Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.018
Filter
1.
Mol Cancer ; 23(1): 116, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822351

ABSTRACT

BACKGROUND: Elevated evidence suggests that the SENPs family plays an important role in tumor progression. However, the role of SENPs in AML remains unclear. METHODS: We evaluated the expression pattern of SENP1 based on RNA sequencing data obtained from OHSU, TCGA, TARGET, and MILE datasets. Clinical samples were used to verify the expression of SENP1 in the AML cells. Lentiviral vectors shRNA and sgRNA were used to intervene in SENP1 expression in AML cells, and the effects of SENP1 on AML proliferation and anti-apoptosis were detected using in vitro and in vivo models. Chip-qPCR, MERIP-qPCR, CO-IP, RNA pulldown, and dual-luciferase reporter gene assays were used to explore the regulatory mechanisms of SNEP1 in AML. RESULTS: SENP1 was significantly upregulated in high-risk AML patients and closely related to poor prognosis. The AKT/mTOR signaling pathway is a key downstream pathway that mediates SENP1's regulation of AML proliferation and anti-apoptosis. Mechanistically, the CO-IP assay revealed binding between SENP1 and HDAC2. SUMO and Chip-qPCR assays suggested that SENP1 can desumoylate HDAC2, which enhances EGFR transcription and activates the AKT pathway. In addition, we found that IGF2BP3 expression was upregulated in high-risk AML patients and was positively correlated with SENP1 expression. MERIP-qPCR and RIP-qPCR showed that IGF2BP3 binds SENP1 3-UTR in an m6A manner, enhances SENP1 expression, and promotes AKT pathway conduction. CONCLUSIONS: Our findings reveal a distinct mechanism of SENP1-mediated HDAC2-AKT activation and establish the critical role of the IGF2BP3/SENP1signaling axis in AML development.


Subject(s)
Adenosine , Cell Proliferation , Cysteine Endopeptidases , Histone Deacetylase 2 , Leukemia, Myeloid, Acute , Proto-Oncogene Proteins c-akt , RNA-Binding Proteins , Sumoylation , Animals , Female , Humans , Male , Mice , Adenosine/analogs & derivatives , Adenosine/metabolism , Apoptosis , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Disease Progression , Gene Expression Regulation, Leukemic , Histone Deacetylase 2/metabolism , Histone Deacetylase 2/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Signal Transduction , Xenograft Model Antitumor Assays
2.
PLoS One ; 19(5): e0302692, 2024.
Article in English | MEDLINE | ID: mdl-38722893

ABSTRACT

Tobacco vein necrosis (TVN) is a complex phenomenon regulated by different genetic determinants mapped in the HC-Pro protein (amino acids N330, K391 and E410) and in two regions of potato virus Y (PVY) genome, corresponding to the cytoplasmic inclusion (CI) protein and the nuclear inclusion protein a-protease (NIa-Pro), respectively. A new determinant of TVN was discovered in the MK isolate of PVY which, although carried the HC-Pro determinants associated to TVN, did not induce TVN. The HC-Pro open reading frame (ORF) of the necrotic infectious clone PVY N605 was replaced with that of the non-necrotic MK isolate, which differed only by one amino acid at position 392 (T392 instead of I392). The cDNA clone N605_MKHCPro inoculated in tobacco induced only weak mosaics at the systemic level, demostrating that the amino acid at position 392 is a new determinant for TVN. No significant difference in accumulation in tobacco was observed between N605 and N605_MKHCPro. Since phylogenetic analyses showed that the loss of necrosis in tobacco has occurred several times independently during PVY evolution, these repeated evolutions strongly suggest that tobacco necrosis is a costly trait in PVY.


Subject(s)
Nicotiana , Phylogeny , Plant Diseases , Point Mutation , Potyvirus , Viral Proteins , Nicotiana/virology , Potyvirus/genetics , Potyvirus/pathogenicity , Plant Diseases/virology , Viral Proteins/genetics , Viral Proteins/metabolism , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Amino Acid Sequence , Necrosis , Molecular Sequence Data , Open Reading Frames/genetics
3.
Technol Cancer Res Treat ; 23: 15330338241257490, 2024.
Article in English | MEDLINE | ID: mdl-38803001

