Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.210
Filter
1.
Int Heart J ; 65(3): 475-486, 2024.
Article in English | MEDLINE | ID: mdl-38825493

ABSTRACT

This study aimed to investigate the molecular mechanisms underlying the protective effects of cyclooxygenase (cox) inhibitors against myocardial hypertrophy.Rat H9c2 cardiomyocytes were induced by mechanical stretching. SD rats underwent transverse aortic constriction to induce pressure overload myocardial hypertrophy. Rats were subjected to echocardiography and tail arterial pressure in 12W. qPCR and western blot were used to detect the expression of Notch-related signaling. The inflammatory factors were tested by ELISA in serum, heart tissue, and cell culture supernatant.Compared with control, levels of pro-inflammatory cytokines IL-6, TNF-α, and IL-1ß were increased and anti-inflammatory cytokine IL-10 was reduced in myocardial tissues and serum of rat models. Levels of Notch1 and Hes1 were reduced in myocardial tissues. However, cox inhibitor treatment (aspirin and celecoxib), the improvement of exacerbated myocardial hypertrophy, fibrosis, dysfunction, and inflammation was parallel to the activation of Notch1/Hes1 pathway. Moreover, in vitro experiments showed that, in cardiomyocyte H9c2 cells, application of ~20% mechanical stretching activated inflammatory mediators (IL-6, TNF-α, and IL-1ß) and hypertrophic markers (ANP and BNP). Moreover, expression levels of Notch1 and Hes1 were decreased. These changes were effectively alleviated by aspirin and celecoxib.Cox inhibitors may protect heart from hypertrophy and inflammation possibly via the Notch1/Hes1 signaling pathway.


Subject(s)
Aspirin , Celecoxib , Myocytes, Cardiac , Rats, Sprague-Dawley , Receptor, Notch1 , Signal Transduction , Transcription Factor HES-1 , Animals , Receptor, Notch1/metabolism , Rats , Transcription Factor HES-1/metabolism , Signal Transduction/drug effects , Celecoxib/pharmacology , Aspirin/pharmacology , Aspirin/therapeutic use , Male , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Cyclooxygenase Inhibitors/pharmacology , Cyclooxygenase Inhibitors/therapeutic use , Cardiomegaly/metabolism , Cardiomegaly/prevention & control , Cardiomegaly/etiology , Disease Models, Animal
2.
Planta Med ; 90(7-08): 641-650, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38843802

ABSTRACT

Tropaeolum majus (garden nasturtium) is a plant with relevance in phytomedicine, appreciated not only for its pharmaceutical activities, but also for its beautiful leaves and flowers. Here, we investigated the phytochemical composition of senescent nasturtium leaves. Indeed, we identified yellow chlorophyll catabolites, also termed phylloxanthobilins, which we show to contribute to the bright yellow color of the leaves in the autumn season. Moreover, we isolated and characterized the phylloxanthobilins from T. majus, and report the identification of a pyro-phylloxanthobilin, so far only accessible by chemical synthesis. We show that the phylloxanthobilins contribute to bioactivities of T. majus by displaying strong anti-oxidative effects in vitro and in cellulo, and anti-inflammatory effects as assessed by COX-1 and COX-2 enzyme inhibition, similar to other bioactive ingredients of T. majus, isoquercitrin, and chlorogenic acid. Hence, phylloxanthobilins could play a role in the efficacy of T. majus in the treatment of urinary tract infections, an established indication of T. majus. With the results shown in this study, we aid in the completion of the phytochemical profile of T. majus by identifying additional bioactive natural products as relevant components of this medicinal plant.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Plant Leaves , Tropaeolum , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Tropaeolum/chemistry , Plant Leaves/chemistry , Cyclooxygenase 2/metabolism , Cyclooxygenase 1/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cyclooxygenase Inhibitors/pharmacology , Cyclooxygenase Inhibitors/chemistry , Humans , Chlorophyll , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Phytochemicals/chemistry
3.
Molecules ; 29(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38792157

ABSTRACT

Deep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental solubility data were collected for all DES systems. A machine learning model was developed using COSMO-RS molecular descriptors to predict solubility. All studied DESs exhibited a cosolvency effect, increasing drug solubility at modest concentrations of water. The model accurately predicted solubility for ibuprofen, ketoprofen, and related analogs (flurbiprofen, felbinac, phenylacetic acid, diphenylacetic acid). A machine learning approach utilizing COSMO-RS descriptors enables the rational design and solubility prediction of DES formulations for improved pharmaceutical applications.


Subject(s)
Deep Eutectic Solvents , Ibuprofen , Ketoprofen , Machine Learning , Solubility , Ketoprofen/chemistry , Ibuprofen/chemistry , Deep Eutectic Solvents/chemistry , Cyclooxygenase Inhibitors/chemistry , Hydrogen Bonding , Solvents/chemistry
4.
Eur J Med Chem ; 271: 116397, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38626522

