Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 553
Filter
1.
Viruses ; 16(5)2024 04 24.
Article in English | MEDLINE | ID: mdl-38793545

ABSTRACT

Initially reported as pneumonia of unknown origin, COVID-19 is increasingly being recognized for its impact on the nervous system, despite nervous system invasions being extremely rare. As a result, numerous studies have been conducted to elucidate the mechanisms of nervous system damage and propose appropriate coping strategies. This review summarizes the mechanisms by which SARS-CoV-2 invades and damages the central nervous system, with a specific focus on aspects apart from the immune response and inflammatory storm. The latest research findings on these mechanisms are presented, providing new insights for further in-depth research.


Subject(s)
COVID-19 , Central Nervous System , Cytokine Release Syndrome , SARS-CoV-2 , Animals , Humans , Central Nervous System/virology , Central Nervous System/immunology , COVID-19/immunology , COVID-19/virology , Cytokine Release Syndrome/immunology , Inflammation/immunology , Inflammation/virology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
2.
Front Immunol ; 15: 1382655, 2024.
Article in English | MEDLINE | ID: mdl-38803494

ABSTRACT

Introduction: Global microplastic (MP) pollution is now well recognized, with humans and animals consuming and inhaling MPs on a daily basis, with a growing body of concern surrounding the potential impacts on human health. Methods: Using a mouse model of mild COVID-19, we describe herein the effects of azide-free 1 µm polystyrene MP beads, co-delivered into lungs with a SARS-CoV-2 omicron BA.5 inoculum. The effect of MPs on the host response to SARS-CoV-2 infection was analysed using histopathology and RNA-Seq at 2 and 6 days post-infection (dpi). Results: Although infection reduced clearance of MPs from the lung, virus titres and viral RNA levels were not significantly affected by MPs, and overt MP-associated clinical or histopathological changes were not observed. However, RNA-Seq of infected lungs revealed that MP exposure suppressed innate immune responses at 2 dpi and increased pro-inflammatory signatures at 6 dpi. The cytokine profile at 6 dpi showed a significant correlation with the 'cytokine release syndrome' signature observed in some COVID-19 patients. Discussion: The findings are consistent with the recent finding that MPs can inhibit phagocytosis of apoptotic cells via binding of Tim4. They also add to a growing body of literature suggesting that MPs can dysregulate inflammatory processes in specific disease settings.


Subject(s)
COVID-19 , Disease Models, Animal , Immunity, Innate , Lung , Microplastics , SARS-CoV-2 , Animals , COVID-19/immunology , COVID-19/virology , Immunity, Innate/drug effects , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Mice , Lung/immunology , Lung/virology , Lung/pathology , Cytokines/metabolism , Humans , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Female , Cytokine Release Syndrome/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Betacoronavirus/immunology , Pandemics
3.
J Drugs Dermatol ; 23(5): e134-e136, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38709689

ABSTRACT

BACKGROUND: Hidradenitis suppurativa (HS) is a chronic inflammatory disease that generates multiple cytokines. Here, we present an example of the cytokines forming a cytokine storm and its effects on the patient. CASE PRESENTATION: We report the case of a 55-year-old man who had severe but stable HS. Serum samples were collected from the patient and extraordinarily elevated cytokine concentrations were identified in the patient's serum.  Conclusion: Cytokine storms may be a condition associated with HS posing additional risk to patient survival. J Drugs Dermatol. 2024;23(5):e134-e136.     doi:10.36849/JDD.7860R1e.


Subject(s)
Cytokine Release Syndrome , Hidradenitis Suppurativa , Humans , Male , Middle Aged , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/diagnosis , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/blood , Cytokines/blood , Hidradenitis Suppurativa/blood , Hidradenitis Suppurativa/complications , Hidradenitis Suppurativa/diagnosis , Hidradenitis Suppurativa/immunology , Severity of Illness Index
4.
Eur J Cancer ; 205: 114075, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733717

