Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.545
Filter
1.
Cell Rep Med ; 5(5): 101544, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38697102

ABSTRACT

Prime editing is a recent, CRISPR-derived genome editing technology capable of introducing precise nucleotide substitutions, insertions, and deletions. Here, we present prime editing approaches to correct L227R- and N1303K-CFTR, two mutations that cause cystic fibrosis and are not eligible for current market-approved modulator therapies. We show that, upon DNA correction of the CFTR gene, the complex glycosylation, localization, and, most importantly, function of the CFTR protein are restored in HEK293T and 16HBE cell lines. These findings were subsequently validated in patient-derived rectal organoids and human nasal epithelial cells. Through analysis of predicted and experimentally identified candidate off-target sites in primary stem cells, we confirm previous reports on the high prime editor (PE) specificity and its potential for a curative CF gene editing therapy. To facilitate future screening of genetic strategies in a translational CF model, a machine learning algorithm was developed for dynamic quantification of CFTR function in organoids (DETECTOR: "detection of targeted editing of CFTR in organoids").


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Epithelial Cells , Gene Editing , Mutation , Organoids , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis/pathology , Cystic Fibrosis/metabolism , Organoids/metabolism , Gene Editing/methods , Epithelial Cells/metabolism , Mutation/genetics , HEK293 Cells , CRISPR-Cas Systems/genetics
2.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L574-L588, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38440830

ABSTRACT

Although tobramycin increases lung function in people with cystic fibrosis (pwCF), the density of Pseudomonas aeruginosa (P. aeruginosa) in the lungs is only modestly reduced by tobramycin; hence, the mechanism whereby tobramycin improves lung function is not completely understood. Here, we demonstrate that tobramycin increases 5' tRNA-fMet halves in outer membrane vesicles (OMVs) secreted by laboratory and CF clinical isolates of P. aeruginosa. The 5' tRNA-fMet halves are transferred from OMVs into primary CF human bronchial epithelial cells (CF-HBEC), decreasing OMV-induced IL-8 and IP-10 secretion. In mouse lungs, increased expression of the 5' tRNA-fMet halves in OMVs attenuated KC (murine homolog of IL-8) secretion and neutrophil recruitment. Furthermore, there was less IL-8 and neutrophils in bronchoalveolar lavage fluid isolated from pwCF during the period of exposure to tobramycin versus the period off tobramycin. In conclusion, we have shown in mice and in vitro studies on CF-HBEC that tobramycin reduces inflammation by increasing 5' tRNA-fMet halves in OMVs that are delivered to CF-HBEC and reduce IL-8 and neutrophilic airway inflammation. This effect is predicted to improve lung function in pwCF receiving tobramycin for P. aeruginosa infection.NEW & NOTEWORTHY The experiments in this report identify a novel mechanism, whereby tobramycin reduces inflammation in two models of CF. Tobramycin increased the secretion of tRNA-fMet halves in OMVs secreted by P. aeruginosa, which reduced the OMV-LPS-induced inflammatory response in primary cultures of CF-HBEC and in mouse lung, an effect predicted to reduce lung damage in pwCF.


Subject(s)
Cystic Fibrosis , Pseudomonas Infections , Pseudomonas aeruginosa , Tobramycin , Cystic Fibrosis/microbiology , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis/drug therapy , Animals , Tobramycin/pharmacology , Humans , Pseudomonas Infections/metabolism , Pseudomonas Infections/microbiology , Pseudomonas Infections/drug therapy , Pseudomonas Infections/pathology , Mice , Mice, Inbred C57BL , Interleukin-8/metabolism , Pneumonia/metabolism , Pneumonia/pathology , Pneumonia/microbiology , Lung/pathology , Lung/metabolism , Lung/microbiology , Lung/drug effects , Neutrophils/metabolism , Neutrophils/drug effects , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Bronchoalveolar Lavage Fluid
3.
Biomaterials ; 308: 122546, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38552367

