Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
J Pharmacol Toxicol Methods ; 127: 107516, 2024.
Article in English | MEDLINE | ID: mdl-38777239

ABSTRACT

BACKGROUND AND OBJECTIVES: A genetic algorithm (GA) approach was developed to predict drug-drug interactions (DDIs) caused by cytochrome P450 2C8 (CYP2C8) inhibition or cytochrome P450 2B6 (CYP2B6) inhibition or induction. Nighty-eight DDIs, obtained from published in vivo studies in healthy volunteers, have been considered using the area under the plasma drug concentration-time curve (AUC) ratios (i.e., ratios of AUC of the drug substrate administered in combination with a DDI perpetrator to AUC of the drug substrate administered alone) to describe the extent of DDI. METHODS: The following parameters were estimated in this approach: the contribution ratios (CRCYP2B6 and CRCYP2C8, i.e., the fraction of the dose metabolized via CYP2B6 or CYP2C8, respectively) and the inhibitory or inducing potency of the perpetrator drug (IRCYP2B6, IRCYP2C8 and ICCYP2B6, for inhibition of CYP2B6 and CYP2C8, and induction of CYP2B6, respectively). The workflow consisted of three main phases. First, the initial estimates of the parameters were estimated through GA. Then, the model was validated using an external validation. Finally, the parameter values were refined via a Bayesian orthogonal regression using all data. RESULTS: The AUC ratios of 5 substrates, 11 inhibitors and 19 inducers of CYP2B6, and the AUC ratios of 19 substrates and 23 inhibitors of CYP2C8 were successfully predicted by the developed methodology within 50-200% of observed values. CONCLUSIONS: The approach proposed in this work may represent a useful tool for evaluating the suitable doses of a CYP2C8 or CYP2B6 substrates co-administered with perpetrators.


Subject(s)
Algorithms , Area Under Curve , Cytochrome P-450 CYP2B6 , Cytochrome P-450 CYP2C8 , Drug Interactions , Drug Interactions/physiology , Cytochrome P-450 CYP2B6/metabolism , Cytochrome P-450 CYP2B6/genetics , Humans , Cytochrome P-450 CYP2C8/metabolism , Cytochrome P-450 CYP2C8/genetics , Cytochrome P-450 CYP2C8 Inhibitors/pharmacology , Cytochrome P-450 CYP2B6 Inhibitors/pharmacology , Cytochrome P-450 CYP2B6 Inhibitors/pharmacokinetics , Bayes Theorem
2.
Clin Pharmacokinet ; 63(1): 43-56, 2024 01.
Article in English | MEDLINE | ID: mdl-37921907

ABSTRACT

BACKGROUND AND OBJECTIVE: Early investigations into drug-drug interactions (DDIs) involving cytochrome P450 2C8 (CYP2C8) have highlighted the complexity of interactions between CYP2C8 substrate drugs, including montelukast, desloratadine, pioglitazone, repaglinide, and cerivastatin (the latter two being OATP1B1 substrates), and standardized CYP2C8 inhibitors such as clopidogrel (Clop) and gemfibrozil (Gem). These interactions have proven challenging to predict based solely on simple CYP inhibition. A hypothesis has emerged suggesting that these substrate drugs first distribute to UDP-glucuronosyltransferase (UGT) before undergoing oxidation by CYP2C8, resulting in bidirectional elimination. The process of drug distribution to UGT is believed to significantly impact these DDIs. This study aims to explore the intricate interplay between UGT and CYP2C8 in the context of DDIs involving CYP2C8 substrates affected by Clop and Gem. METHODS: Plasma-level data for the unchanged drug and its metabolite, drawn from the respective literature, formed the basis of our analysis. We evaluated the enzymatic inhibitory activities of DDIs and utilized simulations to estimate plasma levels of the unchanged victim drug and its metabolite in each DDI. This was accomplished by employing a functional relationship that considered the fractional contributions of CYP2C8 and UGT to clearance, perpetrator-specific inhibitory activities against CYP2C8, and drug distribution to UGT. RESULTS: Our findings emphasize the pivotal role of UGT-mediated distribution in the context of CYP2C8 substrate metabolism, particularly in the complex DDIs induced by Clop and Gem. In these DDIs, Gem exerts inhibitory effects on both UGT and CYP2C8, whereas Clop (specifically its metabolite, Clop-COOH) solely targets CYP2C8. Importantly, the inhibition of CYP2C8 by both Clop and Gem is achieved through a non-competitive mechanism, driven by the actions of their acyl-glucuronides. Clop and Gem exhibit inhibition activities accounting for 85% (pAi,CYP2C8 = 7) and 93% (pAi,CYP2C8 = 15), respectively. In contrast, Gem's inhibition of UGT is relatively modest (50%, pAi,UGT(d) = 2), and it operates through a non-specific, competitive process in drug distribution to UGT. Within this context, our UGT-CYP2C8 interplay model offers an accurate means of predicting the alterations resulting from DDIs, encompassing changes in plasma levels of the unchanged drug and its metabolites, as well as shifts in metabolite formation rates. Our analysis highlights the critical importance of considering the fractional contributions of CYP2C8 and UGT to the victim drug's clearance (fm,CYP2C8; fm,UGT) in DDI prediction. Furthermore, our examination of DDIs involving OATP1B1 substrate drugs underscores that accounting for the hepatic uptake transporters' role in the liver is superfluous in DDI prediction. CONCLUSION: These findings substantially enhance our comprehension of CYP2C8-mediated oxidation and DDIs, holding crucial implications for drug development and the planning of clinical trials involving these inhibitors.


