Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.806
Filter
1.
Gen Physiol Biophys ; 43(3): 197-207, 2024 May.
Article in English | MEDLINE | ID: mdl-38774920

ABSTRACT

The cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel uses positively charged amino-acid side-chains to form binding sites for permeating anions. These binding sites have been investigated experimentally using a number of anionic probes. Mutations that alter the distribution of positive and negative charges within the pore have differential effects on the binding of monovalent versus divalent anions. This study uses patch clamp recording from wild-type and pore-mutant forms of CFTR to investigate small trivalent anions (Co(NO2)63-, Co(CN)3- and IrCl63-) as potential probes of anion binding sites. These anions caused weak block of Cl- permeation in wild-type CFTR (Kd ≥ 700 µM) when applied to the intracellular side of the membrane. Mutations that increase the density of positive charge within the pore (E92Q, I344K, S1141K) increased the binding affinity of these anions 80-280-fold, and also greatly increased the voltage-dependence of block, consistent with fixed charges in the pore affecting monovalent : multivalent anion selectivity. However, high-affinity pore block by Co(NO2)63-apparently did not alter channel gating, a hallmark of high-affinity binding of divalent Pt(NO2)42- ions within the pore. This work increases the arsenal of probes available to investigate anion binding sites within Cl- channel pores.


Subject(s)
Anions , Cystic Fibrosis Transmembrane Conductance Regulator , Ion Channel Gating , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Anions/metabolism , Humans , Animals , Binding Sites , Mutation
2.
J Cell Biol ; 223(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38722278

ABSTRACT

Aberrant proteins located in the endoplasmic reticulum (ER) undergo rapid ubiquitination by multiple ubiquitin (Ub) E3 ligases and are retrotranslocated to the cytosol as part of the ER-associated degradation (ERAD). Despite several ERAD branches involving different Ub E3 ligases, the molecular machinery responsible for these ERAD branches in mammalian cells remains not fully understood. Through a series of multiplex knockdown/knockout experiments with real-time kinetic measurements, we demonstrate that HERC3 operates independently of the ER-embedded ubiquitin ligases RNF5 and RNF185 (RNF5/185) to mediate the retrotranslocation and ERAD of misfolded CFTR. While RNF5/185 participates in the ERAD process of both misfolded ABCB1 and CFTR, HERC3 uniquely promotes CFTR ERAD. In vitro assay revealed that HERC3 directly interacts with the exposed membrane-spanning domains (MSDs) of CFTR but not with the MSDs embedded in liposomes. Therefore, HERC3 could play a role in the quality control of MSDs in the cytoplasm and might be crucial for the ERAD pathway of select membrane proteins.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Membrane Proteins , Ubiquitin-Protein Ligases , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , DNA-Binding Proteins , Endoplasmic Reticulum/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , HEK293 Cells , HeLa Cells , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Protein Binding , Protein Domains , Protein Folding , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination
3.
Sci Rep ; 14(1): 10160, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38698045

ABSTRACT

How information flow is coordinated for managing transit of 1/3 of the genome through endomembrane pathways by the coat complex II (COPII) system in response to human variation remains an enigma. By examining the interactome of the COPII cage-assembly component Sec13, we show that it is simultaneously associated with multiple protein complexes that facilitate different features of a continuous program of chromatin organization, transcription, translation, trafficking, and degradation steps that are differentially sensitive to Sec13 levels. For the trafficking step, and unlike other COPII components, reduction of Sec13 expression decreased the ubiquitination and degradation of wild-type (WT) and F508del variant cargo protein cystic fibrosis transmembrane conductance regulator (CFTR) leading to a striking increase in fold stability suggesting that the events differentiating export from degradation are critically dependent on COPII cage assembly at the ER Golgi intermediate compartment (ERGIC) associated recycling and degradation step linked to COPI exchange. Given Sec13's multiple roles in protein complex assemblies that change in response to its expression, we suggest that Sec13 serves as an unanticipated master regulator coordinating information flow from the genome to the proteome to facilitate spatial covariant features initiating and maintaining design and function of membrane architecture in response to human variation.