ABSTRACT

Patients with cystic fibrosis (CF) experience severe lung disease, including persistent infections, inflammation, and irreversible fibrotic remodeling of the airways. Although therapy with transmembrane conductance regulator (CFTR) protein modulators reached optimal results in terms of CFTR rescue, lung transplant remains the best line of care for patients in an advanced stage of CF. Indeed, chronic inflammation and tissue remodeling still represent stumbling blocks during treatment, and underlying mechanisms are still unclear. Nowadays, animal models are not able to fully replicate clinical features of the human disease and the conventional in vitro models lack a stromal compartment undergoing fibrotic remodeling. To address this gap, we show the development of a 3D full-thickness model of CF with a human bronchial epithelium differentiated on a connective airway tissue. We demonstrated that the epithelial cells not only underwent mucociliary differentiation but also migrated in the connective tissue and formed gland-like structures. The presence of the connective tissue stimulated the pro-inflammatory behaviour of the epithelium, which activated the fibroblasts embedded into their own extracellular matrix (ECM). By varying the composition of the model with CF epithelial cells and a CF or healthy connective tissue, it was possible to replicate different moments of CF disease, as demonstrated by the differences in the transcriptome of the CF epithelium in the different conditions. The possibility to faithfully represent the crosstalk between epithelial and connective in CF through the full thickness model, along with inflammation and stromal activation, makes the model suitable to better understand mechanisms of disease genesis, progression, and response to therapy.


Subject(s)
Connective Tissue , Cystic Fibrosis , Epithelial Cells , Humans , Cystic Fibrosis/pathology , Cystic Fibrosis/metabolism , Connective Tissue/pathology , Connective Tissue/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Extracellular Matrix/metabolism , Cell Differentiation , Models, Biological , Fibroblasts/metabolism
4.
Life Sci Alliance ; 7(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38336456

ABSTRACT

Defective hydration of airway surface mucosa is associated with lung infection in cystic fibrosis (CF), partly caused by disruption of the epithelial barrier integrity. Although rehydration of the CF airway surface liquid (ASL) alleviates epithelium vulnerability to infection by junctional protein expression, the mechanisms linking ASL to barrier integrity are unknown. We show here the strong degradation of YAP1 and TAZ proteins in well-polarized CF human airway epithelial cells (HAECs), a process that was prevented by ASL rehydration. Conditional silencing of YAP1 in rehydrated CF HAECs indicated that YAP1 expression was necessary for the maintenance of junctional complexes. A higher plasma membrane tension in CF HAECs reduced endocytosis, concurrent with the maintenance of active ß1-integrin ectopically located at the apical membrane. Pharmacological inhibition of ß1-integrin accumulation restored YAP1 expression in CF HAECs. These results indicate that dehydration of the CF ASL affects epithelial plasma membrane tension, resulting in ectopic activation of a ß1-integrin/YAP1 signaling pathway associated with degradation of junctional proteins.


Subject(s)
Cystic Fibrosis , Epithelium , Signal Transduction , Humans , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Dehydration/metabolism , Epithelium/metabolism , Epithelium/pathology , Integrin beta1/metabolism , Respiratory Mucosa/metabolism
5.
Mol Genet Genomic Med ; 12(1): e2364, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38284450

ABSTRACT

BACKGROUND: Cystic fibrosis (CF) is an autosomal recessive disorder rarely found in Asian populations. Most males with CF are infertile because of obstructive azoospermia (OA) caused by congenital bilateral absence of the vas deferens (CBAVD). Compound heterozygous mutations of cystic fibrosis transmembrane conductance regulator (CFTR) are among the most common pathogenic factors in CBAVD. However, few genealogical analyses have been performed. METHODS: In this study, whole-exome sequencing and cosegregation analysis were performed in a Chinese pedigree involving two siblings with CBAVD. Moreover, in vitro gene expressions were used to analyze the pathogenicity of a novel CFTR mutation. RESULTS: We identified compound heterozygous mutations of CFTR comprising the known disease-causing variant c.1210-11T>G (also known as IVS9-5 T) and c.2144delA;p.q715fs in two siblings with CBAVD. To verify the effects in vitro, we transfected vectors expressing wild-type and mutated CFTR into 293T cells. The results showed that the CFTR protein containing the frameshift mutation (c.2144delA) was 60 kD smaller. With testicular sperm aspiration/intracytoplasmic sperm injection-embryo transfer (TESA/ICSI-ET), both CBAVD patients fathered healthy offspring. CONCLUSION: Our study revealed that compound heterozygous mutations of CFTR are involved in CBAVD, expanding the known CFTR gene mutation spectrum of CBAVD patients and providing more evidence that compound heterozygous mutations can cause familial CBAVD.