Subject(s)
Cytochrome P-450 CYP2C8 Inhibitors , Gemfibrozil , Humans , Gemfibrozil/pharmacology , Cytochrome P-450 CYP2C8/metabolism , Clopidogrel , Cytochrome P-450 CYP2C8 Inhibitors/pharmacology , Glucuronosyltransferase , Drug Interactions , Uridine Diphosphate
3.
Pharm Biol ; 60(1): 1-8, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34860644

ABSTRACT

CONTEXT: As an inhibitor cytochrome P450 family 2 subfamily C polypeptide 8 (CYP2C8), quercetin is a naturally occurring flavonoid with its glycosides consumed at least 100 mg per day in food. However, it is still unknown whether quercetin and selexipag interact. OBJECTIVE: The study investigated the effect of quercetin on the pharmacokinetics of selexipag and ACT-333679 in beagles. MATERIALS AND METHODS: The ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to investigate the pharmacokinetics of orally administered selexipag (2 mg/kg) with and without quercetin (2 mg/kg/day for 7 days) pre-treatment in beagles. The effect of quercetin on the pharmacokinetics of selexipag and its potential mechanism was studied through the pharmacokinetic parameters. RESULTS: The assay method was validated for selexipag and ACT-333679, and the lower limit of quantification for both was 1 ng/mL. The recovery and the matrix effect of selexipag were 84.5-91.58% and 94.98-99.67%, while for ACT-333679 were 81.21-93.90% and 93.17-99.23%. The UPLC-MS/MS method was sensitive, accurate and precise, and had been applied to the herb-drug interaction study of quercetin with selexipag and ACT-333679. Treatment with quercetin led to an increased in Cmax and AUC0-t of selexipag by about 43.08% and 26.92%, respectively. While the ACT-333679 was about 11.11% and 18.87%, respectively. DISCUSSION AND CONCLUSION: The study indicated that quercetin could inhibit the metabolism of selexipag and ACT-333679 when co-administration. Therefore, the clinical dose of selexipag should be used with caution when co-administered with foods high in quercetin.


Subject(s)
Acetamides/pharmacokinetics , Acetates/pharmacokinetics , Cytochrome P-450 CYP2C8 Inhibitors/pharmacology , Pyrazines/pharmacokinetics , Quercetin/pharmacology , Animals , Antihypertensive Agents/pharmacokinetics , Area Under Curve , Chromatography, High Pressure Liquid , Dogs , Female , Herb-Drug Interactions , Male , Tandem Mass Spectrometry
4.
Biochem Biophys Res Commun ; 589: 85-91, 2022 01 22.
Article in English | MEDLINE | ID: mdl-34896780

ABSTRACT

Chemotherapy is the mainstay of treatment for prostate cancer, with paclitaxel being commonly used for hormone-resistant prostate cancer. However, drug resistance often develops and leads to treatment failure in a variety of prostate cancer patients. Therefore, it is necessary to enhance the sensitivity of prostate cancer to chemotherapy. Lovastatin (LV) is a natural compound extracted from Monascus-fermented foods and is an inhibitor of HMG-CoA reductase (HMGCR), which has been approved by the FDA for hyperlipidemia treatment. We have previously found that LV could inhibit the proliferation of refractory cancer cells. Up to now, the effect of LV on chemosensitization and the mechanisms involved have not been evaluated in drug-resistant prostate cancer. In this study, we used prostate cancer cell line PC3 and its paclitaxel-resistant counterpart PC3-TxR as the cell model. Alamar Blue cell viability assay showed that LV and paclitaxel each conferred concentration-dependent inhibition of PC3-TxR cells. When paclitaxel was combined with LV, the proliferation of PC3-TxR cells was synergistically inhibited, as demonstrated by combination index <1. Moreover, colony formation decreased while apoptosis increased in paclitaxel plus LV group compared with paclitaxel alone group. Quantitative RT-PCR showed that the combination of paclitaxel and LV could significantly reduce the expression of CYP2C8, an important drug-metabolizing enzyme. Bioinformatics analysis from the TCGA database showed that CYP2C8 expression was negatively correlated with progression-free survival (PFS) in prostate cancer patients. Our results suggest that LV might increase the sensitivity of resistant prostate cancer cells to paclitaxel through inhibition of CYP2C8 and could be utilized as a chemosensitizer for paclitaxel-resistant prostate cancer cells.


Subject(s)
Cytochrome P-450 CYP2C8 Inhibitors/pharmacology , Cytochrome P-450 CYP2C8/metabolism , Drug Resistance, Neoplasm , Lovastatin/pharmacology , Paclitaxel/pharmacology , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/pathology , Cell Line, Tumor , Cytochrome P-450 CYP2C8/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Drug Synergism , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Kaplan-Meier Estimate , Male , Models, Biological , Prognosis , Prostatic Neoplasms/genetics
5.
ChemMedChem ; 16(24): 3653-3662, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34582626