Subject(s)
COP-Coated Vesicles , Carrier Proteins , Cystic Fibrosis Transmembrane Conductance Regulator , Protein Transport , Vesicular Transport Proteins , Humans , COP-Coated Vesicles/metabolism , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Golgi Apparatus/metabolism , Endoplasmic Reticulum/metabolism , Ubiquitination , Proteolysis
4.
Inn Med (Heidelb) ; 65(6): 538-544, 2024 Jun.
Article in German | MEDLINE | ID: mdl-38714556

ABSTRACT

BACKGROUND: Cystic fibrosis (CF, or mucoviscidosis) is one of the rare diseases with a fatal course and with the highest prevalence. Formerly known as a purely childhood disease, this multisystemic disease follows an autosomal recessive inheritance pattern and results in a malfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) channel, leading to the production of viscous secretions. The prognosis and outcome of CF are determined by the severity of the involvement of the lungs. Other typically affected organs include the pancreas, liver and intestines. OBJECTIVE: This article reviews the clinical presentation and evolution of CF with a focus on the new era of the highly effective CFTR modulator treatment. MATERIAL AND METHODS: An overview of the current state of knowledge on the care for CF patients is presented. RESULTS AND DISCUSSION: The introduction of the CF newborn screening, the increased understanding of the disease and the development of novel treatment options have substantially increased the quality of life and life expectancy of people with CF. As a result, more than half of CF patients in Germany are now older than 18 years of age and the complications of a chronic disease as well as organ damage due to the intensive treatment are gaining in importance. The highly effective CFTR modulator treatment results in a significant improvement in CFTR function, lung function, body mass index and quality of life and is available to approximately 90% of patients in Germany, based on the genotype. Nevertheless, further research including the development of causal treatment, e.g., gene therapy, targeting the underlying defect in the remaining 10% of CF patients, is urgently needed. Even in adult patients, CF with a mild course or a CFTR-related disease should be considered, e.g., in cases of bronchiectasis and/or recurrent abdominal complaints.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Humans , Cystic Fibrosis/genetics , Cystic Fibrosis/therapy , Child , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Adult , Infant, Newborn , Adolescent , Neonatal Screening , Prognosis , Aminophenols/therapeutic use , Quality of Life
5.
Cell Rep Med ; 5(5): 101544, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38697102

ABSTRACT

Prime editing is a recent, CRISPR-derived genome editing technology capable of introducing precise nucleotide substitutions, insertions, and deletions. Here, we present prime editing approaches to correct L227R- and N1303K-CFTR, two mutations that cause cystic fibrosis and are not eligible for current market-approved modulator therapies. We show that, upon DNA correction of the CFTR gene, the complex glycosylation, localization, and, most importantly, function of the CFTR protein are restored in HEK293T and 16HBE cell lines. These findings were subsequently validated in patient-derived rectal organoids and human nasal epithelial cells. Through analysis of predicted and experimentally identified candidate off-target sites in primary stem cells, we confirm previous reports on the high prime editor (PE) specificity and its potential for a curative CF gene editing therapy. To facilitate future screening of genetic strategies in a translational CF model, a machine learning algorithm was developed for dynamic quantification of CFTR function in organoids (DETECTOR: "detection of targeted editing of CFTR in organoids").


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Epithelial Cells , Gene Editing , Mutation , Organoids , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis/pathology , Cystic Fibrosis/metabolism , Organoids/metabolism , Gene Editing/methods , Epithelial Cells/metabolism , Mutation/genetics , HEK293 Cells , CRISPR-Cas Systems/genetics
6.
Respir Res ; 25(1): 180, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664797