Subject(s)
Cystic Fibrosis , Infertility, Male , Male Urogenital Diseases , Humans , Male , Infertility, Male/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Pedigree , Semen , Mutation , Vas Deferens/abnormalities , Cystic Fibrosis/genetics , Cystic Fibrosis/pathology , China
6.
Pediatr Dev Pathol ; 27(1): 13-22, 2024.
Article in English | MEDLINE | ID: mdl-37801635

ABSTRACT

Liver histology in infants with cystic fibrosis (CF) and persistent cholestasis is seldom reported in detail. We extend previous observation of a distinctive intrahepatic cholangiopathy (ICCF) to 3 additional infants homozygous for CFTR pathological variants and a fourth infant with a heterozygous CFTR variant, summarizing our experience in 10 infants with CFTR variants and persistent cholestasis. Cholangiograms demonstrate abnormal extrahepatic ducts in 2 infants with CF, 1 with uniform dilatation interpreted as a choledochal cyst and the other with narrow patent ducts. Liver histology in 3 CF homozygotes had prominent ductular reaction with a focally destructive cholangiolitis (inflammation of small bile ducts). The CFTR heterozygote had generalized portal edema with ductular reaction and paucity but no cholangitis. Cholestasis slowly subsided in all infants. ICCF is characterized by severe ductular reaction, prominent cholangiocyte injury, and multifocal necrotizing cholangiolitis. Local aggregates of portal ceroid might suggest previous bile leakage from damaged ducts. ICCF in liver biopsies from infants with cystic fibrosis and persistent cholestasis is unrelated to the specific CFTR genotype. Liver biopsy findings and intraoperative cholangiogram help rule out biliary atresia. ICCF is an early manifestation of CF, a likely prototype for pathogenesis of cystic fibrosis liver disease later in life.


Subject(s)
Biliary Atresia , Cholestasis, Intrahepatic , Cholestasis , Cystic Fibrosis , Hepatitis , Infant , Humans , Cystic Fibrosis/complications , Cystic Fibrosis/genetics , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cholestasis/diagnosis , Cholestasis/etiology , Liver/pathology , Biliary Atresia/pathology , Hepatitis/pathology , Cholestasis, Intrahepatic/pathology
7.
Pediatr Radiol ; 54(2): 250-259, 2024 02.
Article in English | MEDLINE | ID: mdl-38133654

ABSTRACT

BACKGROUND: Liver involvement is an important cause of morbidity and mortality in patients with cystic fibrosis (CF). While liver biopsy is the gold standard for demonstrating involvement, its invasiveness prompts a search for noninvasive alternatives. OBJECTIVE: To evaluate liver involvement in pediatric patients with CF (versus healthy controls) using magnetic resonance (MR) elastography/spectroscopy and to correlate the imaging findings with clinical/laboratory characteristics. MATERIALS AND METHODS: This was a single-center, prospective cross-sectional study conducted between April 2020 and March 2022 in patients with CF versus healthy controls. Patients with CF were divided into two subgroups: those with CF-related liver disease and those without. MR images were acquired on a 1.5-tesla machine. Kilopascal (kPa) values were derived from processing MR elastography images. MR spectroscopy was used to measure liver fat fraction, as an indication of hepatosteatosis. Groups were compared using either the Student's t test or the Mann‒Whitney U test. The chi-square test or Fisher's exact test were used to compare qualitative variables. RESULTS: Fifty-one patients with CF (12 ± 3.3 years, 32 boys) and 24 healthy volunteers (11.1 ± 2.4 years, 15 boys) were included in the study. Median liver stiffness (P=0.003) and fat fraction (P=0.03) were higher in the CF patients than in the controls. Median liver stiffness values were higher in CF patients with CF-related liver disease than in those without CF-related liver disease (P=0.002). Liver stiffness values of CF patients with high alanine aminotransferase (ALT), high gamma-glutamyl transferase, and thrombocytopenia were found to be higher than those without (P=0.004, P<0.001, P<0.001, respectively). Only the high ALT group showed a high fat fraction (P=0.002). CONCLUSIONS: Patients with CF had higher liver stiffness than the control group, and patients with CF-related liver disease had higher liver stiffness than both the CF patients without CF-related liver disease and the control group. Patients with CF had a higher fat fraction than the control group. Noninvasive assessment of liver involvement using MR elastography/spectroscopy can support the diagnosis of CF-related liver disease and the follow-up of patients with CF.