ABSTRACT

Bruton's tyrosine kinase (BTK) is a member of the Tec kinase family that is expressed in cells of hematopoietic lineage. Evidence has shown that inhibition of BTK has clinical benefit for the treatment of a wide array of autoimmune and inflammatory diseases. Previously we reported the discovery of a novel nicotinamide selectivity pocket (SP) series of potent and selective covalent irreversible BTK inhibitors. The top molecule 1 of that series strongly inhibited CYP2C8 (IC50 =100 nM), which was attributed to the bridged linker group. However, our effort on the linker replacement turned out to be fruitless. With the study of the X-ray crystal structure of compound 1, we envisioned the opportunity of removal of this liability via transposition of the linker moiety in 1 from C6 to C5 position of the pyridine core. With this strategy, our optimization led to the discovery of a novel series, in which the top molecule 18 A displayed reduced CYP inhibitory activity and good potency. To further explore this new series, different warheads besides acrylamide, for example cyanamide, were also tested. However, this effort didn't lead to the discovery of molecules with better potency than 18 A. The loss of potency in those molecules could be related to the reduced reactivity of the warhead or reversible binding mode. Further profiling of 18 A disclosed that it had a strong hERG (human Ether-a-go-go Related Gene) inhibition, which could be related to the phenoxyphenyl group.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Cytochrome P-450 CYP2C8 Inhibitors/pharmacology , Cytochrome P-450 CYP2C8/metabolism , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Agammaglobulinaemia Tyrosine Kinase/metabolism , Cytochrome P-450 CYP2C8 Inhibitors/chemical synthesis , Cytochrome P-450 CYP2C8 Inhibitors/chemistry , Dose-Response Relationship, Drug , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/metabolism , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
6.
Chem Res Toxicol ; 34(8): 1850-1859, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34255486

ABSTRACT

Cytochrome P450 2C8 (CYP2C8) is a major drug-metabolizing enzyme in humans and is responsible for the metabolism of ∼5% drugs in clinical use. Thus, inhibition of CYP2C8, which causes potential adverse drug events, cannot be neglected. The in vitro drug interaction studies guidelines for industry issued by the FDA also point out that it needs to be determined whether investigated drugs are CYP2C8 inhibitors before clinical trials. However, current studies mainly focus on predicting the inhibitors of other major P450 enzymes, and the importance of CYP2C8 inhibition has been overlooked. Therefore, there is a need to develop models for identifying potential CYP2C8 inhibition. In this study, in silico classification models for predicting CYP2C8 inhibition were built by five machine-learning methods combined with nine molecular fingerprints. The performance of the models built was evaluated by test and external validation sets. The best model had AUC values of 0.85 and 0.90 for the test and external validation sets, respectively. The applicability domain was analyzed based on the molecular similarity and exhibited an impact on the improvement of prediction accuracy. Furthermore, several representative privileged substructures such as 1H-benzo[d]imidazole, 1-phenyl-1H-pyrazole, and quinoline were identified by information gain and substructure frequency analysis. Overall, our results would be helpful for the prediction of CYP2C8 inhibition.


Subject(s)
Cytochrome P-450 CYP2C8 Inhibitors/chemistry , Cytochrome P-450 CYP2C8 Inhibitors/pharmacology , Cytochrome P-450 CYP2C8/metabolism , Computer Simulation , Drug Discovery , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Machine Learning , Molecular Docking Simulation , Pyrazoles/chemistry , Pyrazoles/pharmacology
7.
J Med Chem ; 64(12): 8437-8446, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34097831

ABSTRACT

Paclitaxel (PTX) is a first-line treatment in breast cancer, though resistance develops quickly and frequently. Cytochrome P450 enzymes CYP3A4 and CYP2C8, which metabolically inactivate PTX in hepatic tissue, are overexpressed in malignant breast tissues. CYP3A4 expression correlates with PTX therapy failure and poor outcomes, though no direct evidence of CYP3A4 contributing to PTX sensitivity exists. Because CYP3A4/2C8 is susceptible to carbon monoxide (CO)-mediated inhibition and CO (a gaseous signaling molecule) has previously exhibited drug-sensitizing effects in cancer cells, we hypothesized that CO-mediated inhibition of CYP3A4/2C8 could lead to enhanced drug sensitivity. Using a photo-activated CO-releasing molecule, we have assessed the ability of CO to alter the pharmacokinetics of PTX in breast cancer cells via inhibition of CYP3A4/2C8 and determined that CO does enhance sensitivity of breast cancer cells to PTX. Inhibition of CYP3A4/2C8 by CO could therefore be a promising therapeutic strategy to enhance PTX response in breast cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Carbon Monoxide/pharmacology , Cytochrome P-450 CYP2C8 Inhibitors/pharmacology , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Paclitaxel/pharmacology , Antineoplastic Agents/pharmacokinetics , Carbon Monoxide/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Chloramphenicol/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/radiation effects , Cytochrome P-450 CYP2C8/metabolism , Cytochrome P-450 CYP2C8 Inhibitors/radiation effects , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A Inhibitors/radiation effects , Drug Screening Assays, Antitumor , Humans , Light , Manganese/chemistry , Paclitaxel/pharmacokinetics
8.
Chem Biol Interact ; 338: 109401, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33556367

ABSTRACT

The tyrosine kinase inhibitor sorafenib (SOR) is being used increasingly in combination with other anticancer agents like paclitaxel, but this increases the potential for drug toxicity. SOR inhibits several human CYPs, including CYP2C8, which is a major enzyme in the elimination of oncology drugs like paclitaxel and imatinib. It has been reported that CYP2C8 inhibition by SOR in human liver microsomes is potentiated by NADPH-dependent biotransformation. This implicates a SOR metabolite in enhanced inhibition, although the identity of that metabolite is presently unclear. The present study evaluated the capacity of the major N-oxide metabolite of SOR (SNO) to inhibit CYP2C8-dependent paclitaxel 6α-hydroxylation. The IC50 of SNO against CYP2C8 activity was found to be 3.7-fold lower than that for the parent drug (14 µM versus 51 µM). In molecular docking studies, both SOR and SNO interacted with active site residues in CYP2C8, but four additional major hydrogen and halogen bonding interactions were identified between SNO and amino acids in the B-B' loop region and helixes F' and I that comprise the catalytic region of the enzyme. In contrast, the binding of both SOR and SNO to active site residues in the closely related human CYP2C9 enzyme was similar, as were the IC50s determined against CYP2C9-mediated losartan oxidation. These findings suggest that the active metabolite SNO could impair the elimination of coadministered drugs that are substrates for CYP2C8, and mediate toxic adverse events, perhaps in those individuals in whom SNO is formed extensively.