ABSTRACT

BACKGROUND: Pulmonary ionocytes have been identified in the airway epithelium as a small population of ion transporting cells expressing high levels of CFTR (cystic fibrosis transmembrane conductance regulator), the gene mutated in cystic fibrosis. By providing an infinite source of airway epithelial cells (AECs), the use of human induced pluripotent stem cells (hiPSCs) could overcome some challenges of studying ionocytes. However, the production of AEC epithelia containing ionocytes from hiPSCs has proven difficult. Here, we present a platform to produce hiPSC-derived AECs (hiPSC-AECs) including ionocytes and investigate their role in the airway epithelium. METHODS: hiPSCs were differentiated into lung progenitors, which were expanded as 3D organoids and matured by air-liquid interface culture as polarised hiPSC-AEC epithelia. Using CRISPR/Cas9 technology, we generated a hiPSCs knockout (KO) for FOXI1, a transcription factor that is essential for ionocyte specification. Differences between FOXI1 KO hiPSC-AECs and their wild-type (WT) isogenic controls were investigated by assessing gene and protein expression, epithelial composition, cilia coverage and motility, pH and transepithelial barrier properties. RESULTS: Mature hiPSC-AEC epithelia contained basal cells, secretory cells, ciliated cells with motile cilia, pulmonary neuroendocrine cells (PNECs) and ionocytes. There was no difference between FOXI1 WT and KO hiPSCs in terms of their capacity to differentiate into airway progenitors. However, FOXI1 KO led to mature hiPSC-AEC epithelia without ionocytes with reduced capacity to produce ciliated cells. CONCLUSION: Our results suggest that ionocytes could have role beyond transepithelial ion transport by regulating epithelial properties and homeostasis in the airway epithelium.


Subject(s)
Induced Pluripotent Stem Cells , Respiratory Mucosa , Humans , Induced Pluripotent Stem Cells/metabolism , Respiratory Mucosa/metabolism , Respiratory Mucosa/cytology , Cell Differentiation/physiology , Cells, Cultured , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelial Cells/metabolism , Organoids/metabolism
7.
mBio ; 15(5): e0051924, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38564694

ABSTRACT

Today, more than 90% of people with cystic fibrosis (pwCF) are eligible for the highly effective cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy called elexacaftor/tezacaftor/ivacaftor (ETI) and its use is widespread. Given the drastic respiratory symptom improvement experienced by many post-ETI, clinical studies are already underway to reduce the number of respiratory therapies, including antibiotic regimens, that pwCF historically relied on to combat lung disease progression. Early studies suggest that bacterial burden in the lungs is reduced post-ETI, yet it is unknown how chronic Pseudomonas aeruginosa populations are impacted by ETI. We found that pwCF remain infected throughout their upper and lower respiratory tract with their same strain of P. aeruginosa post-ETI, and these strains continue to evolve in response to the newly CFTR-corrected airway. Our work underscores the continued importance of CF airway microbiology in the new era of highly effective CFTR modulator therapy. IMPORTANCE: The highly effective cystic fibrosis transmembrane conductance regulator modulator therapy Elexakaftor/Tezacaftor/Ivacaftor (ETI) has changed cystic fibrosis (CF) disease for many people with cystic fibrosis. While respiratory symptoms are improved by ETI, we found that people with CF remain infected with Pseudomonas aeruginosa. How these persistent and evolving bacterial populations will impact the clinical manifestations of CF in the coming years remains to be seen, but the role and potentially changing face of infection in CF should not be discounted in the era of highly effective modulator therapy.


Subject(s)
Aminophenols , Benzodioxoles , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Drug Combinations , Indoles , Pseudomonas Infections , Pseudomonas aeruginosa , Quinolones , Cystic Fibrosis/microbiology , Cystic Fibrosis/drug therapy , Cystic Fibrosis/complications , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Humans , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Aminophenols/therapeutic use , Quinolones/therapeutic use , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Benzodioxoles/therapeutic use , Indoles/therapeutic use , Pyrazoles/therapeutic use , Pyrroles/therapeutic use , Pyridines/therapeutic use , Thiophenes/therapeutic use , Thiophenes/pharmacology , Female , Quinolines
8.
Cell Calcium ; 120: 102885, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642428

ABSTRACT

When activated by increase in intracellular Ca2+, anoctamins (TMEM16 proteins) operate as phospholipid scramblases and as ion channels. Anoctamin 1 (ANO1) is the Ca2+-activated epithelial anion-selective channel that is coexpressed together with the abundant scramblase ANO6 and additional intracellular anoctamins. In salivary and pancreatic glands, ANO1 is tightly packed in the apical membrane and secretes Cl-. Epithelia of airways and gut use cystic fibrosis transmembrane conductance regulator (CFTR) as an apical Cl- exit pathway while ANO1 supports Cl- secretion mainly by facilitating activation of luminal CFTR and basolateral K+ channels. Under healthy conditions ANO1 modulates intracellular Ca2+ signals by tethering the endoplasmic reticulum, and except of glands its direct secretory contribution as Cl- channel might be small, compared to CFTR. In the kidneys ANO1 supports proximal tubular acid secretion and protein reabsorption and probably helps to excrete HCO3-in the collecting duct epithelium. However, under pathological conditions as in polycystic kidney disease, ANO1 is strongly upregulated and may cause enhanced proliferation and cyst growth. Under pathological condition, ANO1 and ANO6 are upregulated and operate as secretory channel/phospholipid scramblases, partly by supporting Ca2+-dependent processes. Much less is known about the role of other epithelial anoctamins whose potential functions are discussed in this review.