Subject(s)
Cystic Fibrosis , Elasticity Imaging Techniques , Liver Diseases , Male , Humans , Child , Elasticity Imaging Techniques/methods , Liver Cirrhosis/pathology , Prospective Studies , Cystic Fibrosis/diagnostic imaging , Cystic Fibrosis/pathology , Cross-Sectional Studies , Liver/diagnostic imaging , Liver/pathology , Liver Diseases/pathology , Magnetic Resonance Imaging/methods
8.
J Hazard Mater ; 465: 133340, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38147748

ABSTRACT

Cystic Fibrosis (CF) is a lethal genetic disorder caused by pathogenic mutations of the CFTR gene. CF patients show a high phenotypic variability of unknown origin. In this context, the present study was therefore dedicated to investigating the effects of acute exposure to air pollution on the pulmonary morbidity of a CF-like mice model. To achieve our aim, we developed a multidisciplinary approach and designed an innovative protocol using a simulation chamber reproducing multiphasic chemical processes at the laboratory. A particular attention was paid to modulate the composition of these simulated atmospheres, in terms of concentrations of gaseous and particulate pollutants. Exposure to simulated urban atmospheres induced mucus secretion and increased inflammatory biomarkers levels, oxidative stress as well as expression of lung remodeling actors in both WT and CF-like mice. The latter were more susceptible to develop such a response. Though we could not establish direct mechanistic link between biological responses and specific components, the type of immune response induced depended on the chemical composition of the atmospheres. Overall, we demonstrated that air pollution is an important determinant of CF-like lung phenotypic variability and emphasized the added value of considering air pollution with a multi-pollutant approach.


Subject(s)
Air Pollution , Cystic Fibrosis , Humans , Mice , Animals , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Lung/pathology , Phenotype , Disease Models, Animal
9.
Radiologie (Heidelb) ; 63(11): 849-862, 2023 Nov.
Article in German | MEDLINE | ID: mdl-37851088

ABSTRACT

Due to the low proton density of the lung parenchyma and the rapid signal decay at the air-tissue interfaces, for a long time the lungs were difficult to access using magnetic resonance imaging (MRI); however, technical advances could address most of these obstacles. Pulmonary alterations associated with tissue proliferation ("plus pathologies"), can now be detected with high diagnostic accuracy because of the locally increased proton density. Compared to computed tomography (CT), MRI provides a comprehensive range of functional imaging procedures (respiratory mechanics, perfusion and ventilation). In addition, as a radiation-free noninvasive examination modality, it enables repeated examinations for assessment of the course or monitoring of the effects of treatment, even in children. This article discusses the technical aspects, gives suggestions for protocols and explains the role of MRI of the lungs in the routine assessment of various diseases.


Subject(s)
Cystic Fibrosis , Protons , Child , Humans , Cystic Fibrosis/diagnosis , Cystic Fibrosis/pathology , Lung/diagnostic imaging , Lung/pathology , Magnetic Resonance Imaging/methods , Respiration
10.
J Mater Chem B ; 11(39): 9419-9430, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37701932

ABSTRACT

Cystic fibrosis (CF) is a muco-obstructive lung disease where inflammatory responses due to chronic infection result in the accumulation of neutrophil extracellular traps (NETs) in the airways. NETs are web-like complexes comprised mainly of decondensed chromatin that function to capture and kill bacteria. Prior studies have established excess release of NETs in CF airways increases viscoelasticity of mucus secretions and reduces mucociliary clearance. Despite the pivotal role of NETs in CF disease pathogenesis, current in vitro models of this disease do not account for their contribution. Motivated by this, we developed a new approach to study the pathobiological effects of NETs in CF by combining synthetic NET-like biomaterials, composed of DNA and histones, with an in vitro human airway epithelial cell culture model. To determine the impact of synthetic NETs on airway clearance function, we incorporated synthetic NETs into mucin hydrogels and cell culture derived airway mucus to assess their rheological and transport properties. We found that the addition of synthetic NETs significantly increases mucin hydrogel viscoelasticity. As a result, mucociliary transport in vitro was significantly reduced with the addition of mucus containing synthetic NETs. Given the prevalence of bacterial infection in the CF lung, we also evaluated the growth of Pseudomonas aeruginosa in mucus with or without synthetic NETs. We found mucus containing synthetic NETs promoted microcolony growth and prolonged bacterial survival. Together, this work establishes a new biomaterial enabled approach to study innate immunity mediated airway dysfunction in CF.


