Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Arch Microbiol ; 203(5): 2511-2519, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33677636

ABSTRACT

This study was aimed to investigate whether host plant species and lifestyles, and environmental conditions in the desert affect endophytic fungi composition. Endophytic fungal communities from parasitic plant Cynomorium songaricum and its host Nitraria tangutorum were investigated from three sites including Tonggu Naoer, Xilin Gaole, and Guazhou in Tengger and Badain Jaran Deserts in China using the next-generation sequencing of a ribosomal RNA gene region. Similarity and difference in endophytic fungal composition from different geographic locations were evaluated through multivariate statistical analysis. It showed that plant genetics was a deciding factor affecting endophytic fungal composition even when C. songaricum and N. tangutorum grow together tightly. Not only that, the fungal composition was also greatly affected by the local environment and rainfall. However, the distribution and richness of fungal species indicated that the geographical distance exerted little influence on characterizing the fungal composition. Overall, the findings suggested that plant species, parasitic or non-parasitic lifestyles of the plant, and local environment strongly affected the number and diversity of the endophytic fungal species, which may provide valuable insights into the microbe ecology, symbiosis specificity, and the tripartite relationship among parasitic plant, host, and endophytic fungi, especially under desert environment.


Subject(s)
Cynomorium/microbiology , Desert Climate , Magnoliopsida/microbiology , Mycobiome , China , Cynomorium/classification , Cynomorium/genetics , Cynomorium/physiology , Endophytes/classification , Endophytes/genetics , Endophytes/isolation & purification , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Host Microbial Interactions , Magnoliopsida/classification , Magnoliopsida/genetics , Magnoliopsida/parasitology , Species Specificity
2.
Chin J Nat Med ; 11(4): 321-9, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23845540

ABSTRACT

The stem of Cynomorium songaricum is a traditional Chinese medicine reputed to have tonic effects. C. coccineum growing in northern Africa and the Mediterranean region is regarded in Arabian medical practice as the "treasure of drugs". The major constituents of Cynomorium plants have been revealed to be phenolic compounds, steroids, triterpenes, etc. Pharmacologic studies showed that the Cynomorium plants had antioxidant, immunity-improving, anti-diabetic, neuroprotective, and other bioactivities. Some chemical constituents in Cynomorium plants are unstable, implying that the chemical components of the herbal medicines produced under different conditions may be variable. This review covers the literature published until December, 2011 and describes the pharmacologic effects and secondary metabolites of Cynomorium species.


Subject(s)
Cynomorium/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Animals , Cynomorium/classification , Cynomorium/metabolism , Drugs, Chinese Herbal/metabolism , Humans
3.
Zhongguo Zhong Yao Za Zhi ; 38(23): 4028-32, 2013 Dec.
Article in Chinese | MEDLINE | ID: mdl-24791482

ABSTRACT

OBJECTIVE: To identify the Cynomorii Herba and its analogues species using DNA barcoding technique. METHOD: Total genomic DNA extracted from all materials using the DNA extraction kit. The internal transcribed spacer 2 (ITS2) regions were amplified using polymerase chain reaction (PCR), and purified PCR products were sequenced bi-directionally. Sequence assembly and consensus sequence generation were performed using the CodonCode Aligner 3.7.1. The Kimura 2-Parameter (K2P) distances and GC content were computed using MEGA 5. 0. Species identification analyses were conducted through the species identification system for traditional Chinese medicine and neighbor-joining (NJ) trees. RESULT: The ITS2 sequence lengths of Cynomorii Herba were 229 bp. The average intra-specific genetic distances of Cynomorii Herba were 0.003. The average inter-specific genetic distances between Cynomorii Herba and its adulterants species were 0.760. The results showed that the minimum inter-specific divergence is larger than the maximum intra-specific divergence. The species identification system for traditional Chinese medicine and NJ trees results indicated that Cynomorii Herba and its adulterants species can be easily identification. CONCLUSION: The ITS2 region is an efficient barcode for identification of Cynomorii Herba, which provide a new technique to ensure clinical safety in utilization of traditional Chinese medicine.


Subject(s)
Cynomorium/classification , Cynomorium/genetics , DNA Barcoding, Taxonomic , DNA, Intergenic/genetics , DNA, Plant/genetics , Polymerase Chain Reaction
4.
BMC Evol Biol ; 5: 38, 2005 Jun 21.
Article in English | MEDLINE | ID: mdl-15969755

ABSTRACT

BACKGROUND: Although recent molecular phylogenetic studies have identified the photosynthetic relatives of several enigmatic holoparasitic angiosperms, uncertainty remains for the last parasitic plant order, Balanophorales, often considered to include two families, Balanophoraceae and Cynomoriaceae. The nonphotosynthetic (holoparasitic) flowering plant Cynomorium coccineum has long been known to the Muslim world as "tarthuth" and to Europeans as the "Maltese mushroom"; C. songaricum is known in Chinese medicine as "suo yang." Interest in these plants is increasing and they are being extensively collected from wild populations for use in herbal medicines. RESULTS: Here we report molecular phylogenetic analyses of nuclear ribosomal DNA and mitochondrial matR sequence data that strongly support the independent origin of Balanophoraceae and Cynomoriaceae. Analyses of single gene and combined gene data sets place Cynomorium in Saxifragales, possibly near Crassulaceae (stonecrop family). Balanophoraceae appear related to Santalales (sandalwood order), a position previously suggested from morphological characters that are often assumed to be convergent. CONCLUSION: Our work shows that Cynomorium and Balanophoraceae are not closely related as indicated in all past and present classifications. Thus, morphological features, such as inflorescences bearing numerous highly reduced flowers, are convergent and were attained independently by these two holoparasite lineages. Given the widespread harvest of wild Cynomorium species for herbal medicines, we here raise conservation concerns and suggest that further molecular phylogenetic work is needed to identify its photosynthetic relatives. These relatives, which will be easier to cultivate, should then be examined for phytochemical activity purported to be present in the more sensitive Cynomorium.


Subject(s)
Cynomorium/physiology , Photosynthesis , Bayes Theorem , Botany/methods , Cynomorium/classification , DNA, Mitochondrial/genetics , DNA, Ribosomal/chemistry , Evolution, Molecular , Genome, Plant , Mitochondria/metabolism , Models, Statistical , Phylogeny , Plant Physiological Phenomena , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...