Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 9(1): 3654, 2018 09 07.
Article in English | MEDLINE | ID: mdl-30194307

ABSTRACT

The phytohormone 7-iso-(+)-jasmonoyl-L-isoleucine (JA-Ile) mediates plant defense responses against herbivore and pathogen attack, and thus increases plant resistance against foreign invaders. However, JA-Ile also causes growth inhibition; and therefore JA-Ile is not a practical chemical regulator of plant defense responses. Here, we describe the rational design and synthesis of a small molecule agonist that can upregulate defense-related gene expression and promote pathogen resistance at concentrations that do not cause growth inhibition in Arabidopsis. By stabilizing interactions between COI1 and JAZ9 and JAZ10 but no other JAZ isoforms, the agonist leads to formation of JA-Ile co-receptors that selectively activate the JAZ9-EIN3/EIL1-ORA59 signaling pathway. The design of a JA-Ile agonist with high selectivity for specific protein subtypes may help promote the development of chemical regulators that do not cause a tradeoff between growth and defense.


Subject(s)
Arabidopsis Proteins/metabolism , Cyclopentanes/agonists , Disease Resistance/drug effects , Isoleucine/analogs & derivatives , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Arabidopsis , Computer Simulation , Cyclopentanes/metabolism , DNA-Binding Proteins , Defensins/metabolism , Drug Design , Isoleucine/agonists , Oxylipins/metabolism , Peptide Termination Factors/metabolism , Stereoisomerism , Transcription Factors/metabolism
2.
Plant Physiol Biochem ; 44(11-12): 752-8, 2006.
Article in English | MEDLINE | ID: mdl-17107812

ABSTRACT

Jasmonic acid (JA) is implicated in a wide variety of developmental and physiological processes in plants. Here, we studied the effects of JA and the combination of JA and ethylenediamine-dio-hydroxyphenyl-acetic acid (EDDHA) on flowering in Lemna minor in axenical cultures. JA (0.475-47.5 nmol l(-1)) enhanced floral induction in L. minor under long-day (LD) conditions. Under the same conditions, at a concentration of 237.5 nmol l(-1), JA inhibited floral induction, and at a concentration of 475 nmol l(-1) it prevented floral induction. Under LD conditions with LD preculture, a combination of EDDHA (20,500 nmol l(-1)) and JA (47.5 nmol l(-1)) had a synergistic effect on the promotion of floral induction. Floral induction was enhanced to the greatest extent in experiments with LD precultures. Microscopic examination of microphotographs of histological sections showed that JA and, to an even greater extent, JA+EDDHA at optimal concentrations promote apical floral induction (evocation). Furthermore, JA, and to an even greater extent JA in combination with EDDHA in an optimal concentration, also promote flower differentiation, especially the development of stamens, as is evident from the microphotographs. The experimental results show that JA promotes floral induction in other species of Lemnaceae from various groups according to their photoperiodic response. The results support our hypothesis that, in addition to previously ascribed functions, JA may regulate floral induction, evocation and floral differentiation. Our hypothesis is supported also by the results obtained by quantitative determination of endogenous JA levels in L. minor at three growth stages. The levels of endogenous JA decreased from 389 ng JA g(-1) (fresh weight) of L. minor during the vegetative stage to 217 ng JA g(-1) during the evocation stage, and to 37.5 ng JA g(-1) during the flowering stage, which proves that JA is used for flowering.


Subject(s)
Araceae/growth & development , Cyclopentanes/pharmacology , Ethylenediamines/pharmacology , Flowers/growth & development , Iron Chelating Agents/pharmacology , Plant Growth Regulators/pharmacology , Araceae/cytology , Cyclopentanes/agonists , Dose-Response Relationship, Drug , Drug Synergism , Ethylenediamines/agonists , Flowers/cytology , Oxylipins , Plant Growth Regulators/agonists
SELECTION OF CITATIONS
SEARCH DETAIL
...