Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 433
Filter
1.
Angew Chem Int Ed Engl ; 63(25): e202401635, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38597773

ABSTRACT

The introduction of an abiological catalytic group into the binding pocket of a protein host allows for the expansion of enzyme chemistries. Here, we report the generation of an artificial enzyme by genetic encoding of a non-canonical amino acid that contains a secondary amine side chain. The non-canonical amino acid and the binding pocket function synergistically to catalyze the asymmetric nitrocyclopropanation of α,ß-unsaturated aldehydes by the iminium activation mechanism. The designer enzyme was evolved to an optimal variant that catalyzes the reaction at high conversions with high diastereo- and enantioselectivity. This work demonstrates the application of genetic code expansion in enzyme design and expands the scope of enzyme-catalyzed abiological reactions.


Subject(s)
Aldehydes , Cyclopropanes , Aldehydes/chemistry , Aldehydes/metabolism , Cyclopropanes/chemistry , Cyclopropanes/metabolism , Stereoisomerism , Biocatalysis , Nitro Compounds/chemistry , Nitro Compounds/metabolism , Molecular Structure
2.
Angew Chem Int Ed Engl ; 63(22): e202403044, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38517205

ABSTRACT

Dual bioorthogonal labeling enables the investigation and understanding of interactions in the biological environment that are not accessible by a single label. However, applying two bioorthogonal reactions in the same environment remains challenging due to cross-reactivity. We developed a pair of differently modified 2'-deoxynucleosides that solved this issue for dual and orthogonal labeling of DNA. Inverse-electron demand Diels-Alder and photoclick reactions were combined to attach two different fluorogenic labels to genomic DNA in cells. Using a small synthetic library of 1- and 3-methylcyclopropenyl-modified 2'-deoxynucleosides, two 2'-deoxyuridines were identified to be the fastest-reacting ones for each of the two bioorthogonal reactions. Their orthogonal reactivity could be evidenced in vitro. Primer extension experiments were performed with both 2'-deoxyuridines investigating their replication properties as substitutes for thymidine and evaluating subsequent labeling reactions on the DNA level. Finally, dual, orthogonal and metabolic fluorescent labeling of genomic DNA was demonstrated in HeLa cells. An experimental procedure was developed combining intracellular transport and metabolic DNA incorporation of the two 2'-deoxyuridines with the subsequent dual bioorthogonal labeling using a fluorogenic cyanine-styryl tetrazine and a fluorogenic pyrene-tetrazole. These results are fundamental for advanced metabolic labeling strategies for nucleic acids in the future, especially for live cell experiments.


Subject(s)
Cyclopropanes , DNA , Fluorescent Dyes , Humans , DNA/chemistry , DNA/metabolism , HeLa Cells , Cyclopropanes/chemistry , Cyclopropanes/metabolism , Fluorescent Dyes/chemistry , Cycloaddition Reaction , Molecular Structure
3.
Nat Commun ; 15(1): 1520, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374083

ABSTRACT

Fatty acid desaturation is central to metazoan lipid metabolism and provides building blocks of membrane lipids and precursors of diverse signaling molecules. Nutritional conditions and associated microbiota regulate desaturase expression, but the underlying mechanisms have remained unclear. Here, we show that endogenous and microbiota-dependent small molecule signals promote lipid desaturation via the nuclear receptor NHR-49/PPARα in C. elegans. Untargeted metabolomics of a ß-oxidation mutant, acdh-11, in which expression of the stearoyl-CoA desaturase FAT-7/SCD1 is constitutively increased, revealed accumulation of a ß-cyclopropyl fatty acid, becyp#1, that potently activates fat-7 expression via NHR-49. Biosynthesis of becyp#1 is strictly dependent on expression of cyclopropane synthase by associated bacteria, e.g., E. coli. Screening for structurally related endogenous metabolites revealed a ß-methyl fatty acid, bemeth#1, which mimics the activity of microbiota-dependent becyp#1 but is derived from a methyltransferase, fcmt-1, that is conserved across Nematoda and likely originates from bacterial cyclopropane synthase via ancient horizontal gene transfer. Activation of fat-7 expression by these structurally similar metabolites is controlled by distinct mechanisms, as microbiota-dependent becyp#1 is metabolized by a dedicated ß-oxidation pathway, while the endogenous bemeth#1 is metabolized via α-oxidation. Collectively, we demonstrate that evolutionarily related biosynthetic pathways in metazoan host and associated microbiota converge on NHR-49/PPARα to regulate fat desaturation.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , PPAR alpha/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Fatty Acids/metabolism , Cyclopropanes/metabolism
4.
J Food Sci ; 88(8): 3323-3331, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37458299