Subject(s)
Cystic Fibrosis , Extracellular Traps , Humans , Cystic Fibrosis/microbiology , Cystic Fibrosis/pathology , Epithelial Cells , Mucus , Mucins , Bacteria
11.
Liver Int ; 43(11): 2492-2502, 2023 11.
Article in English | MEDLINE | ID: mdl-37724776

ABSTRACT

BACKGROUND AND AIMS: Porto-sinusoidal vascular disease (PSVD) has been described as the prominent pathology in liver explants of patients with cystic fibrosis (CF), but data outside the transplant setting are lacking. We aimed to investigate the prevalence of portal hypertension (PH) in CF-associated liver disease (CFLD) and develop an algorithm to classify liver involvement in CF patients. METHODS: This is a cross-sectional study of consecutive paediatric and adult patients in a tertiary centre between 2018 and 2019, who underwent ultrasound, liver (LSM) and spleen stiffness (SSM) measurement. CFLD was defined according to physical examination, liver tests and ultrasound findings. PSVD was likely if there were PH signs in the absence of advanced chronic liver disease (CF-ACLD, LSM <10 kPa). A historical cohort was used to validate the prognostic significance of the new definitions. RESULTS: Fifty (27.5%) patients met CFLD criteria. At least one sign of PH was found in 47 (26%) patients, but most (81%) had LSM <10 kPa and were likely to have PSVD; only 9 (5%) had CF-ACLD. PSVD and CFLD (LSM <10 kPa) co-existed in most (23/36) cases. In the historical cohort (n = 599 patients), likely PSVD and CFLD+PH were independently associated with a 2-fold and 3.5-fold increase in mortality compared to patients without PH, respectively. In 34 patients with SSM, values <21 and >50 kPa accurately diagnosed specific signs of PH. CONCLUSIONS: PSVD is the prevailing cause of PH in CF patients. We developed a new diagnostic algorithm based on clinical and elastosonography criteria to classify liver involvement in patients with CF.


Subject(s)
Cystic Fibrosis , Elasticity Imaging Techniques , Hypertension, Portal , Idiopathic Noncirrhotic Portal Hypertension , Liver Diseases , Adult , Humans , Child , Prospective Studies , Cystic Fibrosis/complications , Cystic Fibrosis/pathology , Cross-Sectional Studies , Liver Diseases/diagnosis , Liver/pathology , Liver Cirrhosis/diagnosis
12.
Nature ; 621(7980): 857-867, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37730992

ABSTRACT

Speciation leads to adaptive changes in organ cellular physiology and creates challenges for studying rare cell-type functions that diverge between humans and mice. Rare cystic fibrosis transmembrane conductance regulator (CFTR)-rich pulmonary ionocytes exist throughout the cartilaginous airways of humans1,2, but limited presence and divergent biology in the proximal trachea of mice has prevented the use of traditional transgenic models to elucidate ionocyte functions in the airway. Here we describe the creation and use of conditional genetic ferret models to dissect pulmonary ionocyte biology and function by enabling ionocyte lineage tracing (FOXI1-CreERT2::ROSA-TG), ionocyte ablation (FOXI1-KO) and ionocyte-specific deletion of CFTR (FOXI1-CreERT2::CFTRL/L). By comparing these models with cystic fibrosis ferrets3,4, we demonstrate that ionocytes control airway surface liquid absorption, secretion, pH and mucus viscosity-leading to reduced airway surface liquid volume and impaired mucociliary clearance in cystic fibrosis, FOXI1-KO and FOXI1-CreERT2::CFTRL/L ferrets. These processes are regulated by CFTR-dependent ionocyte transport of Cl- and HCO3-. Single-cell transcriptomics and in vivo lineage tracing revealed three subtypes of pulmonary ionocytes and a FOXI1-lineage common rare cell progenitor for ionocytes, tuft cells and neuroendocrine cells during airway development. Thus, rare pulmonary ionocytes perform critical CFTR-dependent functions in the proximal airway that are hallmark features of cystic fibrosis airway disease. These studies provide a road map for using conditional genetics in the first non-rodent mammal to address gene function, cell biology and disease processes that have greater evolutionary conservation between humans and ferrets.