ABSTRACT

Objectives: This study aimed to investigate the effect of specific small ubiquitin-like modifier (SUMO) proteases 1 (SENP1)-mediated deSUMOylation on the malignant behavior of glioma stem cells (GSCs) under hypoxia conditions and evaluate the clinical value of prevention in glioma patients. Introductions: Under hypoxic conditions, upregulated hypoxia-inducible factor 1α (HIF1α) expression in GSCs activates Wnt/ß-catenin signaling pathways, which provide rich nutritional support for glioblastoma (GBM). SENP1-mediated deSUMOylation stabilizes the expression of HIF1α and ß-catenin, leading to the occurrence of GSCs-initiated tumorigenesis. Targeting SENP1-mediated deSUMOylation may suppress the malignancy of GSCs and disrupt GBM progression. Methods: The expression of SENP1 in different World Health Organization grades was observed by immunohistochemistry and western blot. Lentivirus-packaged SENP1shRNA downregulated the expression of SENP1 in GSCs, and the downregulated results were verified by western blotting and polymerase chain reaction. The effects of LV-SENP1shRNA on the migration and proliferation of GSCs were detected by scratch and cloning experiments. The effect of LV-SENP1shRNA on the tumor formation ability of GSCs was observed in nude mice. Immunoprecipitation clarified the mechanism of SENP1 regulating the malignant behavior of GSCs under hypoxia. The correlation between the expression level of SENP1 and the survival of glioma patients was determined by statistical analysis. Results: SENP1 expression in GSCs derived from clinical samples was upregulated in GBM. SUMOylation was observed in GSCs in vitro, and deSUMOylation, accompanied by an increase in SENP1 expression, was induced by hypoxia. SENP1 expression was downregulated in GSCs with lentivirus-mediated stable transfection, which attenuated the proliferation and differentiation of GSCs, thus diminishing tumorigenesis. Mechanistically, HIF1α induced activation of Wnt/ß-catenin, which depended on SENP1-mediated deSUMOylation, promoting GSC-driven GBM growth under the hypoxia microenvironment. Conclusion: Our findings indicate that SENP1-mediated deSUMOylation as a feature of GSCs is essential for GBM maintenance, suggesting that targeting SENP1 against GSCs may effectively improve GBM therapeutic efficacy.


Subject(s)
Cell Proliferation , Cysteine Endopeptidases , Glioma , Neoplastic Stem Cells , Sumoylation , Humans , Animals , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Mice , Glioma/pathology , Glioma/metabolism , Glioma/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Wnt Signaling Pathway , Female , Male , Cell Movement/genetics , Mice, Nude , Cell Hypoxia , Xenograft Model Antitumor Assays
4.
Proc Natl Acad Sci U S A ; 121(22): e2314619121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38776375

ABSTRACT

Humoral immunity depends on the germinal center (GC) reaction where B cells are tightly controlled for class-switch recombination and somatic hypermutation and finally generated into plasma and memory B cells. However, how protein SUMOylation regulates the process of the GC reaction remains largely unknown. Here, we show that the expression of SUMO-specific protease 1 (SENP1) is up-regulated in GC B cells. Selective ablation of SENP1 in GC B cells results in impaired GC dark and light zone organization and reduced IgG1-switched GC B cells, leading to diminished production of class-switched antibodies with high-affinity in response to a TD antigen challenge. Mechanistically, SENP1 directly binds to Paired box protein 5 (PAX5) to mediate PAX5 deSUMOylation, sustaining PAX5 protein stability to promote the transcription of activation-induced cytidine deaminase. In summary, our study uncovers SUMOylation as an important posttranslational mechanism regulating GC B cell response.


Subject(s)
B-Lymphocytes , Cysteine Endopeptidases , Germinal Center , PAX5 Transcription Factor , Sumoylation , Germinal Center/immunology , Germinal Center/metabolism , PAX5 Transcription Factor/metabolism , PAX5 Transcription Factor/genetics , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Mice , Immunoglobulin Class Switching , Humans , Cytidine Deaminase/metabolism , Cytidine Deaminase/genetics , Immunity, Humoral , Mice, Inbred C57BL
5.
Microb Pathog ; 191: 106673, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705218

ABSTRACT

The Seneca Valley virus (SVV) is a recently discovered porcine pathogen that causes vesicular diseases and poses a significant threat to the pig industry worldwide. Erythropoietin-producing hepatoma receptor A2 (EphA2) is involved in the activation of the AKT/mTOR signaling pathway, which is involved in autophagy. However, the regulatory relationship between SVV and EphA2 remains unclear. In this study, we demonstrated that EphA2 is proteolysed in SVV-infected BHK-21 and PK-15 cells. Overexpression of EphA2 significantly inhibited SVV replication, as evidenced by decreased viral protein expression, viral titers, and viral load, suggesting an antiviral function of EphA2. Subsequently, viral proteins involved in the proteolysis of EphA2 were screened, and the SVV 3C protease (3Cpro) was found to be responsible for this cleavage, depending on its protease activity. However, the protease activity sites of 3Cpro did not affect the interactions between 3Cpro and EphA2. We further determined that EphA2 overexpression inhibited autophagy by activating the mTOR pathway and suppressing SVV replication. Taken together, these results indicate that SVV 3Cpro targets EphA2 for cleavage to impair its EphA2-mediated antiviral activity and emphasize the potential of the molecular interactions involved in developing antiviral strategies against SVV infection.