ABSTRACT

In this study, "Xiahui 6" peaches were treated with 10 µL/L 1-methylcyclopropene (1-MCP) for 12 h and then stored at 20°C for 9 days; the regulation of 1-MCP on organic acids during storage was investigated through transcriptomic and metabolite analyses. Results showed that 1-MCP maintained higher gene expression of malate synthesis (PpPEPC1, PpPEPC2, and PpNAD-cytMDH) at the end of storage but extremely inhibited the gene expression of malate degradation (PpNADP-cytME) during storage, resulting that malate content in treated peaches was twice that of control group at day 7. Besides, the increasement of citrate synthesis and degradation-related genes (PpmitCS, PpcytACO, PpNAD-mitIDH, and PpNADP-cytIDH) at days 3 and 5 was postponed by 1-MCP treatment, accompanied by 0.5 times higher citrate content at day 7. Our results suggested that 1-MCP has inhibitory effects on both the synthesis and degradation of organic acids; however, the inhibitory effect of 1-MCP on organic acid degradation may be greater than that on organic acid synthesis. Practical Application: This study provides a theoretical basis for the application of 1-methylcyclopropene (1-MCP) in fruit preservation.


Subject(s)
Prunus persica , Prunus persica/metabolism , Transcriptome , Malates/metabolism , Cyclopropanes/pharmacology , Cyclopropanes/metabolism , Citric Acid/pharmacology , Fruit/metabolism
5.
J Biotechnol ; 366: 1-9, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36849085

ABSTRACT

Indigo dye is an organic compound with a distinctive blue color. Most of the indigo currently used in industry is produced via chemical synthesis, which generates a large amount of wastewater. Therefore, several studies have recently been conducted to find ways to produce indigo eco-friendly using microorganisms. Here, we produced indigo using recombinant Escherichia coli with both an indigo-producing plasmid and a cyclopropane fatty acid (CFA)-regulating plasmid. The CFA-regulating plasmid contains the cfa gene, and its expression increases the CFA composition of the phospholipid fatty acids of the cell membrane. Overexpression of cfa showed cytotoxicity resistance of indole, an intermediate product formed during the indigo production process. This had a positive effect on indigo production and cfa originated from Pseudomonas sp. B 14-6 was used. Optimal conditions for indigo production were determined by adjusting the expression strain, culture temperature, shaking speed, and isopropyl ß-D-1-thiogalactopyranoside concentration. Treatment with Tween 80 at a particular concentration to increase the permeability of the cell membrane had a positive effect on indigo production. The strain with the CFA plasmid produced 4.1 mM of indigo after 24 h of culture and produced 1.5-fold higher indigo than the control strain without the CFA plasmid that produced 2.7 mM.


Subject(s)
Escherichia coli , Indigo Carmine , Escherichia coli/genetics , Escherichia coli/metabolism , Indigo Carmine/metabolism , Pseudomonas/genetics , Fatty Acids/metabolism , Acids , Phospholipids , Cyclopropanes/chemistry , Cyclopropanes/metabolism
6.
Toxicol Appl Pharmacol ; 461: 116410, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36738974

ABSTRACT

Different classes of insecticide compounds have been employed to control insects and mosquitoes; Pyrethroids are one of the most common used in both urban and rural household environments. This study investigated the effects of exposure of two doses of commercial transfluthrin-based insecticide (T-BI) on behavior (body bends, pharyngeal pumping rate, and feeding attributes) and biochemical biomarkers (AChE, PolyQ40 aggregations, HSP, antioxidative SOD, CTL, and GST) following three different protocols (transgenerational, neonatal, and lifespan) in Caenorhabditis elegans model system. The relative calculated dose (RCD) and relative calculated half dose (RCHD) of T-BI were compared with those of the control (water). T-BI reduced the health span of worms treated during their whole life and changed biochemical and behavioral patterns due to progenitors' uterine (transgenerational) and neonatal exposures. It was inferred that the effects of T-BI are transgenerational and persistent and can be harmful to non-target species, including humans. In addition, our findings highlight that T-BI contact by progenitors accelerates the establishment of Huntington's disease and causes a cholinergic outbreak in offspring adulthood.