ABSTRACT

In this study, a new series of Isoxazole-carboxamide derivatives were synthesized and characterized via HRMS, 1H-, 13CAPT-NMR, and MicroED. The findings revealed that nearly all of the synthesized derivatives exhibited potent inhibitory activities against both COX enzymes, with IC50 values ranging from 4.1 nM to 3.87 µM. Specifically, MYM1 demonstrated the highest efficacy among the compounds tested against the COX-1, displaying an IC50 value of 4.1 nM. The results showed that 5 compounds possess high COX-2 isozyme inhibitory effects with IC50 value in range 0.24-1.30 µM with COX-2 selectivity indexes (2.51-6.13), among these compounds MYM4 has the lowest IC50 value against COX-2, with selectivity index around 4. Intriguingly, this compound displayed significant antiproliferative effects against CaCo-2, Hep3B, and HeLa cancer cell lines, with IC50 values of 10.22, 4.84, and 1.57 µM, respectively, which was nearly comparable to that of doxorubicin. Compound MYM4 showed low cytotoxic activities on normal cell lines LX-2 and Hek293t with IC50 values 20.01 and 216.97 µM respectively, with safer values than doxorubicin. Furthermore, compound MYM4 was able to induce the apoptosis, suppress the colonization of both HeLa and HepG2 cells. Additionally, the induction of Reactive oxygen species (ROS) production could be the mechanism underlying the apoptotic effect and the cytotoxic activity of the compound. In the 3D multicellular tumor spheroid model, results revealed that MYM4 compound hampered the spheroid formation capacity of Hep3B and HeLa cancer cells. Moreover, the molecular docking of MYM4 compound revealed a high affinity for the COX2 enzyme, with energy scores (S) -7.45 kcal/mol, which were comparable to celecoxib (S) -8.40 kcal/mol. Collectively, these findings position MYM4 as a promising pharmacological candidate as COX inhibitor and anticancer agent.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Cyclooxygenase Inhibitors , Drug Screening Assays, Antitumor , Isoxazoles , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Isoxazoles/pharmacology , Isoxazoles/chemistry , Isoxazoles/chemical synthesis , Structure-Activity Relationship , Cell Proliferation/drug effects , Cyclooxygenase Inhibitors/pharmacology , Cyclooxygenase Inhibitors/chemical synthesis , Cyclooxygenase Inhibitors/chemistry , Molecular Structure , Dose-Response Relationship, Drug , Spheroids, Cellular/drug effects , Models, Molecular , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Cell Line, Tumor
5.
Bioorg Chem ; 147: 107372, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653152

ABSTRACT

Joining the global demand for the discovery of potent NSAIDs with minimized ulcerogenic effect, new pyrazole clubbed thiazole derivatives 5a-o were designed and synthesized. The new derivatives were initially evaluated for their analgesic activity. Eight compounds 5a, 5c, 5d, 5e, 5f, 5h, 5m, and 5o showed higher activity than Indomethacin (potency = 105-130 % vs. 100 %). Subsequently, they were picked for further evaluation of their anti-inflammatory activity, ulcerogenic liability as well as toxicological studies. Derivatives 5h and 5m showed a potential % edema inhibition after 3 h (79.39 % and 72.12 %, respectively), with a promising safety profile and low ulcer indices (3.80 and 3.20, respectively). The two compounds 5h and 5m were subjected to in vitro COX-1 and COX-2 inhibition assay. The candidate 5h showed nearly equipotent COX-1 inhibition (IC50 = 38.76 nM) compared to the non-selective reference drug Indomethacin (IC50 = 35.72 nM). Compound 5m expressed significant inhibitory activities and a higher COX-2 selectivity index (IC50 = 87.74 nM, SI = 2.05) in comparison with Indomethacin (SI = 0.52), with less selectivity than Celecoxib (SI = 8.31). Simulation docking studies were carried out to gain insights into the binding interaction of compounds 5h and 5m in the vicinity of COX-1 and COX-2 enzymes that illustrated the importance of pyrazole clubbed thiazole core in hydrogen bonding interactions. The thiazole motif of compounds 5h and 5m exhibited a well orientation toward COX-1 Arg120 key residue by hydrogen bonding interactions. Compound 5h revealed an additional arene-cation interaction with Arg120 that could rationalize its superior COX-1 inhibitory activity. Compounds 5h and 5m overlaid the co-crystallized ligand Celecoxib I differently in the active site of COX-2. Compound 5m showed an enhanced accommodation with binding energy of - 6.13 vs. - 1.70 kcal/mol of compounds 5h. The naphthalene ring of compound 5m adopted the Celecoxib I benzene sulfonamide region that is stabilized by hydrogen-arene interactions with the hydrophobic sidechains of the key residues Ser339 and Phe504. Further, the core structure of compound 5m, pyrazole clubbed thiazole, revealed deeper hydrophobic interactions with Ala513, Leu517 and Val509 residues. Finally, a sensitive and accurate UPLC-MS/MS method was developed for the simultaneous estimation of some selected promising pyrazole derivatives in rat plasma. Accordingly, compounds 5h and 5m were suggested to be promising potent analgesic and anti-inflammatory agents with improved safety profiles and a novel COX isozyme modulation activity.


