Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int Braz J Urol ; 48(6): 971-980, 2022.
Article in English | MEDLINE | ID: mdl-36173409

ABSTRACT

PURPOSE: This study aimed to assess the possible healing effect of combination treatment with a hydrogen sulfide (H2S) donor, sodium hydrosulfide (NaHS) plus tadalafil on partial bladder outlet obstruction (PBOO)-induced bladder dysfunction. MATERIALS AND METHODS: A total of 75 male Sprague-Dawley rats aged 10-wk and 300-350g were divided into five groups; control; PBOO; PBOO+NaHS (5.6mg/kg/day, i.p., 6-wk); PBOO+tadalafil (2mg/kg/day, oral, 6-wk) and PBOO+NaHS+tadalafil. PBOO was created by partial urethral ligation. 6 weeks after obstruction, the in vitro contractile responses of the detrusor muscle and Western blotting, H2S and malondialdehyde assay were performed in bladder tissues. RESULTS: There was an increase in bladder weight(p<0.001) and a decrease in contractile responses to KCL(p<0.001), carbachol(p<0.01), electrical field stimulation(p<0.05) and ATP (p<0.001) in the detrusor smooth muscle of obstructed rats which was normalized after the combination treatment. Cystathionine γ-lyase and cystathionine ß-synthase, and nuclear factor kappa B protein levels did not significantly differ among groups. The obstruction induced decrement in 3-mercaptopyruvate sulfur transferase protein expression(p<0.001) and H2S levels(p<0.01) as well as increment in protein expressions of neuronal nitric oxide synthase (NO, p<0.001), endothelial NOS (p<0.05), inducible NOS(p<0.001), hypoxia-inducible factor 1-alpha (p<0.01), and malondialdehyde levels (p<0.01), when combined treatment entirely normalized. CONCLUSIONS: Combination therapy has beneficial effects on bladder dysfunction via regulating both H2S and nitric oxide pathways as well as downregulation of oxidative stress and hypoxia. The synergistic effect of H2S and nitric oxide is likely to modulate bladder function, which supports the combined therapy for enhancing clinical outcomes in men with BPH/LUTS.


Subject(s)
Hydrogen Sulfide , Urinary Bladder Neck Obstruction , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Adenosine Triphosphate/therapeutic use , Animals , Carbachol/metabolism , Carbachol/pharmacology , Carbachol/therapeutic use , Cystathionine beta-Synthase/metabolism , Cystathionine beta-Synthase/pharmacology , Cystathionine beta-Synthase/therapeutic use , Cystathionine gamma-Lyase/metabolism , Cystathionine gamma-Lyase/pharmacology , Cystathionine gamma-Lyase/therapeutic use , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/therapeutic use , Hypoxia/drug therapy , Hypoxia/metabolism , Hypoxia-Inducible Factor 1/metabolism , Hypoxia-Inducible Factor 1/pharmacology , Hypoxia-Inducible Factor 1/therapeutic use , Male , Malondialdehyde , NF-kappa B/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type I/metabolism , Oxidative Stress , Rats , Rats, Sprague-Dawley , Sulfides , Sulfur/metabolism , Sulfur/pharmacology , Sulfur/therapeutic use , Tadalafil/pharmacology , Tadalafil/therapeutic use , Transferases/metabolism , Transferases/pharmacology , Transferases/therapeutic use , Urinary Bladder , Urinary Bladder Neck Obstruction/drug therapy
2.
Proc Natl Acad Sci U S A ; 117(23): 13000-13011, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32434918

