice , Arachidonate 12-Lipoxygenase , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/genetics , Cyclohexylamines/pharmacology , Dehydroepiandrosterone/metabolism , Ferroptosis/genetics , Granulosa Cells/metabolism , Granulosa Cells/pathology , Lipid Metabolism/genetics , Phenylenediamines/pharmacology , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/pathology , Reactive Oxygen Species/metabolism
17.
Sci Rep ; 14(1): 7739, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565869

ABSTRACT

Mutations in PINK1 and Parkin cause early-onset Parkinson's Disease (PD). PINK1 is a kinase which functions as a mitochondrial damage sensor and initiates mitochondrial quality control by accumulating on the damaged organelle. There, it phosphorylates ubiquitin, which in turn recruits and activates Parkin, an E3 ubiquitin ligase. Ubiquitylation of mitochondrial proteins leads to the autophagic degradation of the damaged organelle. Pharmacological modulation of PINK1 constitutes an appealing avenue to study its physiological function and develop therapeutics. In this study, we used a thermal shift assay with insect PINK1 to identify small molecules that inhibit ATP hydrolysis and ubiquitin phosphorylation. PRT062607, an SYK inhibitor, is the most potent inhibitor in our screen and inhibits both insect and human PINK1, with an IC50 in the 0.5-3 µM range in HeLa cells and dopaminergic neurons. The crystal structures of insect PINK1 bound to PRT062607 or CYC116 reveal how the compounds interact with the ATP-binding pocket. PRT062607 notably engages with the catalytic aspartate and causes a destabilization of insert-2 at the autophosphorylation dimer interface. While PRT062607 is not selective for PINK1, it provides a scaffold for the development of more selective and potent inhibitors of PINK1 that could be used as chemical probes.


Subject(s)
Cyclohexylamines , Protein Kinases , Pyrimidines , Ubiquitin-Protein Ligases , Humans , Protein Kinases/metabolism , HeLa Cells , Ubiquitin-Protein Ligases/metabolism , Phosphorylation , Ubiquitin/metabolism , Adenosine Triphosphate/metabolism
18.
Arch Toxicol ; 98(6): 1781-1794, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38573338

ABSTRACT

Doxorubicin (DOX) is one of the most frequently used chemotherapeutic drugs belonging to the class of anthracyclines. However, the cardiotoxic effects of anthracyclines limit their clinical use. Recent studies have suggested that ferroptosis is the main underlying pathogenetic mechanism of DOX-induced cardiomyopathy (DIC). BTB-and-CNC homology 1 (Bach1) acts as a key role in the regulation of ferroptosis. However, the mechanistic role of Bach1 in DIC remains unclear. Therefore, this study aimed to investigate the underlying mechanistic role of Bach1 in DOX-induced cardiotoxicity using the DIC mice in vivo (DOX at cumulative dose of 20 mg/kg) and the DOX-treated H9c2 cardiomyocytes in vitro (1 µM). Our results show a marked upregulation in the expression of Bach1 in the cardiac tissues of the DOX-treated mice and the DOX-treated cardiomyocytes. However, Bach1-/- mice exhibited reduced lipid peroxidation and less severe cardiomyopathy after DOX treatment. Bach1 knockdown protected against DOX-induced ferroptosis in both in vivo and in vitro models. Ferrostatin-1 (Fer-1), a potent inhibitor of ferroptosis, significantly alleviated DOX-induced cardiac damage. However, the cardioprotective effects of Bach1 knockdown were reversed by pre-treatment with Zinc Protoporphyrin (ZnPP), a selective inhibitor of heme oxygenase-1(HO-1). Taken together, these findings demonstrated that Bach1 promoted oxidative stress and ferroptosis through suppressing the expression of HO-1. Therefore, Bach1 may present as a promising new therapeutic target for the prevention and early intervention of DOX-induced cardiotoxicity.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Cardiomyopathies , Doxorubicin , Ferroptosis , Heme Oxygenase-1 , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac , Oxidative Stress , Animals , Ferroptosis/drug effects , Doxorubicin/toxicity , Oxidative Stress/drug effects , Cardiomyopathies/chemically induced , Cardiomyopathies/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Male , Mice , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Cell Line , Rats , Cardiotoxicity , Antibiotics, Antineoplastic/toxicity , Lipid Peroxidation/drug effects , Protoporphyrins/pharmacology , Signal Transduction/drug effects , Cyclohexylamines , Membrane Proteins , Phenylenediamines
19.
J Anal Toxicol ; 48(4): 217-225, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38619371