Subject(s)
Analgesics , Anti-Inflammatory Agents, Non-Steroidal , Cyclooxygenase 2 , Edema , Molecular Docking Simulation , Thiazoles , Animals , Male , Mice , Rats , Analgesics/pharmacology , Analgesics/chemistry , Analgesics/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase Inhibitors/pharmacology , Cyclooxygenase Inhibitors/chemistry , Cyclooxygenase Inhibitors/chemical synthesis , Dose-Response Relationship, Drug , Drug Discovery , Edema/drug therapy , Edema/chemically induced , Molecular Structure , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Structure-Activity Relationship , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis
6.
Environ Toxicol Pharmacol ; 108: 104453, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642625

ABSTRACT

Understanding interactions between legacy and emerging environmental contaminants has important implications for risk assessment, especially when mutagens and carcinogens are involved, whose critical effects are chronic and therefore difficult to predict. The current work aimed to investigate potential interactions between benzo[a]pyrene (B[a]P), a carcinogenic polycyclic aromatic hydrocarbon and legacy pollutant, and diclofenac (DFC), a non-steroidal anti-inflammatory drug and pollutant of emerging concern, and how DFC affects B[a]P toxicity. Exposure to binary mixtures of these chemicals resulted in substantially reduced cytotoxicity in human HepG2 cells compared to single-chemical exposures. Significant antagonistic effects were observed in response to high concentrations of B[a]P in combination with DFC at IC50 and ⅕ IC50. While additive effects were found for levels of intracellular reactive oxygen species, antagonistic mixture effects were observed for genotoxicity. B[a]P induced DNA strand breaks, γH2AX activation, and micronuclei formation at ½ IC50 concentrations or lower, whereas DFC induced only low levels of DNA strand breaks. Their mixture caused significantly lower levels of genotoxicity by all three endpoints compared to those expected based on concentration additivity. In addition, antagonistic mixture effects on CYP1 enzyme activity suggested that the observed reduced genotoxicity of B[a]P was due to its reduced metabolic activation as a result of enzymatic inhibition by DFC. Overall, the findings further support the growing concern that co-exposure to environmental toxicants and their non-additive interactions may be a confounding factor that should not be neglected in environmental and human health risk assessment.


Subject(s)
Benzo(a)pyrene , Carcinogens, Environmental , Diclofenac , Humans , Diclofenac/toxicity , Benzo(a)pyrene/toxicity , Hep G2 Cells , Carcinogens, Environmental/toxicity , Reactive Oxygen Species/metabolism , Cyclooxygenase 1/metabolism , Cell Survival/drug effects , Cyclooxygenase Inhibitors/pharmacology , Cyclooxygenase Inhibitors/toxicity , Cyclooxygenase 2/metabolism , DNA Damage/drug effects , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/toxicity , Histones
7.
Neoplasia ; 51: 100991, 2024 05.
Article in English | MEDLINE | ID: mdl-38507887

ABSTRACT

Dihydroartemisinin (DHA) exerts an anti-tumor effect in multiple cancers, however, the molecular mechanism of DHA and whether DHA facilitates the anti-tumor efficacy of cisplatin in non-small cell lung cancer (NSCLC) are unclear. Here, we found that DHA potentiated the anti-tumor effects of cisplatin in NSCLC cells by stimulating reactive oxygen species (ROS)-mediated endoplasmic reticulum (ER) stress, C-Jun-amino-terminal kinase (JNK) and p38 MAPK signaling pathways both in vitro and in vivo. Of note, we demonstrated for the first time that DHA inhibits prostaglandin G/H synthase 1 (PTGS1) expression, resulting in enhanced ROS production. Importantly, silencing PTGS1 sensitized DHA-induced cell death by increasing ROS production and activating ER-stress, JNK and p38 MAPK signaling pathways. In summary, our findings provided new experimental basis and therapeutic prospect for the combined therapy with DHA and cisplatin in some NSCLC patients.


Subject(s)
Artemisinins , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Reactive Oxygen Species , Humans , Apoptosis , Artemisinins/pharmacology , Artemisinins/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Death , Cell Line, Tumor , Cisplatin/pharmacology , Cyclooxygenase 1/metabolism , Lung Neoplasms/pathology , p38 Mitogen-Activated Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Cyclooxygenase Inhibitors/pharmacology
8.
J Appl Physiol (1985) ; 136(5): 1226-1237, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38545661

ABSTRACT

Cyclooxygenase (COX) products of arachidonic acid metabolism, specifically prostaglandins, play a role in evoking and transmitting the exercise pressor reflex in health and disease. Individuals with type 2 diabetes mellitus (T2DM) have an exaggerated exercise pressor reflex; however, the mechanisms for this exaggerated reflex are not fully understood. We aimed to determine the role played by COX products in the exaggerated exercise pressor reflex in T2DM rats. The exercise pressor reflex was evoked by static muscle contraction in unanesthetized, decerebrate, male, adult University of California Davis (UCD)-T2DM (n = 8) and healthy Sprague-Dawley (n = 8) rats. Changes (Δ) in peak mean arterial pressure (MAP) and heart rate (HR) during muscle contraction were compared before and after intra-arterial injection of indomethacin (1 mg/kg) into the contracting hindlimb. Data are presented as means ± SD. Inhibition of COX activity attenuated the exaggerated peak MAP (Before: Δ32 ± 13 mmHg and After: Δ18 ± 8 mmHg; P = 0.004) and blood pressor index (BPi) (Before: Δ683 ± 324 mmHg·s and After: Δ361 ± 222 mmHg·s; P = 0.006), but not HR (Before: Δ23 ± 8 beats/min and After Δ19 ± 10 beats/min; P = 0.452) responses to muscle contraction in T2DM rats. In healthy rats, COX activity inhibition did not affect MAP, HR, or BPi responses to muscle contraction. Inhibition of COX activity significantly reduced local production of prostaglandin E2 in T2DM and healthy rats. We conclude that peripheral inhibition of COX activity attenuates the pressor response to muscle contraction in T2DM rats, suggesting that COX products partially contribute to the exaggerated exercise pressor reflex in those with T2DM.NEW & NOTEWORTHY We compared the pressor and cardioaccelerator responses to static muscle contraction before and after inhibition of cyclooxygenase (COX) activity within the contracting hindlimb in decerebrate, unanesthetized type 2 diabetic mellitus (T2DM) and healthy rats. The pressor responses to muscle contraction were attenuated after peripheral inhibition of COX activity in T2DM but not in healthy rats. We concluded that COX products partially contribute to the exaggerated pressor reflex in those with T2DM.