ABSTRACT

T-cell engagers (TCE) are cancer immunotherapies that have recently demonstrated meaningful benefit for patients with hematological malignancies and solid tumors. The anticipated widespread use of T cell engagers poses implementation challenges and highlights the need for guidance to anticipate, mitigate, and manage adverse events. By mobilizing T-cells directly at the contact of tumor cells, TCE mount an obligatory and immediate anti-tumor immune response that could result in diverse reactions and adverse events. Cytokine release syndrome (CRS) is the most common reaction and is largely confined to the first drug administrations during step-up dosage. Cytokine release syndrome should be distinguished from infusion related reaction by clinical symptoms, timing to occurrence, pathophysiological aspects, and clinical management. Other common reactions and adverse events with TCE are immune effector Cell-Associated Neurotoxicity Syndrome (ICANS), infections, tumor flare reaction and cytopenias. The toxicity profiles of TCE and CAR-T cells have commonalities and distinctions that we sum-up in this review. As compared with CAR-T cells, TCE are responsible for less frequently severe CRS or ICANS. This review recapitulates terminology, pathophysiology, severity grading system and management of reactions and adverse events related to TCE.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , T-Lymphocytes , Humans , Neoplasms/immunology , Neoplasms/therapy , T-Lymphocytes/immunology , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Receptors, Chimeric Antigen/immunology
5.
mBio ; 15(6): e0090524, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38727220

ABSTRACT

Hyperactivation of pro-inflammatory type 1 cytokines (e.g., tumor necrosis factor alpha [TNF-α] and interferon gamma [IFN-γ]) mirrors the inflammation of coronavirus disease 2019. Helminths could alleviate excessive immune responses. Here, helminth Trichinella spiralis (Ts) infection was shown to protect against TNF-α- and IFN-γ-induced shock. Mechanistically, Ts-induced protection was interleukin-9 (IL-9) dependent but not IL-4Rα. Recombinant IL-9 treatment not only improved the survival of wild-type mice with TNF-α- and IFN-γ-induced shock but also that of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected K18-human angiotensin-converting enzyme 2 (hACE2) mice, emphasizing the significance of IL-9 in alleviating cytokine storm syndromes during SARS-CoV-2 infection. Interestingly, Ts excretory/secretory (TsES)-induced protection was also observed in SARS-CoV-2 infection, indicating that identifying anti-inflammatory molecules from TsES could be a novel way to mitigate adverse pathological inflammation during pathogen infection.IMPORTANCESevere coronavirus disease 2019 (COVID-19) is linked to cytokine storm triggered by type 1 pro-inflammatory immune responses. TNF-α and IFN-γ shock mirrors cytokine storm syndromes, including COVID-19. Helminths (e.g., Trichinella spiralis, Ts) can potently activate anti-inflammatory type 2 immune response. Here, we found that helminth Ts-induced protection against TNF-α and IFN-γ shock was IL-9 dependent. Treatment with recombinant IL-9 could protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in K18-hACE2 mice. Helminth Ts excretory/secretory (TsES) products also ameliorated SARS-CoV-2 infection-related cytokine storm. In conclusion, our study emphasizes the significance of IL-9 in protecting from cytokine storm syndromes associated with SARS-CoV-2 infection. Anti-inflammatory molecules from TsES could be a new source to mitigate adverse pathological inflammation associated with infections, including COVID-19.


Subject(s)
COVID-19 , Cytokine Release Syndrome , Interleukin-9 , SARS-CoV-2 , Trichinella spiralis , Animals , COVID-19/immunology , Mice , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/drug therapy , Trichinella spiralis/immunology , SARS-CoV-2/immunology , Humans , Interleukin-9/metabolism , Interleukin-9/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Cytokines/metabolism , Cytokines/immunology , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/immunology , Disease Models, Animal , Trichinellosis/immunology , Female , Mice, Inbred C57BL , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics
6.
J Immunol ; 212(10): 1523-1529, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38709994

ABSTRACT

The study of S100A9 in viral infections has seen increased interest since the COVID-19 pandemic. S100A8/A9 levels were found to be correlated with the severity of COVID-19 disease, cytokine storm, and changes in myeloid cell subsets. These data led to the hypothesis that S100A8/A9 proteins might play an active role in COVID-19 pathogenesis. This review explores the structures and functions of S100A8/9 and the current knowledge on the involvement of S100A8/A9 and its constituents in viral infections. The potential roles of S100A9 in SARS-CoV-2 infections are also discussed.