Subject(s)
Anoctamins , Humans , Animals , Anoctamins/metabolism , Calcium/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Anoctamin-1/metabolism
9.
ACS Sens ; 9(5): 2550-2557, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38659220

ABSTRACT

Acidification of the airway surface liquid in the respiratory system could play a role in the pathology of Cystic Fibrosis, but its low volume and proximity to the airway epithelium make it a challenging biological environment in which to noninvasively collect pH measurements. To address this challenge, we explored surface enhanced Raman scattering microsensors (SERS-MS), with a 4-mercaptobenzoic acid (MBA) pH reporter molecule, as pH sensors for the airway surface liquid of patient-derived in vitro models of the human airway. Using air-liquid interface (ALI) cultures to model the respiratory epithelium, we show that SERS-MS facilitates the optical measurement of trans-epithelial pH gradients between the airway surface liquid and the basolateral culture medium. SERS-MS also enabled the successful quantification of pH changes in the airway surface liquid following stimulation of the Cystic Fibrosis transmembrane conductance regulator (CFTR, the apical ion channel that is dysfunctional in Cystic Fibrosis airways). Finally, the influence of CFTR mutations on baseline airway surface liquid pH was explored by using SERS-MS to measure the pH in ALIs grown from Cystic Fibrosis and non-Cystic Fibrosis donors.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Spectrum Analysis, Raman , Humans , Spectrum Analysis, Raman/methods , Hydrogen-Ion Concentration , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Sulfhydryl Compounds/chemistry , Benzoates/chemistry
10.
Redox Rep ; 29(1): 2332038, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38563333

ABSTRACT

OBJECTIVES: Gentamicin is one of the most common ototoxic drugs that can lower patients' quality of life. Oxidative stress is a key factors inducing sensory hair cell death during gentamicin administration. So far, there are no effective drugs to prevent or treat gentamicin- induced hearing loss. A recent study found cystic fibrosis transmembrane conductance regulator (CFTR) as a new target to modulate cellular oxidative balance. The objective of this study was to estimate the effect of the CFTR activator ivacaftor on gentamicin-induced ototoxicity and determine its mechanism. METHODS: The hair cell count was analyzed by Myosin 7a staining. Apoptosis was analyzed by TUNEL Apoptosis Kit. Cellular reactive oxygen species (ROS) level was detected by DCFH-DA probes. The Nrf2 related proteins expression levels were analyzed by western blot. RESULTS: An in vitro cochlear explant model showed that gentamicin caused ROS accumulation in sensory hair cells and induced apoptosis, and this effect was alleviated by pretreatment with ivacaftor. Western blotting showed that ivacaftor administration markedly increased the protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO1), and NAD(P)H:quinone oxidoreductase 1 (NQO1). The protective effect of ivacaftor was abolished by the Nrf2 inhibitor ML385. DISCUSSION: Our results indicate the protective role of the CFTR-Nrf2-HO1/NQO1 pathway in gentamicin-induced ototoxicity. Ivacaftor may be repositioned or repurposed towards aminoglycosides-induced hearing loss.