Subject(s)
Cystic Fibrosis , Disease Models, Animal , Ferrets , Lung , Transgenes , Animals , Humans , Animals, Genetically Modified , Cell Lineage , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Ferrets/genetics , Ferrets/physiology , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Lung/cytology , Lung/metabolism , Lung/pathology , Trachea/cytology , Transgenes/genetics
13.
Genet Med ; 25(12): 100966, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37622442

ABSTRACT

PURPOSE: Automated use of electronic health records may aid in decreasing the diagnostic delay for rare diseases. The phenotype risk score (PheRS) is a weighted aggregate of syndromically related phenotypes that measures the similarity between an individual's conditions and features of a disease. For some diseases, there are individuals without a diagnosis of that disease who have scores similar to diagnosed patients. These individuals may have that disease but not yet be diagnosed. METHODS: We calculated the PheRS for cystic fibrosis (CF) for 965,626 subjects in the Vanderbilt University Medical Center electronic health record. RESULTS: Of the 400 subjects with the highest PheRS for CF, 248 (62%) had been diagnosed with CF. Twenty-six of the remaining participants, those who were alive and had DNA available in the linked DNA biobank, underwent clinical review and sequencing analysis of CFTR and SERPINA1. This uncovered a potential diagnosis for 2 subjects, 1 with CF and 1 with alpha-1-antitrypsin deficiency. An additional 7 subjects had pathogenic or likely pathogenic variants, 2 in CFTR and 5 in SERPINA1. CONCLUSION: These findings may be clinically actionable for the providers caring for these patients. Importantly, this study highlights feasibility and challenges for future implications of this approach.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Electronic Health Records , Delayed Diagnosis , Cystic Fibrosis/diagnosis , Cystic Fibrosis/genetics , Cystic Fibrosis/pathology , DNA , Mutation
14.
Pediatr Radiol ; 53(11): 2210-2220, 2023 10.
Article in English | MEDLINE | ID: mdl-37500799

ABSTRACT

BACKGROUND: Pediatric radiologists can identify a liver ultrasound (US) pattern predictive of progression to advanced liver disease. However, reliably discriminating these US patterns remains difficult. Quantitative magnetic resonance imaging (MRI) may provide an objective measure of liver disease in cystic fibrosis (CF). OBJECTIVE: The purpose of this study was to determine if quantitative MRI, including MR elastography, is feasible in children with CF and to determine how quantitative MRI-derived metrics compared to a research US. MATERIALS AND METHODS: A prospective, multi-institutional trial was performed evaluating CF participants who underwent a standardized MRI. At central review, liver stiffness, fat fraction, liver volume, and spleen volume were obtained. Participants whose MRI was performed within 1 year of US were classified by US pattern as normal, homogeneous hyperechoic, heterogeneous, or nodular. Each MRI measure was compared among US grade groups using the Kruskal-Wallis test. RESULTS: Ninety-three participants (51 females [54.8%]; mean 15.6 years [range 8.1-21.7 years]) underwent MRI. MR elastography was feasible in 87 participants (93.5%). Fifty-eight participants had an US within 1 year of MRI. In these participants, a nodular liver had significantly higher stiffness (P<0.01) than normal or homogeneous hyperechoic livers. Participants with a homogeneous hyperechoic liver had a higher fat fraction (P<0.005) than others. CONCLUSION: MR elastography is feasible in children with CF. Participants with a nodular pattern had higher liver stiffness supporting the US determination of advanced liver disease. Participants with a homogeneous hyperechoic pattern had higher fat fractions supporting the diagnosis of steatosis.


Subject(s)
Cystic Fibrosis , Elasticity Imaging Techniques , Liver Diseases , Child , Female , Humans , Cystic Fibrosis/diagnostic imaging , Cystic Fibrosis/pathology , Feasibility Studies , Liver/diagnostic imaging , Liver/pathology , Liver Cirrhosis/pathology , Liver Diseases/pathology , Magnetic Resonance Imaging/methods , Prospective Studies
15.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L125-L134, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37280505