Subject(s)
Blood Pressure , Diabetes Mellitus, Type 2 , Heart Rate , Muscle Contraction , Muscle, Skeletal , Rats, Sprague-Dawley , Reflex , Animals , Male , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/metabolism , Muscle Contraction/physiology , Rats , Heart Rate/physiology , Heart Rate/drug effects , Reflex/physiology , Muscle, Skeletal/physiopathology , Blood Pressure/physiology , Blood Pressure/drug effects , Physical Conditioning, Animal/physiology , Indomethacin/pharmacology , Cyclooxygenase Inhibitors/pharmacology , Arterial Pressure/physiology , Prostaglandin-Endoperoxide Synthases/metabolism
9.
PeerJ ; 12: e16591, 2024.
Article in English | MEDLINE | ID: mdl-38304184

ABSTRACT

Background: This systematic review and meta-analysis aims to explore the potential impact of the route of administration on the efficacy of therapies and occurrence of adverse events when administering medications to premature infants with patent ductus arteriosus (PDA). Method: The protocol for this review has been registered with PROSPERO (CRD 42022324598). We searched relevant studies in PubMed, Embase, Cochrane, and the Web of Science databases from March 26, 1996, to January 31, 2022. Results: A total of six randomized controlled trials (RCTs) and five observational studies were included for analysis, involving 630 premature neonates in total. Among these infants, 480 were in the ibuprofen group (oral vs. intravenous routes), 78 in the paracetamol group (oral vs. intravenous routes), and 72 in the ibuprofen group (rectal vs. oral routes). Our meta-analysis revealed a significant difference in the rate of PDA closure between the the initial course of oral ibuprofen and intravenous ibuprofen groups (relative risk (RR) = 1.27, 95% confidence interval (CI) [1.13-1.44]; P < 0.0001, I2 = 0%). In contrast, the meta-analysis of paracetamol administration via oral versus intravenous routes showed no significant difference in PDA closure rates (RR = 0.86, 95% CI [0.38-1.91]; P = 0.71, I2 = 76%). However, there was no statistically significant difference in the risk of adverse events or the need for surgical intervention among various drug administration methods after the complete course of drug therapy. Conclusion: This meta-analysis evaluated the safety and effectiveness of different medication routes for treating PDA in premature infants. Our analysis results revealed that compared with intravenous administration, oral ibuprofen may offer certain advantages in closing PDA without increasing the risk of adverse events. Conversely, the use of paracetamol demonstrated no significant difference in PDA closure and the risk of adverse events between oral and intravenous administration.


Subject(s)
Ductus Arteriosus, Patent , Infant, Newborn , Humans , Ductus Arteriosus, Patent/drug therapy , Ibuprofen/adverse effects , Indomethacin , Cyclooxygenase Inhibitors/adverse effects , Infant, Low Birth Weight , Acetaminophen/adverse effects , Infant, Premature
10.
Inflammopharmacology ; 32(2): 1519-1529, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38227096

ABSTRACT

AIMS: Putative beneficial effects of neuropeptide W (NPW) in the early phase of gastric ulcer healing process and the involvement of cyclooxygenase (COX) enzymes were investigated in an acetic acid-induced gastric ulcer model. MAIN METHODS: In anesthetized male Sprague-Dawley rats, acetic acid was applied surgically on the serosa and then a COX-inhibitor (COX-2-selective NS-398, COX-1-selective ketorolac, or non-selective indomethacin; 2 mg/kg/day, 3 mg/kg/day or 5 mg/kg/day; respectively) or saline was injected intraperitoneally. One h after ulcer induction, omeprazole (20 mg/kg/day), NPW (0.1 µg/kg/day) or saline was intraperitoneally administered. Injections of NPW, COX-inhibitors, omeprazole or saline were continued for the following 2 days until rats were decapitated at the end of the third day. KEY FINDINGS: NPW treatment depressed gastric prostaglandin (PG) I2 level, but not PGE2 level. Similar to omeprazole, NPW treatment significantly reduced gastric and serum tumor necrosis factor-alpha and interleukin-1 beta levels and depressed the upregulation of nuclear factor kappa B (NF-κB) and COX-2 expressions due to ulcer. In parallel with the histopathological findings, treatment with NPW suppressed ulcer-induced increases in myeloperoxidase activity and malondialdehyde level and replenished glutathione level. However, the inhibitory effect of NPW on myeloperoxidase activity and NPW-induced increase in glutathione were not observed in the presence of COX-1 inhibitor ketorolac or the non-selective COX-inhibitor indomethacin. SIGNIFICANCE: In conclusion, NPW facilitated the healing of gastric injury in rats via the inhibition of pro-inflammatory cytokine production, oxidative stress and neutrophil infiltration as well as the downregulation of COX-2 protein and NF-κB gene expressions.