Subject(s)
Aminophenols , Hearing Loss , Ototoxicity , Quinolones , Humans , Gentamicins/toxicity , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/pharmacology , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/pharmacology , Quality of Life , Oxidative Stress , Apoptosis , NAD(P)H Dehydrogenase (Quinone)/metabolism , NAD(P)H Dehydrogenase (Quinone)/pharmacology
11.
Biochim Biophys Acta Gene Regul Mech ; 1867(2): 195031, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679287

ABSTRACT

The cystic fibrosis transmembrane conductance regulator (CFTR) gene encodes an anion-selective channel found in epithelial cell membranes. Mutations in CFTR cause cystic fibrosis (CF), an inherited disorder that impairs epithelial function in multiple organs. Most men with CF are infertile due to loss of intact genital ducts. Here we investigated a novel epididymis-selective cis-regulatory element (CRE), located within a peak of open chromatin at -9.5 kb 5' to the CFTR gene promoter. Activation of the -9.5 kb CRE alone by CRISPRa had no impact on CFTR gene expression. However, CRISPRa co-activation of the -9.5 kb CRE and the CFTR gene promoter in epididymis cells significantly augmented CFTR mRNA and protein expression when compared to promoter activation alone. This increase was accompanied by enhanced chromatin accessibility at both sites. Furthermore, the combined CRISPRa strategy activated CFTR expression in other epithelial cells that lack open chromatin at the -9.5 kb site and in which the locus is normally inactive. However, the -9.5 kb CRE does not function as a classical enhancer of the CFTR promoter in transient reporter gene assays. These data provide a novel mechanism for activating/augmenting CFTR expression, which may have therapeutic utility for mutations that perturb CFTR transcription.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Epithelial Cells , Promoter Regions, Genetic , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Humans , Male , Animals , Gene Expression Regulation , Epididymis/metabolism , Chromatin/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Mice
12.
Int J Mol Sci ; 25(6)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38542363

ABSTRACT

Cystic fibrosis (CF) is a fatal autosomal recessive disorder caused by the loss of function mutations within a single gene for the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). CFTR is a chloride channel that regulates ion and fluid transport across various epithelia. The discovery of CFTR as the CF gene and its cloning in 1989, coupled with extensive research that went into the understanding of the underlying biological mechanisms of CF, have led to the development of revolutionary therapies in CF that we see today. The highly effective modulator therapies have increased the survival rates of CF patients and shifted the epidemiological landscape and disease prognosis. However, the differential effect of modulators among CF patients and the presence of non-responders and ineligible patients underscore the need to develop specialized and customized therapies for a significant number of patients. Recent advances in the understanding of the CFTR structure, its expression, and defined cellular compositions will aid in developing more precise therapies. As the lifespan of CF patients continues to increase, it is becoming critical to clinically address the extra-pulmonary manifestations of CF disease to improve the quality of life of the patients. In-depth analysis of the molecular signature of different CF organs at the transcriptional and post-transcriptional levels is rapidly advancing and will help address the etiological causes and variability of CF among patients and develop precision medicine in CF. In this review, we will provide an overview of CF disease, leading to the discovery and characterization of CFTR and the development of CFTR modulators. The later sections of the review will delve into the key findings derived from single-molecule and single-cell-level analyses of CFTR, followed by an exploration of disease-relevant protein complexes of CFTR that may ultimately define the etiological course of CF disease.


Subject(s)
Cystic Fibrosis , Humans , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Quality of Life , Precision Medicine , Signal Transduction , Mutation
13.
Respir Investig ; 62(3): 455-461, 2024 May.
Article in English | MEDLINE | ID: mdl-38547757

ABSTRACT

BACKGROUND: Many disease-causing variants in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene remain uncharacterized and untreated. Restoring the function of the impaired CFTR protein is the goal of personalized medicine, particularly in patients carrying rare CFTR variants. In this study, functional defects related to the rare R334W variant were evaluated after treatment with CFTR modulators or Roflumilast, a phosphodiesterase-4 inhibitor (PDE4i). METHODS: Rectal organoids from subjects with R334W/2184insA and R334W/2183AA > G genotypes were used to perform the Forskolin-induced swelling (FIS) assay. Organoids were left drug-untreated or treated with modulators VX-770 (I), VX-445 (E), and VX-661 (T) mixed, and their combination (ETI). Roflumilast (R) was used alone or as a combination of I + R. RESULTS: Our data show a significant increase in FIS rate following treatment with I alone. The combined use of modulators, such as ETI, did not increase further swelling than I alone, nor in protein maturation. Treatment with R shows an increase in FIS response similar to those of I, and the combination R + I significantly increases the rescue of CFTR activity. CONCLUSIONS: Equivalent I and ETI treatment efficacy was observed for both genotypes. Furthermore, significant organoid swelling was observed with combined I + R used that supports the recently published data describing a potentiating effect of only I in patients carrying the variant R334W and, at the same time, corroborating the role of strategies that include PDE4 inhibitors further to potentiate the effect of I for this variant.