Subject(s)
Caenorhabditis elegans Proteins , Insecticides , Animals , Infant, Newborn , Humans , Adult , Caenorhabditis elegans , Insecticides/pharmacology , Caenorhabditis elegans Proteins/metabolism , Cyclopropanes/toxicity , Cyclopropanes/metabolism
7.
J Phys Chem B ; 127(7): 1607-1617, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36790194

ABSTRACT

The cyclopropanation of unsaturated lipid acyl chains of some bacterial cell membranes is an important survival strategy to protect the same against drastic cooling. To elucidate the role of cyclopropane ring-containing lipids, we have simulated the lipid membrane of Escherichia coli (E. coli) and two modified membranes by replacing the cyclopropane rings with either single or double bonds at widely different temperatures. It has been observed that the cyclopropane rings provide more rigid kinks in the lipid acyl chain compared to the double bonds and therefore further reduce the packing density of the membrane and subsequently enhance the membrane fluidity at low temperatures. They also inhibit the close packing of other lipids and deleterious phase separation by strongly interacting with them. Therefore, this study has explained why E. coli bacterial strain, susceptible to freezing environments, relies on the cyclopropanation of an unsaturated chain.


Subject(s)
Cold-Shock Response , Escherichia coli , Escherichia coli/metabolism , Fatty Acids/chemistry , Cell Membrane , Cyclopropanes/metabolism
8.
Int J Mol Sci ; 23(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35887013

ABSTRACT

Efavirenz (EFV), an FDA-approved anti-HIV drug, has off-target binding to CYP46A1, the CNS enzyme which converts cholesterol to 24-hydroxycholesterol. At small doses, EFV allosterically activates CYP46A1 in mice and humans and mitigates some of the Alzheimer's disease manifestations in 5XFAD mice, an animal model. Notably, in vitro, all phase 1 EFV hydroxymetabolites activate CYP46A1 as well and bind either to the allosteric site for EFV, neurotransmitters or both. Herein, we treated 5XFAD mice with 8,14-dihydroxyEFV, the binder to the neurotransmitter allosteric site, which elicits the highest CYP46A1 activation in vitro. We found that treated animals of both sexes had activation of CYP46A1 and cholesterol turnover in the brain, decreased content of the amyloid beta 42 peptide, increased levels of acetyl-CoA and acetylcholine, and altered expression of the brain marker proteins. In addition, male mice had improved performance in the Barnes Maze test and increased expression of the acetylcholine-related genes. This work expands our knowledge of the beneficial CYP46A1 activation effects and demonstrates that 8,14-dihydroxyEFV crosses the blood-brain barrier and has therapeutic potential as a CYP46A1 activator.


Subject(s)
Acetylcholine , Alzheimer Disease , Brain , Cholesterol 24-Hydroxylase , Acetylcholine/analysis , Acetylcholine/metabolism , Alkynes/metabolism , Alkynes/pharmacology , Alkynes/therapeutic use , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Benzoxazines/metabolism , Benzoxazines/pharmacology , Benzoxazines/therapeutic use , Brain/drug effects , Brain/metabolism , Cholesterol/metabolism , Cholesterol 24-Hydroxylase/genetics , Cholesterol 24-Hydroxylase/metabolism , Cholesterol 24-Hydroxylase/pharmacology , Cyclopropanes/metabolism , Cyclopropanes/pharmacology , Cyclopropanes/therapeutic use , Disease Models, Animal , Female , Male , Mice
9.
J Labelled Comp Radiopharm ; 65(4): 86-100, 2022 04.
Article in English | MEDLINE | ID: mdl-34997781

ABSTRACT

Cyclopropanes are commonly employed structural moieties in drug design since their incorporation is often associated with increased target affinity, improved metabolic stability, and increased rigidity to access bioactive conformations. Robust chemical cyclopropanation procedures have been developed which proceed with high yield and broad substrate scope, and have been applied to labeled substrates. Recently, engineered enzymes have been shown to perform cyclopropanations with remarkable diastereoselectivity and enantioselectivity, but this biocatalytic approach has not been applied to labeled substrates to date. In this study, the use of enzyme catalysis for the synthesis of labeled cyclopropanes was investigated. Two readily available enzymes, a modified CYP450 enzyme and a modified Aeropyrum pernix protoglobin, were investigated for the cyclopropanation of a variety of substituted styrenes. For this biocatalytic transformation, the enzymes required the use of ethyl diazoacetate. Due to the highly energetic nature of this molecule, alternatives were investigated. The final optimized cyclopropanation was successfully demonstrated using n-hexyl diazoacetate, resulting in moderate to high enantiomeric excess. The optimized procedure was used to generate labeled cyclopropanes from 13 C-glycine, forming all four labeled stereoisomers of phosphodiesterase type-IV inhibitor, MK0952. These reactions provide a convenient and effective biocatalytic route to stereoselective 13 C-labeled cyclopropanes and serve as a proof-of-concept for generating stereoselective labeled cyclopropanes.