ABSTRACT

Reticular basement membrane (RBM) thickening may occur in children with allergic bronchial asthma (BA), cystic fibrosis (CF), and primary ciliary dyskinesia (PCD). Its functional consequences remain unknown. We investigated the relationship between baseline RBM thickness and subsequent spirometry. In our cohort follow-up study, patients aged 3-18 yr with BA, CF, and PCD and controls underwent baseline lung clearance index (LCI) measurement, spirometry, and endobronchial biopsy sampling. Total RBM and collagen IV-positive layer thickness were measured. Trends in forced vital capacity (FVC), forced expired volume in 1 s (FEV1), and FEV1/FVC were analyzed during follow-up, and their relationship to baseline characteristics was studied using univariate analysis and multiple regression models. Complete baseline data were available in 19 patients with BA, 30 patients with CF, 25 patients with PCD, and 19 controls. The RBM was thicker in patients with BA (6.33 ± 1.22 µm), CF (5.60 ± 1.39 µm), and PCD (6.50 ± 1.87 µm) than in controls (3.29 ± 0.55 µm) (all P < 0.001). The LCI was higher in patients with CF (15.32 ± 4.58, P < 0.001) and PCD (10.97 ± 2.46, P = 0.002) than in controls (7.44 ± 0.43). The median follow-up times were 3.6, 4.8, 5.7, and 1.9 years in patients with BA, CF, PCD, and controls, respectively. The z-scores of FEV1 and FEV1/FVC deteriorated significantly in all groups except in controls. In patients with CF and PCD, trends in FEV1 z-scores correlated with baseline LCI and RBM; in BA, it correlated with collagen IV. In multiple regression models, RBM morphology and ventilation inhomogeneity could predict up to 84.4% of variability in spirometry trends. In conclusion, baseline LCI value and RBM morphology may predict trends in subsequent spirometry.NEW & NOTEWORTHY This paper deals with the relationship between reticular basement membrane (RBM) morphology at baseline and follow-up spirometry in children with asthma, cystic fibrosis, and primary ciliary dyskinesia. For the first time, to our knowledge, the possibility to predict subsequent lung function development using selected baseline characteristics (reticular basement membrane morphology from endobronchial biopsy and ventilation inhomogeneity from nitrogen multiple breath washout test) is proposed. Corresponding predictive models are presented.


Subject(s)
Asthma , Ciliary Motility Disorders , Cystic Fibrosis , Child , Humans , Follow-Up Studies , Cystic Fibrosis/pathology , Forced Expiratory Volume , Lung/pathology , Spirometry , Asthma/pathology , Inflammation/pathology , Basement Membrane/pathology , Collagen
16.
Cells ; 12(12)2023 06 06.
Article in English | MEDLINE | ID: mdl-37371025

ABSTRACT

Cystic fibrosis (CF) is a monogenic recessive genetic disorder caused by mutations in the CF Transmembrane-conductance Regulator gene (CFTR). Remarkable progress in basic research has led to the discovery of highly effective CFTR modulators. Now ~90% of CF patients are treatable. However, these modulator therapies are not curative and do not cover the full spectrum of CFTR mutations. Thus, there is a continued need to develop a complete and durable therapy that can treat all CF patients once and for all. As CF is a genetic disease, the ultimate therapy would be in-situ repair of the genetic lesions in the genome. Within the past few years, new technologies, such as CRISPR/Cas gene editing, have emerged as an appealing platform to revise the genome, ushering in a new era of genetic therapy. This review provided an update on this rapidly evolving field and the status of adapting the technology for CF therapy.


Subject(s)
Cystic Fibrosis , Humans , Cystic Fibrosis/genetics , Cystic Fibrosis/therapy , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Gene Editing , Genetic Therapy , Precision Medicine
17.
Cells ; 12(8)2023 04 07.
Article in English | MEDLINE | ID: mdl-37190013

ABSTRACT

The airway surface liquid (ASL) is a thin sheet of fluid that covers the luminal aspect of the airway epithelium. The ASL is a site of several first-line host defenses, and its composition is a key factor that determines respiratory fitness. Specifically, the acid-base balance of ASL has a major influence on the vital respiratory defense processes of mucociliary clearance and antimicrobial peptide activity against inhaled pathogens. In the inherited disorder cystic fibrosis (CF), loss of cystic fibrosis transmembrane conductance regulator (CFTR) anion channel function reduces HCO3- secretion, lowers the pH of ASL (pHASL), and impairs host defenses. These abnormalities initiate a pathologic process whose hallmarks are chronic infection, inflammation, mucus obstruction, and bronchiectasis. Inflammation is particularly relevant as it develops early in CF and persists despite highly effective CFTR modulator therapy. Recent studies show that inflammation may alter HCO3- and H+ secretion across the airway epithelia and thus regulate pHASL. Moreover, inflammation may enhance the restoration of CFTR channel function in CF epithelia exposed to clinically approved modulators. This review focuses on the complex relationships between acid-base secretion, airway inflammation, pHASL regulation, and therapeutic responses to CFTR modulators. These factors have important implications for defining optimal ways of tackling CF airway inflammation in the post-modulator era.