ABSTRACT

Since the 2000s, an increasing number of new psychoactive substances have appeared on the illicit drug market. ß-Keto-arylcyclohexylamine compounds play important pharmacological roles in anesthesia; however, because these new psychoactive substances have rapidly increasing illicit recreational use, the lack of detailed toxicity data are of particular concern. Therefore, analysis of their metabolites can help forensic personnel provide references and suggestions on whether a suspect has taken an illicit new psychoactive ß-keto-arylcyclohexylamine. The present study investigated the in vitro and in vivo metabolism and metabolites of three ß-keto-arylcyclohexylamines: deschloro-N-ethyl-ketamine, fluoro-N-ethyl-ketamine and bromoketamine. In vitro and in vivo models were established using zebrafish and human liver microsomes for analysis of Phase I and Phase II metabolites by liquid chromatography-high-resolution mass spectrometry. Altogether, 49 metabolites were identified. The results were applied for the subject urine samples of known fluoro-N-ethyl-ketamine consumer screen analysis in forensic cases. Hydroxy-deschloro-N-ethyl-ketamine, hydroxy-fluoro-N-ethyl-ketamine and hydroxy-bromoketamine were recommended as potential biomarkers for documenting intake in clinical and forensic cases.


Subject(s)
Illicit Drugs , Ketamine , Microsomes, Liver , Psychotropic Drugs , Substance Abuse Detection , Zebrafish , Animals , Humans , Microsomes, Liver/metabolism , Psychotropic Drugs/metabolism , Ketamine/analogs & derivatives , Ketamine/metabolism , Illicit Drugs/metabolism , Substance Abuse Detection/methods , Cyclohexylamines , Chromatography, Liquid
20.
J Pharmacol Sci ; 155(2): 44-51, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677785

ABSTRACT

Subretinal hemorrhages result in poor vision and visual field defects. During hemorrhage, several potentially toxic substances are released from iron-based hemoglobin and hemin, inducing cellular damage, the detailed mechanisms of which remain unknown. We examined the effects of excess intracellular iron on retinal pigment epithelial (RPE) cells. A Fe2+ probe, SiRhoNox-1 was used to investigate Fe2+ accumulation after treatment with hemoglobin or hemin in the human RPE cell line ARPE-19. We also evaluated the production of reactive oxygen species (ROS) and lipid peroxidation. Furthermore, the protective effect of-an iron chelator, 2,2'-bipyridyl (BP), and ferrostatin-1 (Fer-1) on the cell damage, was evaluated. Fe2+ accumulation increased in the hemoglobin- or hemin-treated groups, as well as intracellular ROS production and lipid peroxidation. In contrast, BP treatment suppressed RPE cell death, ROS production, and lipid peroxidation. Pretreatment with Fer-1 ameliorated cell death in a concentration-dependent manner and suppressed ROS production and lipid peroxidation. Taken together, these findings indicate that hemoglobin and hemin, as well as subretinal hemorrhage, may induce RPE cell damage and visual dysfunction via intracellular iron accumulation.


Subject(s)
Hemin , Hemoglobins , Iron , Retinal Pigment Epithelium , Humans , Cell Death/drug effects , Cell Line , Cyclohexylamines/pharmacology , Hemin/pharmacology , Hemoglobins/metabolism , Iron/metabolism , Iron Chelating Agents/pharmacology , Lipid Peroxidation/drug effects , Phenylenediamines/pharmacology , Reactive Oxygen Species/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...