Subject(s)
Cytochrome P-450 CYP2C8 Inhibitors/pharmacology , Cytochrome P-450 CYP2C8/chemistry , Cytochrome P-450 CYP2C8/metabolism , Metabolome , Molecular Docking Simulation , Oxides/pharmacology , Sorafenib/metabolism , Sorafenib/pharmacology , Adult , Biotransformation/drug effects , Catalytic Domain , Humans , Losartan/pharmacology , Male , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Middle Aged , Oxidation-Reduction , Substrate Specificity/drug effects
9.
J Neurosci ; 41(10): 2287-2300, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33514677

ABSTRACT

Parkinson's disease (PD) is the most common neurodegenerative movement disorder in humans. Despite intense investigations, effective therapies are not yet available to halt the progression of PD. Gemfibrozil, a Food and Drug Administration-approved lipid-lowering drug, is known to decrease the risk of coronary heart disease by increasing the level of high-density lipoprotein cholesterol and decreasing the level of low-density lipoprotein cholesterol. This study underlines the importance of gemfibrozil in protecting dopaminergic neurons in an animal model of PD. Oral administration of the human equivalent dose of gemfibrozil protected tyrosine hydroxylase (TH)-positive dopaminergic neurons in the substantia nigra pars compacta and TH fibers in the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-insulted mice of both sexes. Accordingly, gemfibrozil also normalized striatal neurotransmitters and improved locomotor activities in MPTP-intoxicated mice. Gemfibrozil-mediated protection of the nigrostriatal and locomotor activities in WT but not PPARα-/- mice from MPTP intoxication suggests that gemfibrozil needs the involvement of peroxisome proliferator-activated receptor α (PPARα) in protecting dopaminergic neurons. While investigating further mechanisms, we found that gemfibrozil stimulated the transcription of glial-derived neurotrophic factor (GDNF) gene in astrocytes via PPARα and that gemfibrozil protected nigral neurons, normalized striatal fibers and neurotransmitters, and improved locomotor activities in MPTP-intoxicated Gfafcre mice, but not GdnfΔastro mice lacking GDNF in astrocytes. These findings highlight the importance of the PPARα-dependent astroglial GDNF pathway in gemfibrozil-mediated protection of dopaminergic neurons in an animal model of PD and suggest the possible therapeutic use of gemfibrozil in PD patients.SIGNIFICANCE STATEMENT Increasing the level of glial cell-derived neurotrophic factor (GDNF) in the brain is important for the protection of dopamine neurons in Parkinson's disease (PD). Although gene manipulation and GDNF protein infusion into the brain are available options, it seems from the therapeutic angle that the best option would be to stimulate/induce the production of GDNF in vivo in the brain of PD patients. Here, we delineate that gemfibrozil, a lipid-lowering drug, stimulates GDNF in astrocytes via peroxisome proliferator-activated receptor α (PPARα). Moreover, gemfibrozil protected nigral neurons, normalized striatal fibers and neurotransmitters, and improved locomotor activities from MPTP toxicity via the PPARα-dependent astroglial GDNF pathway. These studies highlight a new property of gemfibrozil and suggest its possible therapeutic use in PD patients.


Subject(s)
Astrocytes/drug effects , Dopaminergic Neurons/drug effects , Gemfibrozil/pharmacology , Glial Cell Line-Derived Neurotrophic Factor/metabolism , PPAR alpha/metabolism , Parkinsonian Disorders/pathology , Animals , Astrocytes/metabolism , Brain/drug effects , Brain/metabolism , Brain/pathology , Cytochrome P-450 CYP2C8 Inhibitors/pharmacology , Dopaminergic Neurons/metabolism , Mice , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Parkinsonian Disorders/metabolism , Signal Transduction/drug effects
10.
Bioorg Med Chem Lett ; 30(21): 127571, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32980515

ABSTRACT

NLRP3 inflammasome mediated release of interleukin-1ß (IL-1ß) has been implicated in various diseases, including COVID-19. In this study, rationally designed alkenyl sulfonylurea derivatives were identified as novel, potent and orally bioavailable NLRP3 inhibitors. Compound 7 was found to be potent (IL-1ß IC50 = 35 nM; IL-18 IC50 = 33 nM) and selective NLRP3 inflammasome inhibitor with excellent pharmacokinetic profile having oral bioavailability of 99% in mice.


Subject(s)
Inflammasomes/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Sulfonylurea Compounds/pharmacology , Administration, Oral , Animals , Betacoronavirus , COVID-19 , Cell Line, Tumor , Coronavirus Infections , Cytochrome P-450 CYP2C8 Inhibitors/administration & dosage , Cytochrome P-450 CYP2C8 Inhibitors/chemical synthesis , Cytochrome P-450 CYP2C8 Inhibitors/pharmacokinetics , Cytochrome P-450 CYP2C8 Inhibitors/pharmacology , Cytochrome P-450 CYP2C9 Inhibitors/administration & dosage , Cytochrome P-450 CYP2C9 Inhibitors/chemical synthesis , Cytochrome P-450 CYP2C9 Inhibitors/pharmacokinetics , Cytochrome P-450 CYP2C9 Inhibitors/pharmacology , Dogs , Drug Stability , Humans , Interleukin-1beta/antagonists & inhibitors , Mice, Inbred C57BL , Microsomes, Liver/metabolism , Molecular Structure , Pandemics , Pneumonia, Viral , Rats , SARS-CoV-2 , Structure-Activity Relationship , Sulfonylurea Compounds/administration & dosage , Sulfonylurea Compounds/chemical synthesis , Sulfonylurea Compounds/pharmacokinetics
11.
J Med Chem ; 63(13): 7293-7325, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32502336