Subject(s)
3C Viral Proteases , Autophagy , Picornaviridae , Receptor, EphA2 , Signal Transduction , TOR Serine-Threonine Kinases , Viral Proteins , Virus Replication , Animals , Receptor, EphA2/metabolism , Receptor, EphA2/genetics , TOR Serine-Threonine Kinases/metabolism , Cell Line , Swine , Picornaviridae/physiology , Picornaviridae/genetics , 3C Viral Proteases/metabolism , Viral Proteins/metabolism , Viral Proteins/genetics , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Proteolysis , Cricetinae , Host-Pathogen Interactions , Viral Load
6.
Adv Sci (Weinh) ; 11(21): e2305605, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581131

ABSTRACT

Wild-type sortase A is an important virulence factor displaying a diverse array of proteins on the surface of bacteria. This protein display relies on the transpeptidase activity of sortase A, which is widely engineered to allow protein ligation and protein engineering based on the interaction between sortase A and peptides. Here an unknown interaction is found between sortase A from Staphylococcus aureus and nucleic acids, in which exogenously expressed engineered sortase A binds oligonucleotides in vitro and is independent of its canonical transpeptidase activity. When incubated with mammalian cells, engineered sortase A further mediates oligonucleotide labeling to the cell surface, where sortase A attaches itself and is part of the labeled moiety. The labeling reaction can also be mediated by many classes of wild-type sortases as well. Cell surface GAG appears involved in sortase-mediated oligonucleotide cell labeling, as demonstrated by CRISPR screening. This interaction property is utilized to develop a technique called CellID to facilitate sample multiplexing for scRNA-seq and shows the potential of using sortases to label cells with diverse oligonucleotides. Together, the binding between sortase A and nucleic acids opens a new avenue to understanding the virulence of wild-type sortases and exploring the application of sortases in biotechnology.


Subject(s)
Aminoacyltransferases , Bacterial Proteins , Cysteine Endopeptidases , Nucleic Acids , Staphylococcus aureus , Aminoacyltransferases/metabolism , Aminoacyltransferases/genetics , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Staphylococcus aureus/genetics , Staphylococcus aureus/enzymology , Staphylococcus aureus/metabolism , Nucleic Acids/metabolism , Humans , Animals , Staining and Labeling/methods
7.
J Microbiol Methods ; 221: 106928, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583783

ABSTRACT

The bicistronic expression system that utilizes fluorescent reporters has been demonstrated to be a straightforward method for detecting recombinant protein expression levels, particularly when compared to polyacrylamide gel electrophoresis and immunoblot analysis, which are tedious and labor-intensive. However, existing bicistronic reporter systems are less capable of quantitative measurement due to the lag in reporter expression and its negative impact on target protein. In this work, a plug and play bicistronic construct using mCherry as reporter was applied in the screening of optimal replicon and promoter for Sortase expression in Escherichia coli (E. coli). The bicistronic construct allowed the reporter gene and target open reading frame (ORF) to be co-transcribed under the same promoter, resulting in a highly positive quantitative correlation between the expression titer of Sortase and the fluorescent intensity (R2 > 0.97). With the correlation model, the titer of target protein can be quantified by noninvasively measuring the fluorescent intensity. On top of this, the expression of reporter has no significant effect on the yield of target protein, thus favoring a plug and play design for removing reporter gene to generate a plain plasmid for industrial use.