Subject(s)
Neuropeptides , Signal Transduction , Stomach Ulcer , Animals , Male , Rats , Acetates/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase Inhibitors/therapeutic use , Gastric Mucosa , Glutathione/metabolism , Indomethacin/therapeutic use , Ketorolac/adverse effects , Neuropeptides/therapeutic use , NF-kappa B/metabolism , Omeprazole/pharmacology , Omeprazole/therapeutic use , Peroxidase/metabolism , Rats, Sprague-Dawley , Stomach Ulcer/drug therapy , Ulcer/metabolism , Ulcer/pathology
11.
N Engl J Med ; 390(4): 314-325, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38265644

ABSTRACT

BACKGROUND: The cyclooxygenase inhibitor ibuprofen may be used to treat patent ductus arteriosus (PDA) in preterm infants. Whether selective early treatment of large PDAs with ibuprofen would improve short-term outcomes is not known. METHODS: We conducted a multicenter, randomized, double-blind, placebo-controlled trial evaluating early treatment (≤72 hours after birth) with ibuprofen for a large PDA (diameter of ≥1.5 mm with pulsatile flow) in extremely preterm infants (born between 23 weeks 0 days' and 28 weeks 6 days' gestation). The primary outcome was a composite of death or moderate or severe bronchopulmonary dysplasia evaluated at 36 weeks of postmenstrual age. RESULTS: A total of 326 infants were assigned to receive ibuprofen and 327 to receive placebo; 324 and 322, respectively, had data available for outcome analyses. A primary-outcome event occurred in 220 of 318 infants (69.2%) in the ibuprofen group and 202 of 318 infants (63.5%) in the placebo group (adjusted risk ratio, 1.09; 95% confidence interval [CI], 0.98 to 1.20; P = 0.10). A total of 44 of 323 infants (13.6%) in the ibuprofen group and 33 of 321 infants (10.3%) in the placebo group died (adjusted risk ratio, 1.32; 95% CI, 0.92 to 1.90). Among the infants who survived to 36 weeks of postmenstrual age, moderate or severe bronchopulmonary dysplasia occurred in 176 of 274 (64.2%) in the ibuprofen group and 169 of 285 (59.3%) in the placebo group (adjusted risk ratio, 1.09; 95% CI, 0.96 to 1.23). Two unforeseeable serious adverse events occurred that were possibly related to ibuprofen. CONCLUSIONS: The risk of death or moderate or severe bronchopulmonary dysplasia at 36 weeks of postmenstrual age was not significantly lower among infants who received early treatment with ibuprofen than among those who received placebo. (Funded by the National Institute for Health Research Health Technology Assessment Programme; Baby-OSCAR ISRCTN Registry number, ISRCTN84264977.).


Subject(s)
Cyclooxygenase Inhibitors , Ductus Arteriosus, Patent , Ibuprofen , Humans , Infant, Newborn , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Bronchopulmonary Dysplasia/etiology , Bronchopulmonary Dysplasia/mortality , Ductus Arteriosus, Patent/complications , Ductus Arteriosus, Patent/drug therapy , Ductus Arteriosus, Patent/mortality , Ibuprofen/administration & dosage , Ibuprofen/adverse effects , Ibuprofen/therapeutic use , Infant, Extremely Premature , Cyclooxygenase Inhibitors/administration & dosage , Cyclooxygenase Inhibitors/adverse effects , Cyclooxygenase Inhibitors/therapeutic use , Double-Blind Method , Time Factors , Treatment Outcome
12.
Pediatr Neonatol ; 65(2): 123-126, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37696728

ABSTRACT

BACKGROUND: There is limited evidence on the association between the clinical course of patent ductus arteriosus (PDA) and prostaglandin (PG) metabolites. This study aimed to determine the influence of PDA treatment on urinary PG metabolite excretion in very-low-birth-weight (VLBW) infants. METHODS: Urine samples were collected from 25 VLBW infants at 1, 3, and 7 days of age. Infants were separated into two groups: a PDA-treated group that received a cyclooxygenase-2 (COX) inhibitor (n = 12) and a control group that did not receive a COX inhibitor during the first 7 days after birth (n = 13). Urinary PG metabolite tetranor prostaglandin E2 metabolite (t-PGEM) and tetranor prostaglandin D2 metabolite (t-PGDM) levels were analyzed using liquid chromatography-tandem mass spectrometry. RESULTS: Urinary t-PGEM excretion levels were not significantly different between the groups at 1, 3, and 7 days of age. Urinary t-PGDM excretion levels at 1 day of age were higher in PDA-treated infants than in control infants (median [interquartile range]: 5.5 [2.6, 12.2] versus 2.1 [1.0, 3.9] ng/mg creatinine; p = 0.017); however, among PDA-treated infants, the levels were significantly lower at 3 and 7 days than at 1 day of age (5.5 [2.6, 12.2] versus 3.4 [1.7, 4.5] and 4.0 [1.7, 5.3] ng/mg creatinine, respectively; p < 0.05). The urinary t-PGDM excretion level in the control group did not significantly differ among the time points. CONCLUSION: PDA and COX inhibitor administration affected PG metabolism in VLBW infants. Our results indicated that urinary t-PGDM excretion was significantly associated with PDA-treatment in preterm infants.