ABSTRACT

Extensive studies in prostate cancer and other malignancies have revealed that l-methionine (l-Met) and its metabolites play a critical role in tumorigenesis. Preclinical and clinical studies have demonstrated that systemic restriction of serum l-Met, either via partial dietary restriction or with bacterial l-Met-degrading enzymes exerts potent antitumor effects. However, administration of bacterial l-Met-degrading enzymes has not proven practical for human therapy because of problems with immunogenicity. As the human genome does not encode l-Met-degrading enzymes, we engineered the human cystathionine-γ-lyase (hMGL-4.0) to catalyze the selective degradation of l-Met. At therapeutically relevant dosing, hMGL-4.0 reduces serum l-Met levels to >75% for >72 h and significantly inhibits the growth of multiple prostate cancer allografts/xenografts without weight loss or toxicity. We demonstrate that in vitro, hMGL-4.0 causes tumor cell death, associated with increased reactive oxygen species, S-adenosyl-methionine depletion, global hypomethylation, induction of autophagy, and robust poly(ADP-ribose) polymerase (PARP) cleavage indicative of DNA damage and apoptosis.


Subject(s)
Cystathionine gamma-Lyase/pharmacology , Methionine/antagonists & inhibitors , Mutagenesis, Site-Directed , Prostatic Neoplasms/drug therapy , Animals , Apoptosis/drug effects , Autophagy/drug effects , Cell Line, Tumor , Cystathionine gamma-Lyase/genetics , Cystathionine gamma-Lyase/isolation & purification , Cystathionine gamma-Lyase/therapeutic use , DNA Damage/drug effects , Enzyme Assays , Humans , Male , Methionine/blood , Methionine/metabolism , Mice , Poly(ADP-ribose) Polymerases/metabolism , Prostatic Neoplasms/blood , Reactive Oxygen Species/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Toxicity Tests, Acute , Xenograft Model Antitumor Assays
3.
ACS Chem Biol ; 7(11): 1822-9, 2012 Nov 16.
Article in English | MEDLINE | ID: mdl-22963240

ABSTRACT

It has been known for nearly a half century that human tumors, including those derived from the nervous system such as glioblastomas, medulloblastoma, and neuroblastomas are much more sensitive than normal tissues to l-methionine (l-Met) starvation. More recently, systemic l-Met depletion by administration of Pseudomonas putida methionine-γ-lyase (MGL) could effectively inhibit human tumors xenografted in mice. However, bacterial-derived MGLs are unstable in serum (t(1/2) = 1.9 ± 0.2 h) and highly immunogenic in primates. Since the human genome does not encode a human MGL enzyme, we created de novo a methionine degrading enzyme by reengineering the structurally homologous pyridoxal phosphate-dependent human enzyme cystathionine-γ-lyase (hCGL). hCGL degrades l-cystathionine but displays no promiscuous activity toward l-Met. Rational design and scanning saturation mutagenesis led to the generation of a variant containing three amino acid substitutions (hCGL-NLV) that degraded l-Met with a k(cat)/K(M) of 5.6 × 10(2) M(-1) s(-1) and displayed a serum deactivation t(1/2) = 78 ± 5 h (non-PEGylated). In vitro, the cytotoxicity of hCGL-NLV toward 14 neuroblastoma cell lines was essentially indistinguishable from that of the P. putida MGL. Intravenous administration of PEGylated hCGL-NLV in mice reduced serum l-Met from 123 µM to <5 µM for over 30 h. Importantly, treatment of neuroblastoma mouse xenografts with PEGylated hCGL-NLV resulted in near complete cessation of tumor growth. Since the mode of action of hCGL-NLV does not require breaching the blood-brain barrier, this enzyme may have potential application for sensitive tumors that arise from or metastasize to the central nervous system.


Subject(s)
Cystathionine gamma-Lyase/genetics , Cystathionine gamma-Lyase/therapeutic use , Methionine/metabolism , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Protein Engineering , Amino Acid Substitution , Animals , Carbon-Sulfur Lyases/metabolism , Carbon-Sulfur Lyases/therapeutic use , Cell Line, Tumor , Cystathionine gamma-Lyase/metabolism , Enzyme Therapy , Humans , Methionine/blood , Mice , Mice, Nude , Models, Molecular , Neuroblastoma/blood , Pseudomonas putida/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...