Subject(s)
Cyclopropanes , Isotopes , Biocatalysis , Catalysis , Cyclopropanes/chemistry , Cyclopropanes/metabolism , Molecular Structure , Stereoisomerism
10.
Insect Biochem Mol Biol ; 140: 103700, 2022 01.
Article in English | MEDLINE | ID: mdl-34856351

ABSTRACT

Many species of moths have a common control mechanism for synthesizing sex pheromone: the circadian release of pheromone biosynthesis-activation neuropeptide (PBAN) that switches pheromone synthesis on/off during the day. One apparent exception to this is the noctuid moth Trichoplusia ni (Hübner), in which pheromone synthesis appears continuous through the photoperiod, with circadian release of PBAN controlling emission rate of pheromone during calling. Sex pheromone biosynthesis was reinvestigated in T. ni using stable isotope tracer-tracee and gland sampling techniques to ascertain how pheromone quantities in gland cells and on the gland cuticular surface varied and were controlled. It was found that (i) carbohydrate from adult female feeding is used to synthesize sex pheromone, (ii) most of the stored acetate ester pheromone component(s) is contained in gland cells, (iii) a large pool of pheromone is synthesized and stored through the photoperiod with a slow turnover rate, (iv) although pheromone is synthesized throughout the photoperiod, its rate can vary, influenced by release of PBAN and possibly by an unidentified head factor, with both affecting carbohydrate uptake into the acetyl CoA pheromone precursor pool, and (v) as suggested previously, PBAN also influences translocation of pheromone out of the cell to the cuticular surface, possibly by causing breakdown of intracellular lipid droplets storing pheromone molecules. This work suggests that the quantitative synthesis and emission of pheromone in T. ni, and possibly other moths, is regulated by multiple complementary biochemical mechanisms.


Subject(s)
Moths/metabolism , Pheromones/biosynthesis , Animals , Boronic Acids/metabolism , Cyclopropanes/metabolism , Neuropeptides/metabolism , Photoperiod , Secondary Metabolism , Sex Attractants/biosynthesis
11.
Infect Immun ; 90(1): e0047921, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34662213

ABSTRACT

A variety of eubacteria, plants, and protozoa can modify membrane lipids by cyclopropanation, which is reported to modulate membrane permeability and fluidity. The ability to cyclopropanate membrane lipids has been associated with resistance to oxidative stress in Mycobacterium tuberculosis, organic solvent stress in Escherichia coli, and acid stress in E. coli and Salmonella. In bacteria, the cfa gene encoding cyclopropane fatty acid (CFA) synthase is induced during the stationary phase of growth. In the present study, we constructed a cfa mutant of Salmonella enterica serovar Typhimurium 14028s (S. Typhimurium) and determined the contribution of CFA-modified lipids to stress resistance and virulence in mice. Cyclopropane fatty acid content was quantified in wild-type and cfa mutant S. Typhimurium. CFA levels in the cfa mutant were greatly reduced compared to CFA levels in the wild type, indicating that CFA synthase is the major enzyme responsible for cyclopropane modification of lipids in Salmonella. S. Typhimurium cfa mutants were more sensitive to extreme acid pH, the protonophore CCCP, and hydrogen peroxide compared to the wild type. In addition, cfa mutants exhibited reduced viability in murine macrophages and could be rescued by the addition of the NADPH phagocyte oxidase inhibitor diphenyleneiodonium (DPI) chloride. S. Typhimurium lacking cfa was also attenuated for virulence in mice. These observations indicate that CFA modification of lipids makes an important contribution to Salmonella virulence.