ABSTRACT

The ATR kinase plays a key role in the DNA damage response by activating essential signaling pathways of DNA damage repair, especially in response to replication stress. Because DNA damage and replication stress are major sources of genomic instability, selective ATR inhibition has been recognized as a promising new approach in cancer therapy. We now report the identification and preclinical evaluation of the novel, clinical ATR inhibitor BAY 1895344. Starting from quinoline 2 with weak ATR inhibitory activity, lead optimization efforts focusing on potency, selectivity, and oral bioavailability led to the discovery of the potent, highly selective, orally available ATR inhibitor BAY 1895344, which exhibited strong monotherapy efficacy in cancer xenograft models that carry certain DNA damage repair deficiencies. Moreover, combination treatment of BAY 1895344 with certain DNA damage inducing chemotherapy resulted in synergistic antitumor activity. BAY 1895344 is currently under clinical investigation in patients with advanced solid tumors and lymphomas (NCT03188965).


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Morpholines/administration & dosage , Morpholines/pharmacokinetics , Pyrazoles/administration & dosage , Pyrazoles/pharmacokinetics , Administration, Oral , Animals , Antineoplastic Agents/chemistry , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Ataxia Telangiectasia Mutated Proteins/chemistry , Ataxia Telangiectasia Mutated Proteins/metabolism , Biological Availability , Carboplatin/administration & dosage , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Cytochrome P-450 CYP2C8 Inhibitors/chemistry , Cytochrome P-450 CYP2C8 Inhibitors/pharmacology , DNA Repair/drug effects , Dogs , Drug Discovery , Drug Screening Assays, Antitumor , Drug Stability , Female , Humans , Mice, SCID , Microsomes, Liver/drug effects , Morpholines/chemistry , Pyrazoles/chemistry , Rats, Wistar , Structure-Activity Relationship , Xenograft Model Antitumor Assays
12.
Biotech Histochem ; 95(7): 532-539, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32242747

ABSTRACT

Nephrotoxicity is a significant side effect of doxorubicin (DXN) treatment. We investigated the protective effect of gemfibrozil (GEM) co-administration with DXN on DXN induced nephrotoxicity. We divided 28 male Wistar rats into four groups of seven. Group 1 received normal saline for 2 weeks. Group 2 received 15 mg/kg DXN for 2 weeks. Group 3 received DXN + GEM for 2 weeks. Group 4 received GEM for 2 weeks. On day 15 of the experiment, blood samples were collected, animals were sacrificed and kidneys were excised for biochemical and histological evaluation. We measured serum creatinine, blood urine nitrogen, renal malondialdehyde, nitric oxide, glutathione, superoxide dismutase, glutathione peroxidase, catalase, tumor necrosis factor-α and interleukin-1ß. GEM administration mitigated DXN induced nephrotoxicity. GEM co-administered with DXN attenuated the inflammatory and oxidative responses associated with DXN induced nephrotoxicity.


Subject(s)
Antibiotics, Antineoplastic/toxicity , Doxorubicin/toxicity , Gemfibrozil/pharmacology , Inflammation/chemically induced , Kidney Diseases/chemically induced , Oxidative Stress/drug effects , Animals , Cytochrome P-450 CYP2C8 Inhibitors/pharmacology , Inflammation/drug therapy , Kidney/drug effects , Kidney/pathology , Kidney Diseases/pathology , Male , Random Allocation , Rats , Rats, Wistar
13.
Drug Metab Pharmacokinet ; 34(1): 87-94, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30528339

ABSTRACT

The purpose of this study was to elucidate the involvement of Mate1 in the tubular secretion of trimethoprim and saturation of Mate1-mediated efflux to address the mechanisms underlying the pharmacokinetic drug interactions with trimethoprim. Trimethoprim is a more potent inhibitor of MATE2-K than MATE1 with Ki values (µM) of 0.030-0.28 and 2.4-5.9, respectively. Trimethoprim is a substrate of human MATE1 and MATE2-K with Km values of 2.3 ± 0.9 and 0.018 ± 0.004 µM, and mouse Mate1, but not human OCT2, mouse Oct1 and Oct2. Pyrimethamine significantly reduced the renal clearance (CLR) of trimethoprim (mL/min/kg) from 40.0 ± 5.1 to 20.1 ± 3.7 (p < 0.05). Trimethoprim was given to mice at three infusion rates (150, 500, and 1500 nmol/min/kg). Together with an increase in the plasma concentrations of trimethoprim, the CLR (mL/min/kg) of trimethoprim decreased to 25.9 ± 3.2, 13.5 ± 5.7, and 8.92 ± 1.50 at the respective rates. Trimethoprim decreased the CLR of rhodamine 123 in an infusion rate-dependent manner: 11.5 ± 1.3 (control), 5.17 ± 1.55, 1.31 ± 0.50, and 0.532 ± 0.180. These results suggest that Mate1 mediates the tubular secretion of trimethoprim, and at therapeutic doses, MATEs-mediated efflux can be saturated, and thereby, cause drug interactions with other MATE substrates.