Subject(s)
Aminopyridines , Benzamides , Cystic Fibrosis , Phosphodiesterase 4 Inhibitors , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/pharmacology , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/metabolism , Colforsin/metabolism , Colforsin/pharmacology , Organoids/metabolism , Mutation , Cyclopropanes
14.
J Med Chem ; 67(7): 5216-5232, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38527911

ABSTRACT

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) protein. This epithelial anion channel regulates the active transport of chloride and bicarbonate ions across membranes. Mutations result in reduced surface expression of CFTR channels with impaired functionality. Correctors are small molecules that support the trafficking of CFTR to increase its membrane expression. Such correctors can have different mechanisms of action. Combinations may result in a further improved therapeutic benefit. We describe the identification and optimization of a new pyrazolol3,4-bl pyridine-6-carboxylic acid series with high potency and efficacy in rescuing CFTR from the cell surface. Investigations showed that carboxylic acid group replacement with acylsulfonamides and acylsulfonylureas improved ADMET and PK properties, leading to the discovery of the structurally novel co-corrector GLPG2737. The addition of GLPG2737 to the combination of the potentiator GLPG1837 and C1 corrector 4 led to an 8-fold increase in the F508del CFTR activity.


Subject(s)
Cystic Fibrosis , Humans , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Mutation , Cell Membrane/metabolism , Carboxylic Acids/therapeutic use , Benzodioxoles/pharmacology , Aminopyridines/therapeutic use
15.
G Ital Nefrol ; 41(1)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38426679

ABSTRACT

Cystic fibrosis is an autosomal recessive disorder caused by mutations of the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The most recent therapeutic approach to cystic fibrosis aims to correct structural and functional abnormalities of CFTR protein. CFTR modulators including ivacaftor-tezacaftor-elexacaftor are used in patients with F508del mutation, with clinical improvement. To date, there are no experiences of CFTR modulator therapy in cystic fibrosis patients with organ transplantation and severe renal impairment. We report the case of a patient diagnosed with cystic fibrosis with F508del mutation, who underwent liver transplantation at the age of 19 and started hemodialysis at the age of 24 due to end-stage renal disease secondary to membranous glomerulonephritis. She was treated with Kaftrio (ivacaftor-tezacaftor-elexacaftor) with clinical benefits on appetite, improvement of body mass index, and reduction of pulmonary exacerbations. A reduction of dosage to 75% of the standard dose was required due to alterations of the liver function. Conclusions. Use of CFTR modulators in patient with cystic fibrosis, liver transplant and end-stage renal disease could be considered safe but a clinical and laboratoristic monitoring of hepatic function is needed.


Subject(s)
Aminophenols , Cystic Fibrosis , Kidney Failure, Chronic , Liver Transplantation , Quinolones , Female , Humans , Cystic Fibrosis/complications , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/therapeutic use , Kidney Failure, Chronic/complications , Kidney Failure, Chronic/surgery , Renal Dialysis , Mutation
16.
Physiology (Bethesda) ; 39(4): 0, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38501963

ABSTRACT

Cystic fibrosis (CF) is an inherited disorder caused by a deleterious mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Given that the CFTR protein is a chloride channel expressed on a variety of cells throughout the human body, mutations in this gene impact several organs, particularly the lungs. For this very reason, research regarding CF disease and CFTR function has historically focused on the lung airway epithelium. Nevertheless, it was discovered more than two decades ago that CFTR is also expressed and functional on endothelial cells. Despite the great strides that have been made in understanding the role of CFTR in the airway epithelium, the role of CFTR in the endothelium remains unclear. Considering that the airway epithelium and endothelium work in tandem to allow gas exchange, it becomes very crucial to understand how a defective CFTR protein can impact the pulmonary vasculature and overall lung function. Fortunately, more recent research has been dedicated to elucidating the role of CFTR in the endothelium. As a result, several vascular dysfunctions associated with CF disease have come to light. Here, we summarize the current knowledge on pulmonary vascular dysfunctions in CF and discuss applicable therapies.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Lung , Humans , Cystic Fibrosis/physiopathology , Cystic Fibrosis/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Animals , Lung/metabolism , Lung/physiopathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Endothelium, Vascular/pathology , Mutation , Pulmonary Circulation/physiology
17.
Molecules ; 29(4)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38398574