Subject(s)
Cyclopropanes/metabolism , Fatty Acids/metabolism , Salmonella Infections/microbiology , Salmonella typhimurium/physiology , Animals , Bacterial Physiological Phenomena , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biosynthetic Pathways , Cyclopropanes/chemistry , Cyclopropanes/pharmacology , Disease Models, Animal , Fatty Acids/chemistry , Fatty Acids/pharmacology , Hydrogen-Ion Concentration , Macrophages/drug effects , Macrophages/immunology , Macrophages/microbiology , Mice , Microbial Viability/drug effects , Microbial Viability/immunology , Mutation , Oxidative Stress , Salmonella Infections/immunology , Salmonella Infections/mortality , Salmonella typhimurium/drug effects , Virulence
12.
Angew Chem Int Ed Engl ; 61(7): e202113189, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34904348

ABSTRACT

Hormaomycins and belactosins are peptide natural products that contain unusual cyclopropane moieties. Bioinformatics analysis of the corresponding biosynthetic gene clusters showed that two conserved genes, hrmI/belK and hrmJ/belL, were potential candidates for catalyzing cyclopropanation. Using in vivo and in vitro assays, the functions of HrmI/BelK and HrmJ/BelL were established. HrmI and BelK, which are heme oxygenase-like dinuclear iron enzymes, catalyze oxidation of the ϵ-amino group of l-lysine to afford l-6-nitronorleucine. Subsequently, HrmJ and BelL, which are iron- and α-ketoglutarate-dependent oxygenases, effectively convert l-6-nitronorleucine into 3-(trans-2-nitrocyclopropyl)-alanine through C4-C6 bond installation. These observations disclose a novel pathway of cyclopropane ring construction and exemplify the new chemistry involving metalloenzymes in natural product biosynthesis.


Subject(s)
Cyclopropanes/metabolism , Depsipeptides/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Metalloproteins/metabolism , Catalysis , Cyclopropanes/chemistry , Depsipeptides/chemistry , Intercellular Signaling Peptides and Proteins/chemistry , Metalloproteins/chemistry , Molecular Structure
13.
Plant Physiol ; 187(2): 816-828, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34608958

ABSTRACT

The rice (Oryza sativa) 2-oxoglutarate (2OG)/Fe(II)-dependent dioxygenase HIS1 mediates the catalytic inactivation of five distinct ß-triketone herbicides (bTHs). By assessing the effects of plant growth regulators on HIS1 enzyme function, we found that HIS1 mediates the hydroxylation of trinexapac-ethyl (TE) in the presence of Fe2+ and 2OG. TE blocks gibberellin biosynthesis, and we observed that its addition to culture medium induced growth retardation of rice seedlings in a concentration-dependent manner. Similar treatment with hydroxylated TE revealed that hydroxylation greatly attenuated the inhibitory effect of TE on plant growth. Forced expression of HIS1 in a rice his1 mutant also reduced its sensitivity to TE compared with that of the nontransformant. These results indicate that HIS1 metabolizes TE and thereby markedly reduces its ability to slow plant growth. Furthermore, analysis of five rice HIS1-like (HSL) proteins revealed that OsHSL2 and OsHSL4 also metabolize TE in vitro. HSLs from wheat (Triticum aestivum) and barley (Hordeum vulgare) also showed such activity. In contrast, OsHSL1, which shares the highest amino acid sequence identity with HIS1 and metabolizes the bTH tefuryltrione, did not manifest TE-metabolizing activity. Site-directed mutagenesis of OsHSL1 informed by structural models showed that substitution of three amino acids with the corresponding residues of HIS1 conferred TE-metabolizing activity similar to that of HIS1. Our results thus reveal a catalytic promiscuity of HIS1 and its related enzymes that support xenobiotic metabolism in plants.


Subject(s)
Cyclopropanes/metabolism , Dioxygenases/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Quinones/metabolism , Xenobiotics/metabolism , Oryza/enzymology
14.
Angew Chem Int Ed Engl ; 60(45): 24059-24063, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34490955

ABSTRACT

Cyclopropane rings are an important structural motif frequently found in many natural products and pharmaceuticals. Commonly, biocatalytic methodologies for the asymmetric synthesis of cyclopropanes rely on repurposed or artificial heme enzymes. Here, we engineered an unusual cofactor-independent cyclopropanation enzyme based on a promiscuous tautomerase for the enantioselective synthesis of various cyclopropanes via the nucleophilic addition of diethyl 2-chloromalonate to α,ß-unsaturated aldehydes. The engineered enzyme promotes formation of the two new carbon-carbon bonds with excellent stereocontrol over both stereocenters, affording the desired cyclopropanes with high diastereo- and enantiopurity (d.r. up to 25:1; e.r. up to 99:1). Our results highlight the usefulness of promiscuous enzymes for expanding the biocatalytic repertoire for non-natural reactions.