Subject(s)
COVID-19 , Calgranulin A , Calgranulin B , Inflammation , SARS-CoV-2 , Humans , COVID-19/immunology , SARS-CoV-2/immunology , Inflammation/immunology , Cytokine Release Syndrome/immunology , Virus Diseases/immunology
7.
Expert Opin Pharmacother ; 25(3): 263-279, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38588525

ABSTRACT

INTRODUCTION: Chimeric antigen receptor (CAR) T cells have revolutionized the treatment of multiple hematologic malignancies. Engineered cellular therapies now offer similar hope to transform the management of solid tumors and autoimmune diseases. However, toxicities can be serious and often require hospitalization. AREAS COVERED: We review the two chief toxicities of CAR T therapy, cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), and the rarer immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome. We discuss treatment paradigms and promising future pharmacologic strategies. Literature and therapies reviewed were identified by PubMed search, cited references therein, and review of registered trials. EXPERT OPINION: Management of CRS and ICANS has improved, aided by consensus definitions and guidelines that facilitate recognition and timely intervention. Further data will define optimal timing of tocilizumab and corticosteroids, current foundations of management. Pathophysiologic understanding has inspired off-label use of IL-1 receptor antagonism, IFNγ and IL-6 neutralizing antibodies, and janus kinase inhibitors, with data emerging from ongoing clinical trials. Further strategies to reduce toxicities include novel pharmacologic targets and safety features engineered into CAR T cells themselves. As these potentially curative therapies are used earlier in oncologic therapy and even in non-oncologic indications, effective accessible strategies to manage toxicities are critical.


Subject(s)
Cytokine Release Syndrome , Immunotherapy, Adoptive , Lymphohistiocytosis, Hemophagocytic , Neurotoxicity Syndromes , Receptors, Chimeric Antigen , Humans , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/therapy , Lymphohistiocytosis, Hemophagocytic/immunology , Lymphohistiocytosis, Hemophagocytic/therapy , Lymphohistiocytosis, Hemophagocytic/drug therapy , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/immunology , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , Animals
8.
ACS Chem Neurosci ; 15(8): 1712-1727, 2024 04 17.
Article in English | MEDLINE | ID: mdl-38581382

ABSTRACT

Short-chain fatty acids (SCFAs) are gut microbial metabolic derivatives produced during the fermentation of ingested complex carbohydrates. SCFAs have been widely regarded to have a potent anti-inflammatory and neuro-protective role and have implications in several disease conditions, such as, inflammatory bowel disease, type-2 diabetes, and neurodegenerative disorders. Japanese encephalitis virus (JEV), a neurotropic flavivirus, is associated with life threatening neuro-inflammation and neurological sequelae in infected hosts. In this study, we hypothesize that SCFAs have potential in mitigating JEV pathogenesis. Postnatal day 10 BALB/c mice were intraperitoneally injected with either a SCFA mixture (acetate, propionate, and butyrate) or PBS for a period of 7 days, followed by JEV infection. All mice were observed for onset and progression of symptoms. The brain tissue was collected upon reaching terminal illness for further analysis. SCFA-supplemented JEV-infected mice (SCFA + JEV) showed a delayed onset of symptoms, lower hindlimb clasping score, and decreased weight loss and increased survival by 3 days (p < 0.0001) upon infection as opposed to the PBS-treated JEV-infected animals (JEV). Significant downregulation of inflammatory cytokines TNF-α, MCP-1, IL-6, and IFN-Υ in the SCFA + JEV group relative to the JEV-infected control group was observed. Inflammatory mediators, phospho-NF-kB (P-NF-kB) and iba1, showed 2.08 ± 0.1 and 3.132 ± 0.43-fold upregulation in JEV versus 1.19 ± 0.11 and 1.31 ± 0.11-fold in the SCFA + JEV group, respectively. Tissue section analysis exhibited reduced glial activation (JEV group─42 ± 2.15 microglia/ROI; SCFA + JEV group─27.07 ± 1.8 microglia/ROI) in animals that received SCFA supplementation prior to infection as seen from the astrocytic and microglial morphometric analysis. Caspase-3 immunoblotting showed 4.08 ± 1.3-fold upregulation in JEV as compared to 1.03 ± 0.14-fold in the SCFA + JEV group and TUNEL assay showed a reduced cellular death post-JEV infection (JEV-6.4 ± 1.5 cells/ROI and SCFA + JEV-3.7 ± 0.73 cells/ROI). Our study critically contributes to the increasing evidence in support of SCFAs as an anti-inflammatory and neuro-protective agent, we further expand its scope as a potential supplementary intervention in JEV-mediated neuroinflammation.