Subject(s)
Escherichia coli , Genes, Reporter , Luminescent Proteins , Plasmids , Promoter Regions, Genetic , Recombinant Proteins , Escherichia coli/genetics , Escherichia coli/metabolism , Luminescent Proteins/genetics , Plasmids/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Red Fluorescent Protein , Open Reading Frames , Gene Expression , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Genetic Vectors , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Gene Expression Regulation, Bacterial , Replicon/genetics
8.
Virology ; 595: 110070, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657363

ABSTRACT

Foot-and-mouth disease is a highly contagious and infectious disease affecting cloven-hoofed animals. Disease control is complicated by its highly contagious nature and antigenic diversity. Host microRNAs (miRNAs) are post-transcriptional regulators that either promote or repress viral replications in virus infection. In the present study, we found that ssc-miR-7139-3p (Sus scrofa miR-7139-3p) was significantly up-regulated in host cells during foot-and-mouth disease virus (FMDV) infection. Overexpression of miR-7139-3p attenuated FMDV replication, whereas inhibition promoted FMDV replication. In addition, the survival rate of FMDV infected suckling mice was increased through injection of miR-7139-3p agomiR. Further studies revealed that miR-7139-3p targets Bcl-2 to initiate the apoptotic pathway and caspase-3 cleaved 3Cpro behind the 174th aspartic acid (D174), which eventually promotes the degradation of 3Cpro. Overall, our findings demonstrate that miR-7139-3p suppresses FMDV replication by promoting degradation of 3Cpro through targeting the apoptosis-negative regulatory gene Bcl-2.


Subject(s)
Apoptosis , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , MicroRNAs , Proto-Oncogene Proteins c-bcl-2 , Virus Replication , Animals , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/physiology , MicroRNAs/genetics , MicroRNAs/metabolism , Foot-and-Mouth Disease/virology , Mice , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Swine , Viral Proteins/genetics , Viral Proteins/metabolism , 3C Viral Proteases/metabolism , Cell Line , Sus scrofa , Host-Pathogen Interactions , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Proteolysis , Caspase 3/metabolism , Caspase 3/genetics
9.
J Cell Sci ; 137(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38682259

ABSTRACT

SARS-CoV-2 interferes with antigen presentation by downregulating major histocompatibility complex (MHC) II on antigen-presenting cells, but the mechanism mediating this process is unelucidated. Herein, analysis of protein and gene expression in human antigen-presenting cells reveals that MHC II is downregulated by the SARS-CoV-2 main protease, NSP5. This suppression of MHC II expression occurs via decreased expression of the MHC II regulatory protein CIITA. CIITA downregulation is independent of the proteolytic activity of NSP5, and rather, NSP5 delivers HDAC2 to the transcription factor IRF3 at an IRF-binding site within the CIITA promoter. Here, HDAC2 deacetylates and inactivates the CIITA promoter. This loss of CIITA expression prevents further expression of MHC II, with this suppression alleviated by ectopic expression of CIITA or knockdown of HDAC2. These results identify a mechanism by which SARS-CoV-2 limits MHC II expression, thereby delaying or weakening the subsequent adaptive immune response.


Subject(s)
Histocompatibility Antigens Class II , Histone Deacetylase 2 , Nuclear Proteins , Promoter Regions, Genetic , SARS-CoV-2 , Trans-Activators , Humans , Histone Deacetylase 2/metabolism , Histone Deacetylase 2/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/immunology , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/genetics , Trans-Activators/metabolism , Trans-Activators/genetics , Promoter Regions, Genetic/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , COVID-19/virology , COVID-19/immunology , COVID-19/genetics , COVID-19/metabolism , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Antigen-Presenting Cells/metabolism , Antigen-Presenting Cells/immunology , HEK293 Cells , Down-Regulation/genetics , Antigen Presentation/genetics , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics
10.
Virus Res ; 344: 199369, 2024 06.
Article in English | MEDLINE | ID: mdl-38608732

ABSTRACT

Tobacco (Nicotiana tabacum) is one of the major cash crops in China. Potato virus Y (PVY), a representative member of the genus Potyvirus, greatly reduces the quality and yield of tobacco leaves by inducing veinal necrosis. Mild strain-mediated cross-protection is an attractive method of controlling diseases caused by PVY. Currently, there is a lack of effective and stable attenuated PVY mutants. Potyviral helper component-protease (HC-Pro) is a likely target for the development of mild strains. Our previous studies showed that the residues lysine at positions 124 and 182 (K124 and K182) in HC-Pro were involved in PVY virulence, and the conserved KITC motif in HC-Pro was involved in aphid transmission. In this study, to improve the stability of PVY mild strains, K at position 50 (K50) in KITC motif, K124, and K182 were separately substituted with glutamic acid (E), leucine (L), and arginine (R), resulting in a triple-mutant PVY-HCELR. The mutant PVY-HCELR had attenuated virulence and did not induce leaf veinal necrosis symptoms in tobacco plants and could not be transmitted by Myzus persicae. Furthermore, PVY-HCELR mutant was genetically stable after six serial passages, and only caused mild mosaic symptoms in tobacco plants even at 90 days post inoculation. The tobacco plants cross-protected by PVY-HCELR mutant showed high resistance to the wild-type PVY. This study showed that PVY-HCELR mutant was a promising mild mutant for cross-protection to control PVY.