Subject(s)
Cyclopropanes/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochromes c/metabolism , Imines/metabolism , Myoglobin/metabolism , Biocatalysis , Cyclopropanes/chemistry , Imines/chemistry , Ions/chemistry , Ions/metabolism , Protein Engineering
15.
Arch Toxicol ; 95(11): 3539-3557, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34453555

ABSTRACT

Intake of synthetic cannabinoids (SC), one of the largest classes of new psychoactive substances, was reported to be associated with acute liver damage but information about their hepatotoxic potential is limited. The current study aimed to analyze the hepatotoxicity including the metabolism-related impact of JWH-200, A-796260, and 5F-EMB-PINACA in HepG2 cells allowing a tentative assessment of different SC subclasses. A formerly adopted high-content screening assay (HCSA) was optimized using a fully automated epifluorescence microscope. Metabolism-mediated effects in the HCSA were additionally investigated using the broad CYP inhibitor 1-aminobenzotriazole. Furthermore, phase I metabolites and isozymes involved were identified by in vitro assays and liquid chromatography-high-resolution tandem mass spectrometry. A strong cytotoxic potential was observed for the naphthoylindole SC JWH-200 and the tetramethylcyclopropanoylindole compound A-796260, whereas the indazole carboxamide SC 5F-EMB-PINACA showed moderate effects. Numerous metabolites, which can serve as analytical targets in urine screening procedures, were identified in pooled human liver microsomes. Most abundant metabolites of JWH-200 were formed by N-dealkylation, oxidative morpholine cleavage, and oxidative morpholine opening. In case of A-796260, most abundant metabolites included an oxidative morpholine cleavage, oxidative morpholine opening, hydroxylation, and dihydroxylation followed by dehydrogenation. Most abundant 5F-EMB-PINACA metabolites were generated by ester hydrolysis plus additional steps such as oxidative defluorination and hydroxylation. To conclude, the data showed that a hepatotoxicity of the investigated SC cannot be excluded, that metabolism seems to play a minor role in the observed effects, and that the extensive phase I metabolism is mediated by several isozymes making interaction unlikely.


Subject(s)
Cannabinoids/metabolism , Cannabinoids/toxicity , Cyclopropanes/metabolism , Cyclopropanes/toxicity , Morpholines/metabolism , Morpholines/toxicity , Chromatography, Liquid/methods , Hep G2 Cells , Humans , Isoenzymes/analysis , Microsomes, Liver/metabolism , Tandem Mass Spectrometry/methods
16.
J Bacteriol ; 203(20): e0022121, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34309397

ABSTRACT

Enterococcus faecalis, a multiple antibiotic-resistant Gram-positive bacterium, has emerged as a serious nosocomial pathogen. Here, we used a genetic approach to characterize the strategies used by E. faecalis to fulfill its requirements for endogenous fatty acid (FA) synthesis in vitro and in vivo. The type II fatty acid synthesis (FASII) pathway is encoded by two operons and two monocistronic genes. Expression of all of these genes is repressed by exogenous FAs, which are incorporated into the E. faecalis membrane and modify its composition. Deletion of nine genes of the 12-gene operon abolished growth in an FA-free medium. Addition of serum, which is lipid rich, restored growth. Interestingly, the E. faecalis membrane contains cyclic fatty acids that modify membrane properties but that are unavailable in host serum. The cfa gene that encodes the cyclopropanation process is located in a locus independent of the FASII genes. Its deletion did not alter growth under the conditions tested, but yielded bacteria devoid of cyclic FAs. No differences were observed between mice infected with wild-type (WT) or with FASII or cyclopropanation mutant strains, in terms of bacterial loads in blood, liver, spleen, or kidneys. We conclude that in E. faecalis, neither FASII nor cyclopropanation enzymes are suitable antibiotic targets. IMPORTANCE Membrane lipid homeostasis is crucial for bacterial physiology, adaptation, and virulence. Fatty acids are constituents of the phospholipids that are essential membrane components. Most bacteria incorporate exogenous fatty acids into their membranes. Enterococcus faecalis has emerged as a serious nosocomial pathogen that is responsible for urinary tract infections, bacteremia, and endocarditis and is intrinsically resistant to numerous antibiotics. E. faecalis synthesizes saturated and unsaturated fatty acids, as well as cyclic fatty acids that are not found in the human host. Here, we characterized mutant strains deficient in fatty acid synthesis and modification using genetic, biochemical, and in vivo approaches. We conclude that neither the fatty acid synthesis pathway nor the cyclopropanation enzyme are suitable targets for E. faecalis antibiotic development.