Subject(s)
Encephalitis, Japanese , Fatty Acids, Volatile , Gastrointestinal Microbiome , Neuroinflammatory Diseases , Gastrointestinal Microbiome/physiology , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/microbiology , Microglia/drug effects , Microglia/immunology , Encephalitis, Japanese/drug therapy , Encephalitis, Japanese/immunology , Encephalitis, Japanese/microbiology , Encephalitis, Japanese/prevention & control , Encephalitis, Japanese/virology , Fatty Acids, Volatile/pharmacology , Fatty Acids, Volatile/therapeutic use , Encephalitis Viruses, Japanese/drug effects , Encephalitis Viruses, Japanese/immunology , Encephalitis Viruses, Japanese/pathogenicity , Survival Analysis , Chemokines/immunology , Chemokines/metabolism , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/metabolism , Cytokine Release Syndrome/prevention & control , Humans , Female , Animals , Mice , Apoptosis/drug effects , Brain/drug effects , Brain/metabolism , Brain/virology , Viral Load/drug effects , Time Factors
9.
Clin Pharmacol Ther ; 115(6): 1258-1268, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38459622

ABSTRACT

B-cell maturation antigen (BCMA)-targeting immunotherapies (e.g., chimeric antigen receptor T cells (CAR-T) and bispecific antibodies (BsAbs)) have achieved remarkable clinical responses in patients with relapsed and/or refractory multiple myeloma (RRMM). Their use is accompanied by exaggerated immune responses related to T-cell activation and cytokine elevations leading to cytokine release syndrome (CRS) in some patients, which can be potentially life-threatening. However, systematic evaluation of the risk of CRS with BCMA-targeting BsAb and CAR-T therapies, and comparisons across different routes of BsAb administration (intravenous (i.v.) vs. subcutaneous (s.c.)) have not previously been conducted. This study utilized a meta-analysis approach to compare the CRS profile in BCMA-targeting CAR-T vs. BsAb immunotherapies administered either i.v. or s.c. in patients with RRMM. A total of 36 studies including 1,560 patients with RRMM treated with BCMA-targeting CAR-T and BsAb therapies were included in the analysis. The current analysis suggests that compared with BsAbs, CAR-T therapies were associated with higher CRS incidences (88% vs. 59%), higher rates of grade ≥ 3 CRS (7% vs. 2%), longer CRS duration (5 vs. 2 days), and more prevalent tocilizumab use (44% vs. 25%). The proportion of CRS grade ≥ 3 may also be lower (0% vs. 4%) for BsAb therapies administered via the s.c. (3 studies, n = 311) vs. i.v. (5 studies, n = 338) route. This meta-analysis suggests that different types of BCMA-targeting immunotherapies and administration routes could result in a range of CRS incidence and severity that should be considered while evaluating the benefit-risk profiles of these therapies.


Subject(s)
Antibodies, Bispecific , B-Cell Maturation Antigen , Cytokine Release Syndrome , Immunotherapy, Adoptive , Multiple Myeloma , Humans , Multiple Myeloma/immunology , Multiple Myeloma/drug therapy , Multiple Myeloma/therapy , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Antibodies, Bispecific/administration & dosage , Antibodies, Bispecific/therapeutic use , Antibodies, Bispecific/adverse effects , B-Cell Maturation Antigen/immunology , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Injections, Subcutaneous , Receptors, Chimeric Antigen/immunology , Administration, Intravenous
10.
Infection ; 52(3): 955-983, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38133713