Subject(s)
Cytochrome P-450 CYP2C8 Inhibitors/metabolism , Kidney/metabolism , Nonlinear Dynamics , Organic Cation Transport Proteins/metabolism , Trimethoprim/metabolism , Animals , Cytochrome P-450 CYP2C8 Inhibitors/pharmacology , Dose-Response Relationship, Drug , Drug Interactions/physiology , HEK293 Cells , Humans , Kidney/drug effects , Male , Mice , Trimethoprim/pharmacology
14.
Basic Clin Pharmacol Toxicol ; 123(6): 739-748, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29956478

ABSTRACT

Several protein kinase inhibitors have been reported to affect cytochrome P450 (CYP) 3A by time-dependent inhibition. Herein, we tested a set of six kinase inhibitors for time-dependent inhibition of CYP2C8 and CYP3A4 in human liver microsomes. Dovitinib, midostaurin and nintedanib exhibited an increased inhibition of CYP3A4 after a 30-min. pre-incubation with NADPH, as compared to no pre-incubation (IC50 shift >1.5). Masitinib, trametinib and vatalanib did not affect CYP2C8 or CYP3A4 by time-dependent inhibition (IC50 shift <1.5). The inhibitory mechanism of CYP3A4 by midostaurin and nintedanib, but not by dovitinib, was consistent with irreversible mechanism-based inhibition. The maximal inactivation rate (kinact ) and inhibitor concentration that supports half-maximal rate of inactivation (KI ) values of midostaurin and nintedanib were 0.052 1/min. and 2.72 µM, and 0.025 1/min. and 17.3 µM, respectively. According to static predictions, inactivation of CYP3A4 by nintedanib was unlikely to cause drug-drug interactions with clinically used doses of nintedanib, whereas midostaurin was predicted to increase the plasma exposure to CYP3A4-dependent substrates several fold. Furthermore, based on reversible inhibition, masitinib and vatalanib were predicted to increase the plasma exposure to sensitive CYP2C8 and CYP3A4 substrates by ≥2-fold. In summary, our data identify midostaurin and nintedanib as time-dependent inhibitors of CYP3A4 and detect a risk of drug-drug interactions between vatalanib and CYP2C8 substrates, and between masitinib, midostaurin and vatalanib and CYP3A4 substrates. The liability of kinase inhibitors to affect CYP enzymes by time-dependent inhibition may have long-term consequences, in terms of drug-drug interactions and toxicities.


Subject(s)
Benzimidazoles/pharmacology , Cytochrome P-450 CYP2C8 Inhibitors/pharmacology , Cytochrome P-450 CYP2C8/drug effects , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Cytochrome P-450 CYP3A/drug effects , Indoles/pharmacology , Phthalazines/pharmacology , Pyridines/pharmacology , Pyridones/pharmacology , Pyrimidinones/pharmacology , Quinolones/pharmacology , Staurosporine/analogs & derivatives , Thiazoles/pharmacology , Benzamides , Drug Interactions , Humans , Inhibitory Concentration 50 , Microsomes, Liver/drug effects , Piperidines , Staurosporine/pharmacology
15.
Drug Metab Dispos ; 46(9): 1268-1276, 2018 09.
Article in English | MEDLINE | ID: mdl-29921707

ABSTRACT

AZD9496 ((E)-3-(3,5-difluoro-4-((1R,3R)-2-(2-fluoro-2-methylpropyl)-3-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)phenyl)acrylic acid) is an oral selective estrogen receptor degrader currently in clinical development for treatment of estrogen receptor-positive breast cancer. In a first-in-human phase 1 study, AZD9496 exhibited dose nonlinear pharmacokinetics, the mechanistic basis of which was investigated in this study. The metabolism kinetics of AZD9496 were studied using human liver microsomes (HLMs), recombinant cytochrome P450s (rP450s), and hepatocytes. In addition, modeling approaches were used to gain further mechanistic insights. CYP2C8 was predominantly responsible for biotransformation of AZD9496 to its two main metabolites whose rate of formation with increasing AZD9496 concentrations exhibited complete substrate inhibition in HLM, rCYP2C8, and hepatocytes. Total inhibition by AZD9496 of amodiaquine N-deethylation, a specific probe of CYP2C8 activity, confirmed the completeness of this inhibition. The commonly used substrate inhibition model analogous to uncompetitive inhibition fit poorly to the data. However, using the same model but without constraints on the number of molecules occupying the inhibitory binding site (i.e., nS1ES) provided a significantly better fit (F test, P< 0.005). With the improved model, up to three AZD9496 molecules were predicted to bind the inhibitory site of CYP2C8. In contrast to previous studies showing substrate inhibition of P450s to be partial, our results demonstrate complete substrate inhibition of CYP2C8 via binding of more than one molecule of AZD9496 to the inhibitory site. As CYP2C8 appears to be the sole isoform catalyzing formation of the main metabolites, the substrate inhibition might explain the observed dose nonlinearity in the clinic at higher doses.


Subject(s)
Cinnamates/metabolism , Cinnamates/pharmacology , Cytochrome P-450 CYP2C8 Inhibitors/metabolism , Cytochrome P-450 CYP2C8 Inhibitors/pharmacology , Indoles/metabolism , Indoles/pharmacology , Receptors, Estrogen/antagonists & inhibitors , Receptors, Estrogen/metabolism , Administration, Oral , Cytochrome P-450 CYP2C8/metabolism , Dose-Response Relationship, Drug , Female , Humans , Male , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Substrate Specificity/drug effects , Substrate Specificity/physiology
16.
Clin Pharmacol Drug Dev ; 7(8): 860-870, 2018 11.
Article in English | MEDLINE | ID: mdl-29870591