Subject(s)
Cyclooxygenase Inhibitors , Ductus Arteriosus, Patent , Infant , Infant, Newborn , Humans , Cyclooxygenase Inhibitors/therapeutic use , Infant, Premature , Indomethacin/therapeutic use , Prostaglandins/therapeutic use , Creatinine , Ibuprofen/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Ductus Arteriosus, Patent/drug therapy , Infant, Very Low Birth Weight
14.
Andrology ; 12(4): 899-917, 2024 May.
Article in English | MEDLINE | ID: mdl-37772683

ABSTRACT

BACKGROUND: Acetaminophen and ibuprofen are widely administered to babies due to their presumed safety as over-the-counter drugs. However, no reports exist on the effects of cyclooxygenase inhibitors on undifferentiated spermatogonia and spermatogonial stem cells. Infancy represents a critical period for spermatogonial stem cell formation and disrupting spermatogonial stem cells or their precursors may be associated with infertility and testicular cancer formation. OBJECTIVES: The goal of this study was to examine the molecular and functional impact of cyclooxygenase inhibition and silencing on early steps of undifferentiated spermatogonia (u spg) and spermatogonial stem cell development, to assess the potential reproductive risk of pharmaceutical cyclooxygenase inhibitors. METHODS: The effects of cyclooxygenase inhibition were assessed using the mouse C18-4 undifferentiated juvenile spermatogonial cell line model, previously shown to include cells with spermatogonial stem cell features, by measuring prostaglandins, cell proliferation, and differentiation, using cyclooxygenase 1- and cyclooxygenase 2-selective inhibitors NS398, celecoxib, and FR122047, acetaminophen, and ibuprofen. Cyclooxygenase 1 gene silencing was achieved using a stable short-hairpin RNA approach and clone selection, then assessing gene and protein expression in RNA sequencing, quantitative real-time polymerase chain reaction, and immunofluorescence studies. RESULTS: Cyclooxygenase 2 inhibitors NS398 and celecoxib, as well as acetaminophen, but not ibuprofen, dose-dependently decreased retinoic acid-induced expression of the spg differentiation gene Stra8, while NS398 decreased the spg differentiation marker Kit, suggesting that cyclooxygenase 2 is positively associated with spg differentiation. In contrast, short-hairpin RNA-based cyclooxygenase 1 silencing in C18-4 cells altered cellular morphology and upregulated Stra8 and Kit, implying that cyclooxygenase 1 prevented spg differentiation. Furthermore, RNA sequencing analysis of cyclooxygenase 1 knockdown cells indicated the activation of several signaling pathways including the TGFb, Wnt, and Notch pathways, compared to control C18-4 cells. Notch pathway genes were upregulated by selective cyclooxygenase inhibitors, acetaminophen and ibuprofen. CONCLUSION: We report that cyclooxygenase 1 and 2 differentially regulate undifferentiated spermatogonia/spermatogonial stem cell differentiation. Cyclooxygenases regulate Notch3 expression, with the Notch pathway targeted by PGD2. These data suggest an interaction between the eicosanoid and Notch signaling pathways that may be critical for the development of spermatogonial stem cells and subsequent spermatogenesis, cautioning about using cyclooxygenase inhibitors in infants.


Subject(s)
Nitrobenzenes , Spermatogonia , Sulfonamides , Testicular Neoplasms , Humans , Male , Animals , Mice , Spermatogonia/metabolism , Testicular Neoplasms/metabolism , Cyclooxygenase 1/genetics , Cyclooxygenase 1/metabolism , Cyclooxygenase 1/pharmacology , Cyclooxygenase 2/metabolism , Celecoxib/pharmacology , Celecoxib/metabolism , Ibuprofen/pharmacology , Acetaminophen , Spermatogenesis/physiology , Cell Differentiation/physiology , Cyclooxygenase Inhibitors/pharmacology , RNA/metabolism , Testis/metabolism
15.
Cell Prolif ; 57(5): e13594, 2024 May.
Article in English | MEDLINE | ID: mdl-38155412

ABSTRACT

The study of neurogenesis is essential to understanding fundamental developmental processes and for the development of cell replacement therapies for central nervous system disorders. Here, we designed an in vivo drug screening protocol in developing zebrafish to find new molecules and signalling pathways regulating neurogenesis in the ventral spinal cord. This unbiased drug screen revealed that 4 cyclooxygenase (COX) inhibitors reduced the generation of serotonergic interneurons in the developing spinal cord. These results fitted very nicely with available single-cell RNAseq data revealing that floor plate cells show differential expression of 1 of the 2 COX2 zebrafish genes (ptgs2a). Indeed, several selective COX2 inhibitors and two different morpholinos against ptgs2a reduced the number of serotonergic neurons in the ventral spinal cord and led to locomotor deficits. Single-cell RNAseq data and different pharmacological manipulations further revealed that COX2-floor plate-derived prostaglandin D2 promotes neurogenesis in the developing spinal cord by promoting mitotic activity in progenitor cells. Rescue experiments using a phosphodiesterase-4 inhibitor suggest that intracellular changes in cAMP levels underlie the effects of COX inhibitors on neurogenesis and locomotion. Our study provides compelling in vivo evidence showing that prostaglandin signalling promotes neurogenesis in the ventral spinal cord.