Subject(s)
Bacterial Proteins/metabolism , Cyclopropanes/metabolism , Enterococcus faecalis/metabolism , Fatty Acids/biosynthesis , Methyltransferases/metabolism , Animals , Bacterial Proteins/genetics , Culture Media , Cyclopropanes/chemistry , DNA, Bacterial/genetics , Enterococcus faecalis/genetics , Female , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Humans , Methyltransferases/genetics , Mice , Mice, Inbred BALB C , Serum
17.
AAPS PharmSciTech ; 22(5): 171, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34100170

ABSTRACT

Macrophages act as a cellular reservoir in HIV infection. Elimination of HIV from macrophages has been an unfulfilled dream due to the failure of drugs to reach them. To address this, we developed CD44 receptor-targeted, novel hyaluronic acid (HA)-coated nanostructured lipid carriers (NLCs) of efavirenz via washless layer-by-layer (LbL) assembly of HA and polyallylamine hydrochloride (PAH). NLCs were subjected to TEM analysis, size and zeta potential, in vitro release and encapsulation efficiency studies. The uptake of NLCs in THP-1 cells was studied using fluorescence microscopy and flow cytometry. The anti-HIV efficacy was evaluated using p24 antigen inhibition assay. NLCs were found to be spherical in shape with anionic zeta potential (-23.66 ± 0.87 mV) and 241.83 ± 5.38 nm particle size. NLCs exhibited prolonged release of efavirenz during in vitro drug release studies. Flow cytometry revealed 1.73-fold higher uptake of HA-coated NLCs in THP-1 cells. Cytotoxicity studies showed no significant change in cell viability in presence of NLCs as compared with the control. HA-coated NLCs distributed throughout the cell including cytoplasm, plasma membrane and nucleus, as observed during fluorescence microscopy. HA-coated NLCs demonstrated consistent and significantly higher inhibition (81.26 ± 1.70%) of p24 antigen which was 2.08-fold higher than plain NLCs. The obtained results suggested preferential uptake of HA-coated NLCs via CD44-mediated uptake. The present finding demonstrates that HA-based CD44 receptor targeting in HIV infection is an attractive strategy for maximising the drug delivery to macrophages and achieve effective viral inhibition.


Subject(s)
Drug Carriers/administration & dosage , HIV-1/drug effects , Hyaluronan Receptors , Macrophages/drug effects , Nanostructures/administration & dosage , Reverse Transcriptase Inhibitors/administration & dosage , Alkynes/administration & dosage , Alkynes/chemical synthesis , Alkynes/metabolism , Benzoxazines/administration & dosage , Benzoxazines/chemical synthesis , Benzoxazines/metabolism , Cell Survival/drug effects , Cell Survival/physiology , Cyclopropanes/administration & dosage , Cyclopropanes/chemical synthesis , Cyclopropanes/metabolism , Dose-Response Relationship, Drug , Drug Carriers/chemical synthesis , Drug Carriers/metabolism , Drug Delivery Systems/methods , HEK293 Cells , HIV Infections/drug therapy , HIV Infections/metabolism , HIV-1/physiology , Humans , Hyaluronan Receptors/metabolism , Lipids/administration & dosage , Lipids/chemical synthesis , Macrophages/metabolism , Nanostructures/chemistry , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/metabolism , THP-1 Cells
18.
J Pharm Sci ; 110(10): 3362-3366, 2021 10.
Article in English | MEDLINE | ID: mdl-34175301

ABSTRACT

Accurate quantification of efavirenz metabolites in patient samples is required to investigate their potential contribution to efavirenz adverse events. This study aimed to validate a LC-MS/MS method to quantify and investigate the stability of efavirenz and metabolites in human plasma. Compounds were extracted from plasma by supported liquid extraction and resolved on a C18 column. Validation was performed following FDA bioanalytical method validation guidelines. Stability under common conditions of sample pre-treatment and storage were assessed. Efavirenz and 8-hydroxyefavirenz were stable for all conditions tested. 7-Hydroxyefavirenz and 8,14-dihydroxyefavirenz were not stable in plasma at room temperature for 24 h (46%-69% loss), -20°C for 90 days (17%-50% loss), or 60°C for 1 h (90%-95% loss). Efavirenz and 8-hydroxyefavirenz concentrations in HIV/AIDS patient (n=5) plasma prepared from pre-treated (60°C for 1 h) whole blood varied from 517-8564 ng/mL and 131-813 ng/mL, respectively. 7-Hydroxyefavirenz and 8,14-dihydroxyefavirenz concentrations were below validated lower limits of quantification (0.25 and 0.5 ng/mL, respectively), most likely due to sample pre-treatment. This is the first report of 7-hydroxyefavirenz and 8,14-dihydroxyefavirenz instability under conditions commonly used in preparation of samples from HIV/AIDS patients. Alternative biosafety measures to heat pre-treatment must therefore be used for accurate quantification of plasma 7-hydroxyefavirenz and 8,14-dihydroxyefavirenz.