Subject(s)
Cystic Fibrosis , Humans , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator , Respiratory Mucosa/pathology , Inflammation/pathology , Hydrogen-Ion Concentration
18.
J Cyst Fibros ; 22(4): 745-755, 2023 07.
Article in English | MEDLINE | ID: mdl-37032248

ABSTRACT

BACKGROUND: This study examines whether heterogeneous (HTG) pattern on liver ultrasound (US) identifies children at risk for advanced cystic fibrosis liver disease (aCFLD). METHODS: Prospective 6-year multicenter case-controlled cohort study. Children with pancreatic insufficient cystic fibrosis (CF) aged 3-12 years without known cirrhosis underwent screening US. Participants with HTG were matched (by age, Pseudomonas infection status and center) 1:2 with participants with normal (NL) US pattern. Clinical status and laboratory data were obtained annually and US bi-annually for 6 years. Primary endpoint was development of nodular (NOD) US pattern consistent with aCFLD. RESULTS: 722 participants underwent screening US, with 65 HTG and 592 NL. Final cohort included 55 HTG and 116 NL with ≥ 1 follow-up US. ALT, AST, GGTP, FIB-4, GPR and APRI were higher, and platelets were lower in HTG compared to NL. HTG had a 9.5-fold increased incidence (95% confidence interval [CI]:3.4, 26.7, p<0.0001, 32.7% vs 3.4%) of NOD versus NL. HTG had a sensitivity of 82% and specificity of 75% for subsequent NOD. Negative predictive value of a NL US for subsequent NOD was 96%. Multivariate logistic prediction model that included baseline US, age, and log(GPR) improved the C-index to 0.90 compared to only baseline US (C-index 0.78). Based on survival analysis, 50% of HTG develop NOD after 8 years. CONCLUSIONS: Research US finding of HTG identifies children with CF with a 30-50% risk for aCFLD. A score based on US pattern, age and GPR may refine the identification of individuals at high risk for aCFLD. CLINICAL TRIAL REGISTRATION: Prospective Study of Ultrasound to Predict Hepatic Cirrhosis in CF: NCT 01,144,507 (observational study, no consort checklist).


Subject(s)
Cystic Fibrosis , Liver Diseases , Humans , Child , Prospective Studies , Cohort Studies , Cystic Fibrosis/complications , Cystic Fibrosis/epidemiology , Cystic Fibrosis/pathology , Platelet Count , Liver/diagnostic imaging , Liver/pathology , Liver Cirrhosis/diagnostic imaging , Liver Cirrhosis/epidemiology
19.
Funct Integr Genomics ; 23(2): 135, 2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37085733

ABSTRACT

The precise molecular events initiating human lung disease are often poorly characterized. Investigating prenatal events that may underlie lung disease in later life is challenging in man, but insights from the well-characterized sheep model of lung development are valuable. Here, we determine the transcriptomic signature of lung development in wild-type sheep (WT) and use a sheep model of cystic fibrosis (CF) to characterize disease associated changes in gene expression through the pseudoglandular, canalicular, saccular, and alveolar stages of lung growth and differentiation. Using gene ontology process enrichment analysis of differentially expressed genes at each developmental time point, we define changes in biological processes (BP) in proximal and distal lung from WT or CF animals. We also compare divergent BP in WT and CF animals at each time point. Next, we establish the developmental profile of key genes encoding components of ion transport and innate immunity that are pivotal in CF lung disease and validate transcriptomic data by RT-qPCR. Consistent with the known pro-inflammatory phenotype of the CF lung after birth, we observe upregulation of inflammatory response processes in the CF sheep distal lung during the saccular stage of prenatal development. These data suggest early commencement of therapeutic regimens may be beneficial.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Lung , Animals , Cystic Fibrosis/genetics , Cystic Fibrosis/pathology , Cystic Fibrosis/veterinary , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/therapeutic use , Gene Expression Profiling , Lung/growth & development , Lung/metabolism , Sheep/genetics , Transcriptome , Inflammation/genetics , Inflammation/pathology
20.
Urology ; 175: 74-76, 2023 05.
Article in English | MEDLINE | ID: mdl-36858322

ABSTRACT

Congenital bilateral absence of the vas deferens (CBAVD) occurs in almost all men with cystic fibrosis. Prevailing theories on this pathophysiology relate to pathogenic mutations in the cystic fibrosis transmembrane regulator gene leading to agenesis or obliteration of vas deferens in utero. In this study, we present a case of two brothers with congenital anomalies of the vas deferens who were found to have carried a rare, heterozygous cystic fibrosis transmembrane regulator variant p.r347h without pulmonary or gastrointestinal signs or symptoms of cystic fibrosis .


Subject(s)
Cystic Fibrosis , Vas Deferens , Male , Humans , Vas Deferens/abnormalities , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/pathology , Exome Sequencing , Siblings , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...