Subject(s)
Cyclooxygenase 2 , Neurogenesis , Spinal Cord , Zebrafish , Animals , Zebrafish/metabolism , Neurogenesis/drug effects , Spinal Cord/metabolism , Spinal Cord/cytology , Spinal Cord/drug effects , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Drug Evaluation, Preclinical/methods , Cyclooxygenase 2 Inhibitors/pharmacology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Signal Transduction/drug effects , Cyclooxygenase Inhibitors/pharmacology
16.
Anticancer Res ; 44(1): 313-322, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38159991

ABSTRACT

BACKGROUND/AIM: Resistance to immunotherapy can be explained by an abnormal microbiome of the gut. In Europe in particular, the use of ibuprofen, with or without proton-pump inhibitors to protect the gastric mucosa, is widespread. This study aimed to investigate the impact of ibuprofen use on the effectiveness of immunotherapy in patients with head and neck carcinoma. PATIENTS AND METHODS: Data from patients with head and neck carcinoma (ICD-10-Codes: C00-C14) receiving pembrolizumab, from the TriNetX network, were analyzed. Two groups were formed for the analyses: Cohort I received ibuprofen at least once within 6 months before and after immunotherapy, whereas patients in cohort II received ibuprofen with proton-pump inhibitors or no ibuprofen at all. Cohorts I and II were matched 1:1 with respect to age, sex, lymph node metastases, nicotine dependence, alcohol dependence, and body mass index (BMI). The primary outcome was death and a Kaplan-Meier analysis was performed, and the risk ratio (RR), odds ratio (OR), and hazard ratio (HR) were calculated. RESULTS: The analysis showed that 823 patients with ibuprofen and 724 patients without ibuprofen died within 5 years, showing a significant risk difference of 5.3% (p=0.001). The RR was 1.137 [95% confidence interval (CI)=1.053-1.227], OR was 1.245 (95% CI=1.093-1.418), and HR was 1.202 (95%CI=1.088-1.329). CONCLUSION: Ibuprofen significantly decreases the drug effectiveness of immunotherapy and may be related to changes in the human microbiome. However, further prospective, randomized, and double-blind studies are needed to validate our data and to adequately address confounders.


Subject(s)
Carcinoma , Ductus Arteriosus, Patent , Humans , Infant, Newborn , Carcinoma/drug therapy , Cyclooxygenase Inhibitors/adverse effects , Data Analysis , Ductus Arteriosus, Patent/chemically induced , Ductus Arteriosus, Patent/drug therapy , Ibuprofen/therapeutic use , Immunotherapy , Indomethacin , Infant, Low Birth Weight , Infant, Premature , Proton Pump Inhibitors/therapeutic use , Retrospective Studies , Case-Control Studies
17.
Pak J Pharm Sci ; 36(6): 1719-1727, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38124411

ABSTRACT

Curcumin is a polyphenolic compound obtained from the rhizome of plant. Curcuma longa possesses antioxidant, anti-inflammatory and wound-healing properties. The current study was designed to formulate an Aloe vera-based curcumin topical gel. To enhance curcumin's solubility, it was first complexed with ß-cyclodextrin, given its hydrophobic nature. While Carbopol, carboxy methyl cellulose and guar gum were used in various concentrations as gelling agents for preparation of the formulations. The effect of propylene glycol as a permeation enhancer was also observed. The prepared formulations were tested for different parameters such as physical appearance, spreadability, drug content, pH, viscosity and in-vitro permeation. All the formulations were found to be stable. All formulations consisting of propylene glycol showed permeation within the range of 80-90%. The maximum percentage of drug release was observed in the formulation containing 1% Carbopol 940 as the gelling agent which also exhibited good spreadability. In comparison to gels formulated with carboxymethyl cellulose and guar gum, Carbopol 940 gels appeared more translucent. Consequently, it was concluded that curcumin's permeation improved following its complexation with ß-cyclodextrin. This complex when further used for the formation of an aloe vera based topical gel with 1% Carbopol 940 and 10% propylene glycol demonstrated maximum efficacy.


Subject(s)
Aloe , Curcumin , beta-Cyclodextrins , Cyclooxygenase Inhibitors , Excipients/chemistry , Gels/chemistry , Propylene Glycols , Viscosity
18.
Sci Rep ; 13(1): 22730, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38123572