Subject(s)
Cross Protection , Mutation , Nicotiana , Plant Diseases , Potyvirus , Viral Proteins , Potyvirus/genetics , Potyvirus/pathogenicity , Potyvirus/enzymology , Nicotiana/virology , Plant Diseases/virology , Viral Proteins/genetics , Viral Proteins/metabolism , Virulence , Animals , Aphids/virology , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Plant Leaves/virology , China
11.
Oncogene ; 43(21): 1581-1593, 2024 May.
Article in English | MEDLINE | ID: mdl-38565942

ABSTRACT

Deubiquitinating enzymes (DUBs) are promising targets for cancer therapy because of their pivotal roles in various physiological and pathological processes. Among these, ubiquitin-specific peptidase 26 (USP26) is a protease with crucial regulatory functions. Our study sheds light on the upregulation of USP26 in colorectal cancer (CRC), in which its increased expression correlates with an unfavorable prognosis. Herein, we evidenced the role of USP26 in promoting CRC tumorigenesis in a parkin RBR E3 ubiquitin-protein ligase (PRKN) protein-dependent manner. Our investigation revealed that USP26 directly interacted with PRKN protein, facilitating its deubiquitination, and subsequently reducing its activity. Additionally, we identified the K129 site on PRKN as a specific target for USP26-mediated deubiquitination. Our research highlights that a K-to-R mutation at the site on PRKN diminishes its potential for activation and ability to mediate mitophagy. In summary, our findings underscore the significance of USP26-mediated deubiquitination in restraining the activation of the PRKN-mediated mitophagy pathway, ultimately driving CRC tumorigenesis. This study not only elucidated the multifaceted role of USP26 in CRC but also introduced a promising avenue for therapeutic exploration through the development of small molecule inhibitors targeting USP26. This strategy holds promise as a novel therapeutic approach for CRC.


Subject(s)
Carcinogenesis , Colorectal Neoplasms , Mitophagy , Ubiquitin-Protein Ligases , Ubiquitination , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Humans , Mitophagy/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Mice , Cell Line, Tumor , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Mice, Nude , Gene Expression Regulation, Neoplastic
12.
Viruses ; 16(3)2024 02 22.
Article in English | MEDLINE | ID: mdl-38543704

ABSTRACT

The continuous emergence of SARS-CoV-2 variants caused the persistence of the COVID-19 epidemic and challenged the effectiveness of the existing vaccines. The viral proteases are the most attractive targets for developing antiviral drugs. In this scenario, our study explores the use of HIV-1 protease inhibitors against SARS-CoV-2. An in silico screening of a library of HIV-1 proteases identified four anti-HIV compounds able to interact with the 3CLpro of SARS-CoV-2. Thus, in vitro studies were designed to evaluate their potential antiviral effectiveness against SARS-CoV-2. We employed pseudovirus technology to simulate, in a highly safe manner, the adsorption of the alpha (α-SARS-CoV-2) and omicron (ο-SARS-CoV-2) variants of SARS-CoV-2 and study the inhibitory mechanism of the selected compounds for cell-virus interaction. The results reported a mild activity against the viral proteases 3CLpro and PLpro, but efficient inhibitory effects on the internalization of both variants mediated by cathepsin B/L. Our findings provide insights into the feasibility of using drugs exhibiting antiviral effects for other viruses against the viral and host SARS-CoV-2 proteases required for entry.


Subject(s)
COVID-19 , Cysteine Proteases , Humans , SARS-CoV-2/genetics , Protease Inhibitors/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cysteine Endopeptidases/genetics , Viral Proteases , Molecular Docking Simulation
13.
Oncogene ; 43(14): 1050-1062, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38374407