ABSTRACT

The monogenic rare disease Cystic Fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance (CFTR) protein, an anion channel expressed at the apical plasma membrane of epithelial cells. The discovery and subsequent development of CFTR modulators-small molecules acting on the basic molecular defect in CF-have revolutionized the standard of care for people with CF (PwCF), thus drastically improving their clinical features, prognosis, and quality of life. Currently, four of these drugs are approved for clinical use: potentiator ivacaftor (VX-770) alone or in combination with correctors lumacaftor, (VX-809), tezacaftor (VX-661), and elexacaftor (VX-445). Noteworthily, the triple combinatorial therapy composed of ivacaftor, tezacaftor, and elexacaftor constitutes the most effective modulator therapy nowadays for the majority of PwCF. In this review, we exploit the organic synthesis of ivacaftor, tezacaftor, and elexacaftor by providing a retrosynthetic drug analysis for these CFTR modulators. Furthermore, we describe the current understanding of the mechanisms of action (MoA's) of these compounds by discussing several studies that report the key findings on the molecular mechanisms underlying their action on the CFTR protein.


Subject(s)
Aminopyridines , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Indoles , Pyrazoles , Pyridines , Pyrrolidines , Quinolones , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Quality of Life , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Benzodioxoles/pharmacology , Benzodioxoles/therapeutic use , Aminophenols/pharmacology , Aminophenols/therapeutic use , Mutation , Chemistry Techniques, Synthetic
18.
Am J Physiol Renal Physiol ; 326(4): F600-F610, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38299213

ABSTRACT

The transcription factor farnesoid X receptor (FXR) regulates energy metabolism. Specifically, FXR functions to regulate cystic fibrosis transmembrane conductance regulator (CFTR)-mediated Cl- secretion in intestinal epithelial cells. Therefore, this study aimed to investigate the role of FXR in CFTR-mediated Cl- secretion in renal tubular cells and to further elucidate its effects on renal cyst formation and growth. CFTR-mediated Cl- transport was evaluated via short-circuit current (ISC) measurements in Madin-Darby canine kidney (MDCK) cell monolayers and primary rat inner medullary collecting duct cells. The role of FXR in renal cyst formation and growth was determined by the MDCK cell-derived cyst model. Incubation with synthesized (GW4064) and endogenous (CDCA) FXR ligands reduced CFTR-mediated Cl- secretion in a concentration- and time-dependent manner. The inhibitory effect of FXR ligands was not due to the result of reduced cell viability and was attenuated by cotreatment with an FXR antagonist. FXR activation significantly decreased CFTR protein but not its mRNA. In addition, FXR activation inhibited CFTR-mediated Cl- secretion in primary renal collecting duct cells. FXR activation decreased ouabain-sensitive ISC without altering Na+-K+-ATPase mRNA and protein levels. Furthermore, FXR activation significantly reduced the number of cysts and renal cyst expansion. These inhibitory effects were correlated with a decrease in the expression of protein synthesis regulators mammalian target of rapamycin/S6 kinase. This study shows that FXR activation inhibits Cl- secretion in renal cells via inhibition of CFTR expression and retards renal cyst formation and growth. The discoveries point to a physiological role of FXR in the regulation of CFTR and a potential therapeutic application in polycystic kidney disease treatment.NEW & NOTEWORTHY The present study reveals that farnesoid X receptor (FXR) activation reduces microcyst formation and enlargement. This inhibitory effect of FXR activation is involved with decreased cell proliferation and cystic fibrosis transmembrane conductance regulator-mediated Cl- secretion in renal collecting duct cells. FXR might represent a novel target for the treatment of autosomal dominant polycystic kidney disease.