ABSTRACT

PURPOSE: The aim of this study was to elucidate the factors associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that may initiate cytokine cascades and correlate the clinical characteristics of patients with coronavirus disease 2019 (COVID-19) with their serum cytokine profiles. METHODS: Recombinant baculoviruses displaying SARS-CoV-2 spike or nucleocapsid protein were constructed and transfected into A549 cells and THP-1-derived macrophages, to determine which protein initiate cytokine release. SARS-CoV-2-specific antibody titers and cytokine profiles of patients with COVID-19 were determined, and the results were associated with their clinical characteristics, such as development of pneumonia or length of hospital stay. RESULTS: The SARS-CoV-2 nucleocapsid protein, rather than the spike protein, triggers lung epithelial A549 cells to express IP-10, RANTES, IL-16, MIP-1α, basic FGF, eotaxin, IL-15, PDGF-BB, TRAIL, VEGF-A, and IL-5. Additionally, serum CTACK, basic FGF, GRO-α, IL-1α, IL-1RA, IL-2Rα, IL-9, IL-15, IL-16, IL-18, IP-10, M-CSF, MIF, MIG, RANTES, SCGF-ß, SDF-1α, TNF-α, TNF-ß, VEGF, PDGF-BB, TRAIL, ß-NGF, eotaxin, GM-CSF, IFN-α2, INF-γ, and MCP-1 levels were considerably increased in patients with COVID-19. Among them, patients with pneumonia had higher serum IP-10 and M-CSF levels than patients without. Patients requiring less than 3 weeks to show negative COVID-19 tests after contracting COVID-19 had higher serum IP-10 levels than the remaining patients. CONCLUSION: Our study revealed that nucleocapsid protein, lung epithelial cells, and IP-10 may be potential targets for the development of new strategies to prevent, or control, severe COVID-19.


Subject(s)
COVID-19 , Coronavirus Nucleocapsid Proteins , Cytokines , Epithelial Cells , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , COVID-19/immunology , COVID-19/blood , Spike Glycoprotein, Coronavirus/immunology , SARS-CoV-2/immunology , Cytokines/blood , Female , Male , Middle Aged , Epithelial Cells/virology , Epithelial Cells/immunology , Coronavirus Nucleocapsid Proteins/immunology , Aged , A549 Cells , Lung/pathology , Lung/immunology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/blood , Adult , Antibodies, Viral/blood , Phosphoproteins
11.
Int J Mol Sci ; 24(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38068879

ABSTRACT

Inflammation and inflammasomes have been proposed as important regulators of the host-microorganism interaction, playing a key role in morbidity and mortality due to the coronavirus disease 2019 (COVID-19) in subjects with chronic conditions and compromised immune system. The inflammasome consists of a multiprotein complex that finely regulates the activation of caspase-1 and the production and secretion of potent pro-inflammatory cytokines such as IL-1ß and IL-18. The pyrin containing NOD (nucleotide-binding oligomerization domain) like receptor (NLRP) is a family of intracellular receptors, sensing patterns associated to pathogens or danger signals and NLRP3 inflammasome is the most deeply analyzed for its involvement in the innate and adaptive immune system as well as its contribution to several autoinflammatory and autoimmune diseases. It is highly expressed in leukocytes and up-regulated in sentinel cells upon inflammatory stimuli. NLRP3 expression has also been reported in B and T lymphocytes, in epithelial cells of oral and genital mucosa, in specific parenchymal cells as cardiomyocytes, and keratinocytes, and chondrocytes. It is well known that a dysregulated activation of the inflammasome is involved in the pathogenesis of different disorders that share the common red line of inflammation in their pathogenetic fingerprint. Here, we review the potential roles of the NLRP3 inflammasome in cardiovascular events, liver damage, pulmonary diseases, and in that wide range of systemic inflammatory syndromes named as a cytokine storm.


Subject(s)
Cytokine Release Syndrome , Heart Diseases , Inflammasomes , Liver Diseases , Lung Diseases , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Carrier Proteins/metabolism , Cytokine Release Syndrome/immunology , Inflammasomes/metabolism , Inflammation/metabolism , Interleukin-1beta/metabolism , Lung Diseases/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Heart Diseases/immunology , Liver Diseases/immunology
12.
Front Immunol ; 14: 1211816, 2023.
Article in English | MEDLINE | ID: mdl-37854611