ABSTRACT

In a previous study, we discovered that the level of lnc-TSPAN12 was significantly elevated in hepatocellular carcinoma (HCC) and correlated with a low survival rate. However, the function and mechanism of lnc-TSPAN12 in modulating epithelial-mesenchymal transition (EMT) and metastasis in HCC remains poorly understood. This study demonstrates that lnc-TSPAN12 positively influences migration, invasion, and EMT of HCC cells in vitro and promotes hepatic metastasis in vivo. The modification of N6-methyladenosine, driven by METTL3, is essential for the stability of lnc-TSPAN12, which may partially contribute to the upregulation of lnc-TSPAN12. Mechanistically, lnc-TSPAN12 exhibits direct interactions with EIF3I and SENP1, acting as a scaffold to enhance the SENP1-EIF3I interaction. As a result, the SUMOylation of EIF3I is inhibited, preventing its ubiquitin-mediated degradation. Ultimately, this activates the Wnt/ß-catenin signaling pathway, stimulating EMT and metastasis in HCC. Our findings shed light on the regulatory mechanism of lnc-TSPAN12 in HCC metastasis and identify the lnc-TSPAN12-EIF3I/SENP1 axis as a novel therapeutic target for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Long Noncoding , Tetraspanins , Humans , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Epithelial-Mesenchymal Transition , Eukaryotic Initiation Factor-3/genetics , Eukaryotic Initiation Factor-3/metabolism , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , Methyltransferases/genetics , Methyltransferases/metabolism , RNA, Long Noncoding/genetics , Wnt Signaling Pathway
14.
Funct Integr Genomics ; 24(2): 40, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38383667

ABSTRACT

As a common malignant tumor, esophageal squamous cell carcinoma (ESCC) is occasionally seen in clinical practice. This type of disease has low incidence rate and mortality. The post-translational modification of small ubiquitin like modifiers (SUMO) can play a crucial role in regulating protein function, and can significantly impact the occurrence and development of diseases. SUMO-specific peptidase (SENP) affects cell activity by regulating the biological function of SUMO. SENP3 belongs to the SENP family, and available data indicate that many malignancies are associated with SENPs, it is currently unclear its role in ESCC. This study indicates that there is a high level of SENP3 expression in ESCC tumor cells. If the expression level of this gene is high, it can have a significant impact on ESCC cell lines and affect physiological activities such as invasion of KYSE170 cells. If the gene is knocked out, this situation will not occur. There is also research data indicating that this gene can effectively activate related signaling pathways, thereby promoting the physiological activities of malignant tumor cells. In a nude mouse xenograft tumor model, KYSE170 cells with SENP3 expression knockdown induced a smaller volume and weight of tumor tissue. Therefore, it can be clearly stated that SENP3 can enable Wnt/ ß- The catenin signaling pathway is stimulated, which in turn affects the physiological activities of ESCC cells, including the invasion process. The results of this article lay the foundation for clinical staff to carry out clinical management.


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Animals , Humans , Mice , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Gene Expression Regulation, Neoplastic , Wnt Signaling Pathway/genetics
15.
Discov Med ; 36(181): 355-365, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38409840

ABSTRACT

BACKGROUND: Arg-gingipain A (rgpA) and Arg-gingipain B (rgpB) are crucial virulence factors associated with Porphyromonas gingivalis (P. gingivalis) and have been recognized as promising targets for antibacterial vaccines. Although vaccines containing rgpA have shown efficacy, the incorporation of rgpB, which lacks the haemagglutinin adhesin (HA) domain, diminishes the vaccine's effectiveness. This study aims to assess the immunogenicity of the functional HA domain of rgpA in mouse periodontitis models. METHODS: A total of 24 mice were randomly divided into four groups, each receiving different immune injections: group A received phosphate-buffered saline (PBS) as an empty control; group B received pVAX1 as a negative control (NC); group C received pVAX1-HA; and group D received pVAX1-rgpA. The mice were subjected to intramuscular injections every two weeks for a total of three administrations. Prior to each immunization, blood samples were collected for antibody detection under isoflurane anesthesia. Following the final immunization, periodontitis was induced two weeks later by using sutures soaked in a P. gingivalis solution. The mice were euthanized after an additional two-week period. To assess the safety of the procedure, major organs were examined through hematoxylin-eosin (HE) staining. Subsequently, the levels of IgG, IgG1, and IgG2a in the serum were quantified via enzyme-linked immunosorbent assay (ELISA). Additionally, the expression of inflammatory factors in the gingiva, including interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor alpha (TNF-α), was determined using quantitative real-time reverse transcript PCR (qRT-PCR). The extent of bone loss in periodontal tissues was evaluated using micro-computed tomography (micro-CT) and HE staining. RESULTS: HE staining of the organs confirmed the absence of vaccine-induced toxicity in vivo. After the second immunization, both the rgpA and HA groups displayed significantly higher specific IgG titers in comparison to the NC and PBS groups (p < 0.05). Furthermore, the rgpA and HA groups exhibited a noteworthy predominance of IgG1 antibodies after three immunization doses, while there was a noticeable reduction in IgG2a levels observed following ligation with P. gingivalis sutures, as opposed to the NC and PBS groups (p < 0.05). Additionally, both the HA and rgpA groups showed a significant decrease in the expression of inflammatory factors such as IL-6, IL-1ß, and TNF-α, as well as a reduction in bone loss around periodontitis-affected teeth, when compared to the NC and PBS groups (p < 0.05). CONCLUSIONS: The results of this study demonstrate that the rgpA-engineered/functionalized HA gene vaccine is capable of eliciting a potent prophylactic immune response against P. gingivalis-induced periodontitis, effectively serving as an immunogenic and protective agent in vivo.