Subject(s)
Cysts , Polycystic Kidney Diseases , Animals , Dogs , Rats , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Kidney/metabolism , Polycystic Kidney Diseases/metabolism , Madin Darby Canine Kidney Cells , Cysts/metabolism , RNA, Messenger/metabolism , Chlorides/metabolism , Mammals/genetics , Mammals/metabolism
19.
J Physiol ; 602(6): 1065-1083, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38389307

ABSTRACT

Type 1 diabetes is a disease of the endocrine pancreas; however, it also affects exocrine function. Although most studies have examined the effects of diabetes on acinar cells, much less is known regarding ductal cells, despite their important protective function in the pancreas. Therefore, we investigated the effect of diabetes on ductal function. Diabetes was induced in wild-type and cystic fibrosis transmembrane conductance regulator (CFTR) knockout mice following an i.p. administration of streptozotocin. Pancreatic ductal fluid and HCO3 - secretion were determined using fluid secretion measurements and fluorescence microscopy, respectively. The expression of ion transporters was measured by real-time PCR and immunohistochemistry. Transmission electron microscopy was used for the morphological characterization of the pancreas. Serum secretin and cholecystokinin levels were measured by an enzyme-linked immunosorbent assay. Ductal fluid and HCO3 - secretion, CFTR activity, and the expression of CFTR, Na+ /H+ exchanger-1, anoctamine-1 and aquaporin-1 were significantly elevated in diabetic mice. Acute or chronic glucose treatment did not affect HCO3 - secretion, but increased alkalizing transporter activity. Inhibition of CFTR significantly reduced HCO3 - secretion in both normal and diabetic mice. Serum levels of secretin and cholecystokinin were unchanged, but the expression of secretin receptors significantly increased in diabetic mice. Diabetes increases fluid and HCO3 - secretion in pancreatic ductal cells, which is associated with the increased function of ion and water transporters, particularly CFTR. KEY POINTS: There is a lively interaction between the exocrine and endocrine pancreas not only under physiological conditions, but also under pathophysiological conditions The most common disease affecting the endocrine part is type-1 diabetes mellitus (T1DM), which is often associated with pancreatic exocrine insufficiency Compared with acinar cells, there is considerably less information regarding the effect of diabetes on pancreatic ductal epithelial cells, despite the fact that the large amount of fluid and HCO3 - produced by ductal cells is essential for maintaining normal pancreatic functions Ductal fluid and HCO3 - secretion increase in T1DM, in which increased cystic fibrosis transmembrane conductance regulator activation plays a central role. We have identified a novel interaction between T1DM and ductal cells. Presumably, the increased ductal secretion represents a defence mechanism in the prevention of diabetes, but further studies are needed to clarify this issue.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Animals , Mice , Bicarbonates/metabolism , Cholecystokinin/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/metabolism , Pancreatic Ducts/metabolism , Secretin/metabolism
20.
Curr Opin Pediatr ; 36(3): 290-295, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38411576

ABSTRACT

PURPOSE OF REVIEW: Traditional cystic fibrosis (CF) care had been focused on early intervention and symptom mitigation. With the advent of highly effective cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy (HEMT), in particular, the approval of elexacaftor/tezacaftor/ivacaftor in 2019, there has been a dramatic improvement in outcomes in CF. The purpose of this article is to review the benefits, limitations, and impact of HEMT as well as discuss the new implications, challenges, and hope that modulators bring to people with CF (pwCF). RECENT FINDINGS: HEMT has demonstrated sustained improvement in lung function, nutrition, quality of life, and survival for over 90% of pwCF. As HEMT has delivered such promise, there is a small but significant portion of pwCF who do not benefit from HEMT due to ineligible mutations, intolerance, or lack of accessibility to modulators. SUMMARY: HEMT has significantly improved outcomes, but continued research is needed to understand the new challenges and implications the era of HEMT will bring, as well as how to provide equitable care to those who are unable to benefit from HEMT.


Subject(s)
Aminophenols , Benzodioxoles , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Drug Combinations , Pyrazoles , Pyrrolidines , Quinolones , Humans , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Aminophenols/therapeutic use , Benzodioxoles/therapeutic use , Quinolones/therapeutic use , Pyrazoles/therapeutic use , Indoles/therapeutic use , Treatment Outcome , Pyridines/therapeutic use , Quinolines/therapeutic use , Chloride Channel Agonists/therapeutic use , Quality of Life
SELECTION OF CITATIONS
SEARCH DETAIL
...