ABSTRACT

Amenamevir (formerly ASP2151) induces cytochrome P450 (CYP)2B6 and CYP3A4 and inhibits CYP2C8.  We conducted 2 studies, 1 using montelukast as a probe to assess CYP2C8 and the other bupropion to assess CYP2B6.  The montelukast study examined the effect of amenamevir on the pharmacokinetics of montelukast in 24 healthy men: each subject received montelukast 10 mg alone, followed by montelukast 10 mg with amenamevir 400 mg, or vice versa after a washout period.  In the bupropion study, 24 subjects received a single dose of 150 mg bupropion on days 1, 15, 22, and 29, and repeated once-daily doses of 400 mg amenamevir on days 6-15.  Amenamevir increased peak concentration and area under the concentration-time curve of montelukast by about 22% (ratio 121.7%, 90%CI [114.8, 129.1]; 121% [116.2, 128.4], respectively) with a similar increase in hydroxymontelukast (ratio 121.4%, 90%CI [106.4, 138.5]; 125.6 % [111.3, 141.7]).  Amenamevir reduced peak concentration and area under the concentration-time curve of bupropion by 16% (84.29%, 90%CI [78.00, 91.10]; 84.07%, 90%CI [78.85, 89.63]), with recovery after 1 week; the pharmacokinetics of the primary metabolite hydroxybupropion was unaffected.  Thus, amenamevir increased plasma concentrations of montelukast and decreased those of bupropion, but it did not do so enough to require dose adjustment of coadministered substrates of either CYP2C8 or CYP2B6.


Subject(s)
Acetates/pharmacokinetics , Bupropion/pharmacokinetics , Cytochrome P-450 CYP2B6/metabolism , Cytochrome P-450 CYP2C8/metabolism , Oxadiazoles/pharmacokinetics , Quinolines/pharmacokinetics , Acetates/blood , Adolescent , Adult , Bupropion/blood , Cyclopropanes , Cytochrome P-450 CYP2B6/biosynthesis , Cytochrome P-450 CYP2B6 Inducers/blood , Cytochrome P-450 CYP2B6 Inducers/pharmacokinetics , Cytochrome P-450 CYP2B6 Inducers/pharmacology , Cytochrome P-450 CYP2C8 Inhibitors/blood , Cytochrome P-450 CYP2C8 Inhibitors/pharmacokinetics , Cytochrome P-450 CYP2C8 Inhibitors/pharmacology , Drug Interactions , Healthy Volunteers , Hepatocytes/metabolism , Humans , Male , Middle Aged , Oxadiazoles/blood , Oxadiazoles/pharmacology , Quinolines/blood , Sulfides , Young Adult
17.
Drug Metab Pharmacokinet ; 33(1): 103-110, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29361388

ABSTRACT

Serum creatinine (SCr) levels rise during trimethoprim therapy for infectious diseases. This study aimed to investigate whether the elevation of SCr can be quantitatively explained using a physiologically-based pharmacokinetic (PBPK) model incorporating inhibition by trimethoprim on tubular secretion of creatinine via renal transporters such as organic cation transporter 2 (OCT2), OCT3, multidrug and toxin extrusion protein 1 (MATE1), and MATE2-K. Firstly, pharmacokinetic parameters in the PBPK model of trimethoprim were determined to reproduce the blood concentration profile after a single intravenous and oral administration of trimethoprim in healthy subjects. The model was verified with datasets of both cumulative urinary excretions after a single administration and the blood concentration profile after repeated oral administration. The pharmacokinetic model of creatinine consisted of the creatinine synthesis rate, distribution volume, and creatinine clearance (CLcre), including tubular secretion via each transporter. When combining the models for trimethoprim and creatinine, the predicted increments in SCr from baseline were 29.0%, 39.5%, and 25.8% at trimethoprim dosages of 5 mg/kg (b.i.d.), 5 mg/kg (q.i.d.), and 200 mg (b.i.d.), respectively, which were comparable with the observed values. The present model analysis enabled us to quantitatively explain increments in SCr during trimethoprim treatment by its inhibition of renal transporters.


Subject(s)
Creatinine/blood , Cytochrome P-450 CYP2C8 Inhibitors/blood , Kidney/metabolism , Models, Biological , Trimethoprim/blood , Cytochrome P-450 CYP2C8 Inhibitors/pharmacology , Healthy Volunteers , Humans , Kidney/drug effects , Trimethoprim/pharmacology
18.
Br J Clin Pharmacol ; 84(5): 972-986, 2018 05.
Article in English | MEDLINE | ID: mdl-29381228

ABSTRACT

AIMS: Statistically significant positive correlations are reported for the abundance of hepatic drug-metabolizing enzymes. We investigate, as an example, the impact of CYP3A4-CYP2C8 intercorrelation on the predicted interindividual variabilities of clearance and drug-drug interactions (DDIs) for repaglinide using physiologically based pharmacokinetic (PBPK) modelling. METHODS: PBPK modelling and simulation were employed using Simcyp Simulator (v15.1). Virtual populations were generated assuming intercorrelations between hepatic CYP3A4-CYP2C8 abundances derived from observed values in 24 human livers. A repaglinide PBPK model was used to predict PK parameters in the presence and absence of gemfibrozil in virtual populations, and the results were compared with a clinical DDI study. RESULTS: Coefficient of variation (CV) of oral clearance was 52.5% in the absence of intercorrelation between CYP3A4-CYP2C8 abundances, which increased to 54.2% when incorporating intercorrelation. In contrast, CV for predicted DDI (as measured by AUC ratio before and after inhibition) was reduced from 46.0% in the absence of intercorrelation between enzymes to 43.8% when incorporating intercorrelation: these CVs were associated with 5th/95th percentiles (2.48-11.29 vs. 2.49-9.69). The range of predicted DDI was larger in the absence of intercorrelation (1.55-77.06) than when incorporating intercorrelation (1.79-25.15), which was closer to clinical observations (2.6-12). CONCLUSIONS: The present study demonstrates via a systematic investigation that population-based PBPK modelling incorporating intercorrelation led to more consistent estimation of extreme values than those observed in interindividual variabilities of clearance and DDI. As the intercorrelations more realistically reflect enzyme abundances, virtual population studies involving PBPK and DDI should avoid using Monte Carlo assignment of enzyme abundance.