Subject(s)
Periodontitis , Vaccines, DNA , Mice , Animals , Gingipain Cysteine Endopeptidases , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Vaccines, DNA/therapeutic use , Porphyromonas gingivalis/genetics , Interleukin-6 , Tumor Necrosis Factor-alpha , X-Ray Microtomography , Adhesins, Bacterial , Vaccination , Periodontitis/prevention & control , Immunoglobulin G
16.
Nat Commun ; 15(1): 334, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38184650

ABSTRACT

Pancreatic ß-cells respond to metabolic stress by upregulating insulin secretion, however the underlying mechanisms remain unclear. Here we show, in ß-cells from overweight humans without diabetes and mice fed a high-fat diet for 2 days, insulin exocytosis and secretion are enhanced without increased Ca2+ influx. RNA-seq of sorted ß-cells suggests altered metabolic pathways early following high fat diet, where we find increased basal oxygen consumption and proton leak, but a more reduced cytosolic redox state. Increased ß-cell exocytosis after 2-day high fat diet is dependent on this reduced intracellular redox state and requires the sentrin-specific SUMO-protease-1. Mice with either pancreas- or ß-cell-specific deletion of this fail to up-regulate exocytosis and become rapidly glucose intolerant after 2-day high fat diet. Mechanistically, redox-sensing by the SUMO-protease requires a thiol group at C535 which together with Zn+-binding suppresses basal protease activity and unrestrained ß-cell exocytosis, and increases enzyme sensitivity to regulation by redox signals.


Subject(s)
Diet, High-Fat , Exocytosis , Animals , Humans , Mice , Cysteine Endopeptidases/genetics , Cytosol , Diet, High-Fat/adverse effects , Glucose , Peptide Hydrolases
17.
Oncol Rep ; 51(2)2024 02.
Article in English | MEDLINE | ID: mdl-38186303

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is currently one of the most common malignancies with a poor prognosis worldwide. Meanwhile, small ubiquitin­like modifier (SUMO) specific peptidase 1 (SENP1) was associated with ferroptosis. However, the specific functions and underlying mechanisms of action of SENP1 in ferroptosis and tumor progression of HNSCC remain to be established. The findings of the present study implicated a novel ferroptosis pathway in the initiation and progression of HNSCC, providing new functional targets to guide future therapy. In the present study, The Cancer Genome Atlas database was employed to establish a gene model related to ferroptosis and verified SENP1 as a key gene via transcriptome sequencing. Expression of SENP1 in HNSCC tissue and CAL­27 cells was detected based on reverse transcription­quantitative PCR and western blot analysis. Proliferation and migration abilities of cells were determined using Cell Counting Kit­8, wound healing and Transwell experiments. Expression levels of iron, glutathione (GSH) and lipid peroxidation end­product malondialdehyde (MDA) under conditions of silencing of SENP1 with shRNA lentivirus were assayed. Additionally, the relationship between SENP1 and long­chain acyl­coenzyme A synthase 4 (ACSL4) was validated with the aid of immunoblotting and co­immunoprecipitation (co­IP). Finally, the influence of shSENP1 on the expression of key ferroptosis proteins, glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11, was evaluated via western blotting. It was revealed that SENP1 was significantly overexpressed in HNSCC and associated with low patient survival. Silencing of SENP1 led to significant suppression of cell proliferation, migration and invasion, increase in the contents of iron ions and MDA and decline in GSH levels in HNSCC cells, thereby enhancing ferroptosis and inhibiting disease progression. Conversely, overexpression of SENP1 suppressed ferroptosis and promoted progression of HNSCC. Co­IP and western blot analyses revealed a SUMOylation link between SENP1 and ACSL4. SENP1 reduced the stability of ACSL4 protein through deSUMOylation, leading to inhibition of ferroptosis. SENP1 silencing further inhibited the expression of the key iron death protein, GPX4, to regulate ferroptosis. Taken together, SENP1 deficiency promoted ferroptosis and inhibited tumor progression through reduction of SUMOylation of ACSL4 in HNSCC. The collective results of the present study supported the utility of SENP1 as an effective predictive biomarker for targeted treatment of HNSCC.