ABSTRACT

Fungal infections of skin including mycoses are one of the most common infections in skin or skins. Mycosis is caused by dermatophytes, non-dermatophyte moulds and yeasts. Various studies show different drugs to treat mycoses, yet there is need to treat it with applied drugs delivery. This study was designed to prepare a bio curcumin (CMN) nanoemulsion (CMN-NEs) for transdermal administration to treat mycoses. The self-nanoemulsification approach was used to prepare a nanoemulsion (NE), utilizing an oil phase consisting of Cremophor EL 100 (Cre EL), glyceryl monooleate (GMO), and polyethylene glycol 5000 (PEG 5000). Particle size (PS), polydispersity index (PDI), zeta potential (ZP), Fourier transform infrared (FTIR) spectrophotometric analysis, and morphological analyses were performed to evaluate the nanoemulsion (NE). The in vitro permeation of CMN was investigated using a modified vertical diffusion cell with an activated dialysis membrane bag. Among all the formulations, a stable, spontaneously produced nanoemulsion was determined with 250 mg of CMN loaded with 10 g of the oil phase. The average droplet size, ZP, and PDI of CMN-NEs were 90.0 ± 2.1 nm, - 7.4 ± 0.4, and 0.171 ± 0.03 mV, respectively. The release kinetics of CMN differed from zero order with a Higuchi release profile as a result of nanoemulsification, which also significantly increased the flux of CMN permeating from the hydrophilic matrix gel. Overall, the prepared nanoemulsion system not only increased the permeability of CMN but also protected it against chemical deterioration. Both CMN-ME (24.0 ± 0.31 mm) and CMN-NE gel (29.6 ± 0.25 mm) had zones of inhibition against Candida albicans that were significantly larger than those of marketed Itrostred gel (21.5 ± 0.34 mm). The prepared CMN-NE improved the bioavailability, better skin penetration, and the CMN-NE gel enhanced the release of CMN from the gel matrix on mycotic patients.


Subject(s)
Curcumin , Mycoses , Humans , Skin Absorption , Curcumin/pharmacology , Curcumin/metabolism , Renal Dialysis , Skin/metabolism , Cyclooxygenase Inhibitors/pharmacology , Emulsions/pharmacology , Mycoses/drug therapy , Mycoses/metabolism
19.
J Neurooncol ; 165(1): 139-148, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37889440

ABSTRACT

PURPOSE: Patients with vestibular schwannoma undergoing definitive radiotherapy commonly experience hearing loss due to tumor and treatment effects; however, there is limited data evaluating concurrent medication use and other clinicopathologic factors associated with hearing preservation during and after radiotherapy. We performed a retrospective cohort study reviewing consecutive patients from 2004 to 2019 treated with radiotherapy for vestibular schwannoma at our institution. METHODS: Ninety four patients with concurrent medications, baseline audiograms, and post-radiotherapy audiograms available were evaluable. We performed chi-squared analyses of the frequency of various clinicopathologic factors and t-tests evaluating the degree of hearing loss based on audiograms. RESULTS: At a median follow-up of 35.7 months (mean: 46.5 months), the baseline pure-tone average (PTA) of the ipsilateral ear worsened from 38.4 to 59.5 dB following completion of radiotherapy (difference: 21.1, 95% CI 17.8-24.4 dB, p < 0.001). 36 patients (38.3%) reported regular use of cyclooxygenase (COX) inhibitors (including acetaminophen and NSAIDs) during radiotherapy. The mean increase in PTA was significantly higher for patients taking COX inhibitors (25.8 dB vs 18.1 dB, p = 0.024) in the ipsilateral ear but not for the contralateral side. COX inhibitor use remained independently associated with worse PTA in the multivariate analysis. CONCLUSION: COX inhibitor use during definitive radiotherapy is associated with worse hearing loss in the affected ear but not for the contralateral side. This suggests the ototoxic effects of COX inhibitors may influence the effects of radiotherapy. These results could have clinical implications and warrant further investigation.


Subject(s)
Deafness , Hearing Loss , Neuroma, Acoustic , Radiosurgery , Humans , Neuroma, Acoustic/drug therapy , Neuroma, Acoustic/radiotherapy , Neuroma, Acoustic/complications , Cyclooxygenase Inhibitors , Retrospective Studies , Follow-Up Studies , Hearing , Hearing Loss/complications , Deafness/complications , Radiosurgery/methods , Treatment Outcome
20.
Int J Pharm ; 647: 123510, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37839497

ABSTRACT

The oral delivery of anti-inflammatory drugs has been a promising strategy for enhancing the clinical efficacy of ulcerative colitis (UC) treatment strategies. However, achieving site specific drug delivery to colon tissues and target cells is a challenging task for formulation scientists. In this study, macrophages-targeted liposome-loaded pectin-chitosan hydrogels were developed for UC treatment via oral administration. Folate-functionalized cholesterol was synthesized as lipid membrane materials for the liposomes containing curcumin (CUR). The incorporation of the liposomal CUR within pectin-chitosan hydrogels resulted in a matrix that exhibited considerable sensitivity to colonic enzymes during in vitro release. The targeted delivery of hybrids was able to effectively reach macrophages. They also showed enhanced capability to downregulate TNF-α, IL-6, and IL-1ß in the lipopolysaccharide-induced Raw 264.7 cells model. DSS-induced mice modelshowed improved anti-UC effects, including accelerated mucosal repair and decreased inflammation and modulate the immune balance in the intestinal tissue of mice with colitis, which may be attributable to increased drug accumulation in the colonic lumen and improved internalization to target cells. Therefore, the incorporation of folate-modified liposomes containing CUR and pectin-chitosan physical hydrogels could potentially serve as a favorable approach for treating UC through an oral colon-targeted drug delivery system.


Subject(s)
Chitosan , Colitis, Ulcerative , Curcumin , Nanoparticles , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Liposomes/pharmacology , Curcumin/pharmacology , Chitosan/pharmacology , Hydrogels/pharmacology , Pectins , Macrophages , Colon/metabolism , Cyclooxygenase Inhibitors , Folic Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...