Subject(s)
Carbamates/pharmacokinetics , Cytochrome P-450 CYP2C8/metabolism , Cytochrome P-450 CYP3A/metabolism , Gemfibrozil/pharmacology , Piperidines/pharmacokinetics , Adult , Clinical Trials as Topic/statistics & numerical data , Computer Simulation , Cytochrome P-450 CYP2C8 Inhibitors/pharmacology , Drug Interactions , Female , Humans , Hypoglycemic Agents/pharmacokinetics , Male , Microsomes, Liver/metabolism , Models, Biological , Young Adult
19.
Invest Ophthalmol Vis Sci ; 58(10): 4126-4137, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28829844

ABSTRACT

Purpose: Nuclear factor κB (NFκB) is a ubiquitously expressed, proinflammatory transcription factor that controls the expression of genes involved in cell survival, angiogenesis, complement activation, and inflammation. Studies have implicated NFκB-dependent cytokines or complement-related factors as being detrimentally involved in retinal diseases, thus making inhibition of NFκB signaling a potential therapeutic target. We sought to develop a conditional and reversible method that could regulate pathogenic NFκB signaling by the addition of a small molecule. Methods: We developed a genetically based, trimethoprim (TMP)-regulated approach that conditionally inhibits NFκB signaling by fusing a destabilized dihydrofolate reductase (DHFR) domain to an inhibitor of NFκB, IκBα, in ARPE-19 cells. We then challenged ARPE-19 cells with a number of stimuli that have been demonstrated to trigger NFκB signaling, including LPS, TNFα, IL-1α, and A2E. Western blotting, electrophoretic mobility shift assay, quantitative PCR, ELISA, and NFκB reporter assays were used to evaluate the effectiveness of this DHFR-IκBα approach. Results: This destabilized domain approach, coupled with doxycycline-inducibility, allowed for accurate control over the abundance of DHFR-IκBα. Stabilization of DHFR-IκBα with TMP prevented IL-1α-, A2E-, LPS-, and TNFα-induced NFκB-mediated upregulation and release of the proinflammatory cytokines IL-1ß and IL-6 from ARPE-19 cells (by as much as 93%). This strategy is dosable, completely reversible, and can be cycled "on" or "off" within the same cell population repeatedly to confer protection at desired time points. Conclusions: These studies lay the groundwork for the use of destabilized domains in retinal pigment epithelium (RPE) cells in vivo and in this context, demonstrate their utility for preventing inflammatory signaling.


Subject(s)
Cytochrome P-450 CYP2C8 Inhibitors/pharmacology , NF-kappa B/antagonists & inhibitors , Retinal Pigment Epithelium/metabolism , Tetrahydrofolate Dehydrogenase/pharmacology , Trimethoprim/pharmacology , Blotting, Western , Cell Survival/drug effects , Cells, Cultured , Cytochrome P-450 CYP2C8 Inhibitors/chemistry , Electrophoretic Mobility Shift Assay , Enzyme-Linked Immunosorbent Assay , Gene Expression Regulation/drug effects , Humans , NF-kappa B/metabolism , Protein Domains/drug effects , Signal Transduction/drug effects , Tetrahydrofolate Dehydrogenase/chemistry , Trimethoprim/chemistry
20.
J Pharm Sci ; 106(9): 2715-2726, 2017 09.
Article in English | MEDLINE | ID: mdl-28479356

ABSTRACT

Quantitative analysis of transporter- and enzyme-mediated complex drug-drug interactions (DDIs) is challenging. Repaglinide (RPG) is transported into the liver by OATP1B1 and then is metabolized by CYP2C8 and CYP3A4. The purpose of this study was to describe the complex DDIs of RPG quantitatively based on unified physiologically based pharmacokinetic (PBPK) models using in vitro Ki values for OATP1B1, CYP3A4, and CYP2C8. Cyclosporin A (CsA) or gemfibrozil (GEM) increased the blood concentrations of RPG. The time profiles of RPG and the inhibitors were analyzed by PBPK models, considering the inhibition of OATP1B1 and CYP3A4 by CsA or OATP1B1 inhibition by GEM and its glucuronide and the mechanism-based inhibition of CYP2C8 by GEM glucuronide. RPG-CsA interaction was closely predicted using a reported in vitro Ki,OATP1B1 value in the presence of CsA preincubation. RPG-GEM interaction was underestimated compared with observed data, but the simulation was improved with the increase of fm,CYP2C8. These results based on in vitro Ki values for transport and metabolism suggest the possibility of a bottom-up approach with in vitro inhibition data for the prediction of complex DDIs using unified PBPK models and in vitro fm value of a substrate for multiple enzymes should be considered carefully for the prediction.


Subject(s)
Carbamates/blood , Cyclosporine/pharmacology , Enzyme Inhibitors/pharmacology , Gemfibrozil/pharmacology , Hypoglycemic Agents/blood , Piperidines/blood , Biological Transport/drug effects , Carbamates/metabolism , Carbamates/pharmacology , Computer Simulation , Cytochrome P-450 CYP2C8/metabolism , Cytochrome P-450 CYP2C8 Inhibitors/pharmacology , Cytochrome P-450 CYP3A/metabolism , Drug Interactions , Humans , Hypoglycemic Agents/metabolism , Hypoglycemic Agents/pharmacology , Liver-Specific Organic Anion Transporter 1/metabolism , Models, Biological , Piperidines/metabolism , Piperidines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...