Subject(s)
Alkynes/metabolism , Benzoxazines/metabolism , Cyclopropanes/metabolism , Plasma , Chromatography, High Pressure Liquid , Drug Stability , Humans , Reproducibility of Results , Tandem Mass Spectrometry
19.
J Am Soc Mass Spectrom ; 32(8): 2050-2061, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-33998806

ABSTRACT

Drug metabolite profiling utilizes liquid chromatography with tandem mass spectrometry (LC/MS/MS) to acquire ample information for metabolite identification and structural elucidation. However, there are still challenges in detecting and characterizing all potential metabolites that can be masked by a high biological background, especially the unknown and uncommon ones. In this work, a novel metabolite profiling workflow was established on a platform using a state-of-the-art tribrid high-resolution mass spectrometry (HRMS) system. Primarily, an instrumental method was developed based on the novel design of the tribrid system that facilitates in-depth MSn scans with two fragmentation devices. Additionally, different advanced data acquisition techniques were assessed and compared, and automatic background exclusion and deep-scan approaches were adopted to promote assay efficiency and metabolite coverage. Finally, different data-analysis techniques were explored to fully extract metabolite data from the information-rich MS/MS data sets. Overall, a workflow combining tribrid mass spectrometry and advanced acquisition methodology has been developed for metabolite characterization in drug discovery and development. It maximizes the tribrid HRMS platform's utility and enhances the coverage, efficiency, quality, and speed of metabolite profiling assays.


Subject(s)
Electronic Data Processing/methods , Pharmaceutical Preparations/metabolism , Tandem Mass Spectrometry/methods , Acetates/metabolism , Acetates/pharmacokinetics , Buspirone/metabolism , Buspirone/pharmacokinetics , Chromatography, Liquid/methods , Cyclopropanes/metabolism , Cyclopropanes/pharmacokinetics , Data Mining , Equipment Design , Metabolomics/methods , Microsomes, Liver/drug effects , Pharmaceutical Preparations/analysis , Quinolines/metabolism , Quinolines/pharmacokinetics , Sulfides/metabolism , Sulfides/pharmacokinetics , Tandem Mass Spectrometry/instrumentation , Ticlopidine/metabolism , Ticlopidine/pharmacokinetics , Timolol/metabolism , Timolol/pharmacokinetics , Workflow
20.
Microbiol Res ; 249: 126775, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33964629

ABSTRACT

In Pseudomonas spp. PsrA, a transcriptional activator of the rpoS gene, regulates fatty acid catabolism by repressing the fadBA5 ß-oxidation operon. In Azotobacter vinelandii, a soil bacterium closely related to Pseudomonas species, PsrA is also an activator of rpoS expression, although its participation in the regulation of lipid metabolism has not been analyzed. In this work we found that inactivation of psrA had no effect on the expression of ß-oxidation genes in this bacterium, but instead decreased expression of the unsaturated fatty acid biosynthetic operon fabAB (3-hydroxydecanoyl-ACP dehydratase/isomerase and 3-ketoacyl-ACP synthase I). This inactivation also reduced the unsaturated fatty acid content, as revealed by the thin-layer chromatographic analysis, and confirmed by gas chromatography; notably, there was also a lower content of cyclopropane fatty acids, which are synthesized from unsaturated fatty acids. The absence of PsrA has no effect on the growth rate, but showed loss of cell viability during long-term growth, in accordance with the role of these unsaturated and cyclopropane fatty acids in the protection of membranes. Finally, an electrophoretic mobility shift assay revealed specific binding of PsrA to the fabA promoter region, where a putative binding site for this regulator was located. Taken together, our data show that PsrA plays an important role in the regulation of unsaturated fatty acids metabolism in A. vinelandii by positively regulating fabAB.


Subject(s)
Azotobacter vinelandii/genetics , Fatty Acids, Unsaturated/biosynthesis , Gene Expression Regulation, Bacterial , Operon , Transcription Factors/metabolism , Azotobacter vinelandii/growth & development , Azotobacter vinelandii/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cyclopropanes/metabolism , Fatty Acids/metabolism , Fatty Acids, Unsaturated/metabolism , Microbial Viability , Promoter Regions, Genetic , Protein Binding , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...