Subject(s)
Ferroptosis , Head and Neck Neoplasms , Humans , Cysteine Endopeptidases/genetics , Ferroptosis/genetics , Head and Neck Neoplasms/genetics , Iron , Protein Stability , Squamous Cell Carcinoma of Head and Neck/genetics , SUMO-1 Protein/genetics
18.
Curr Med Sci ; 44(1): 134-143, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38273178

ABSTRACT

OBJECTIVE: SUMO-specific protease 3 (SENP3), a member of the SUMO-specific protease family, reverses the SUMOylation of SUMO-2/3 conjugates. Dysregulation of SENP3 has been proven to be involved in the development of various tumors. However, its role in mantle cell lymphoma (MCL), a highly aggressive lymphoma, remains unclear. This study was aimed to elucidate the effect of SENP3 in MCL. METHODS: The expression of SENP3 in MCL cells and tissue samples was detected by RT-qPCR, Western blotting or immunohistochemistry. MCL cells with stable SENP3 knockdown were constructed using short hairpin RNAs. Cell proliferation was assessed by CCK-8 assay, and cell apoptosis was determined by flow cytometry. mRNA sequencing (mRNA-seq) was used to investigate the underlying mechanism of SENP3 knockdown on MCL development. A xenograft nude mouse model was established to evaluate the effect of SENP3 on MCL growth in vivo. RESULTS: SENP3 was upregulated in MCL patient samples and cells. Knockdown of SENP3 in MCL cells inhibited cell proliferation and promoted cell apoptosis. Meanwhile, the canonical Wnt signaling pathway and the expression of Wnt10a were suppressed after SENP3 knockdown. Furthermore, the growth of MCL cells in vivo was significantly inhibited after SENP3 knockdown in a xenograft nude mouse model. CONCLUSION: SENP3 participants in the development of MCL and may serve as a therapeutic target for MCL.


Subject(s)
Lymphoma, Mantle-Cell , Adult , Animals , Humans , Mice , Apoptosis/genetics , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Disease Models, Animal , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/pathology , Mice, Nude , Nerve Tissue Proteins , Peptide Hydrolases/therapeutic use , RNA, Messenger , Wnt Proteins/therapeutic use
19.
RNA ; 30(2): 124-135, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38071477

ABSTRACT

The hydrogen peroxide-induced small RNA OxyS has been proposed to originate from the 3' UTR of a peroxide mRNA. Unexpectedly, phylogenetic OxyS targetome predictions indicate that most OxyS targets belong to the category of "cell cycle," including cell division and cell elongation. Previously, we reported that Escherichia coli OxyS inhibits cell division by repressing expression of the essential transcription termination factor nusG, thereby leading to the expression of the KilR protein, which interferes with the function of the major cell division protein, FtsZ. By interfering with cell division, OxyS brings about cell-cycle arrest, thus allowing DNA damage repair. Cell division and cell elongation are opposing functions to the extent that inhibition of cell division requires a parallel inhibition of cell elongation for the cells to survive. In this study, we report that in addition to cell division, OxyS inhibits mepS, which encodes an essential peptidoglycan endopeptidase that is responsible for cell elongation. Our study indicates that cell-cycle arrest and balancing between cell division and cell elongation are important and conserved functions of the oxidative stress-induced sRNA OxyS.


Subject(s)
Escherichia coli Proteins , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Phylogeny , Transcription Factors/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Cell Division/genetics , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , Bacterial Proteins/metabolism , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism
20.
Protein Sci ; 33(1): e4857, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38058248

ABSTRACT

The 3C-like protease (3CLpro ) is crucial to the replication of SARS-CoV-2, the causative agent of COVID-19, and is the target of several successful drugs including Paxlovid and Xocova. Nevertheless, the emergence of viral resistance underlines the need for alternative drug strategies. 3CLpro only functions as a homodimer, making the protein-protein interface an attractive drug target. Dimerization is partly mediated by a conserved glycine at position 11. However, some naturally occurring SARS-CoV-2 sequences contain a serine at this position, potentially disrupting the dimer. We have used concentration-dependent activity assays and mass spectrometry to show that indeed the G11S mutation reduces the stability of the dimer by 600-fold. This helps to set a quantitative benchmark for the minimum potency required of any future protein-protein interaction inhibitors targeting 3CLpro and raises interesting questions regarding how coronaviruses bearing such weakly dimerizing 3CLpro enzymes are capable of replication.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Peptide Hydrolases/genetics , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/genetics , Mutation , Antiviral Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...