ABSTRACT

SARS-COV-2 infection-induced excessive or uncontrolled cytokine storm may cause injury of host tissue or even death. However, the mechanism by which SARS-COV-2 causes the cytokine storm is unknown. Here, we demonstrated that SARS-COV-2 protein NSP9 promoted cytokine production by interacting with and activating TANK-binding kinase-1 (TBK1). With an rVSV-NSP9 virus infection model, we discovered that an NSP9-induced cytokine storm exacerbated tissue damage and death in mice. Mechanistically, NSP9 promoted the K63-linked ubiquitination and phosphorylation of TBK1, which induced the activation and translocation of IRF3, thereby increasing downstream cytokine production. Moreover, the E3 ubiquitin ligase Midline 1 (MID1) facilitated the K48-linked ubiquitination and degradation of NSP9, whereas virus infection inhibited the interaction between MID1 and NSP9, thereby inhibiting NSP9 degradation. Additionally, we identified Lys59 of NSP9 as a critical ubiquitin site involved in the degradation. These findings elucidate a previously unknown mechanism by which a SARS-COV-2 protein promotes cytokine storm and identifies a novel target for COVID-19 treatment.


Subject(s)
COVID-19 , Cytokine Release Syndrome , Protein Serine-Threonine Kinases , SARS-CoV-2 , Animals , Mice , COVID-19/complications , COVID-19/genetics , COVID-19/immunology , COVID-19 Drug Treatment , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/immunology , Cytokines , Disease Models, Animal , Immunity, Innate , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Signal Transduction , Ubiquitin-Protein Ligases/metabolism
13.
Immunology ; 169(2): 117-131, 2023 06.
Article in English | MEDLINE | ID: mdl-36571562

ABSTRACT

Hyperinflammation characterized by elevated proinflammatory cytokines known as 'cytokine storms' is the major cause of high severity and mortality seen in COVID-19 patients. The pathology behind the cytokine storms is currently unknown. Increased HMGB1 levels in serum/plasma of COVID-19 patients were reported by many studies, which positively correlated with the level of proinflammatory cytokines. Dead cells following SARS-CoV-2 infection might release a large amount of HMGB1 and RNA of SARS-CoV-2 into extracellular space. HMGB1 is a well-known inflammatory mediator. Additionally, extracellular HMGB1 might interact with SARS-CoV-2 RNA because of its high capability to bind with a wide variety of molecules including nucleic acids and could trigger massive proinflammatory immune responses. This review aimed to critically explore the many possible pathways by which HMGB1-SARS-CoV-2 RNA complexes mediate proinflammatory responses in COVID-19. The contribution of these pathways to impair host immune responses against SARS-CoV-2 infection leading to a cytokine storm was also evaluated. Moreover, since blocking the HMGB1-SARS-CoV-2 RNA interaction might have therapeutic value, some of the HMGB1 antagonists have been reviewed. The HMGB1- SARS-CoV-2 RNA complexes might trigger endocytosis via RAGE which is linked to lysosomal rupture, PRRs activation, and pyroptotic death. High levels of the proinflammatory cytokines produced might suppress many immune cells leading to uncontrolled viral infection and cell damage with more HMGB1 released. Altogether these mechanisms might initiate a proinflammatory cycle leading to a cytokine storm. HMGB1 antagonists could be considered to give benefit in alleviating cytokine storms and serve as a potential candidate for COVID-19 therapy.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Cytokine Release Syndrome , HMGB1 Protein , Molecular Targeted Therapy , RNA, Viral , SARS-CoV-2 , Humans , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/virology , COVID-19/complications , COVID-19/immunology , HMGB1 Protein/antagonists & inhibitors , HMGB1 Protein/metabolism , RNA, Viral/metabolism , Host Microbial Interactions/immunology , SARS-CoV-2/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
14.
Front Immunol ; 13: 958801, 2022.
Article in English | MEDLINE | ID: mdl-36091002

ABSTRACT

Fatal influenza (flu) virus infection often activates excessive inflammatory signals, leading to multi-organ failure and death, also referred to as cytokine storm. PPARγ (Peroxisome proliferator-activated receptor gamma) agonists are well-known candidates for cytokine storm modulation. The present study identified that influenza infection reduced PPARγ expression and decreased PPARγ transcription activity in human alveolar macrophages (AMs) from different donors. Treatment with PPARγ agonist Troglitazone ameliorated virus-induced proinflammatory cytokine secretion but did not interfere with the IFN-induced antiviral pathway in human AMs. In contrast, PPARγ antagonist and knockdown of PPARγ in human AMs further enhanced virus-stimulated proinflammatory response. In a mouse model of influenza infection, flu virus dose-dependently reduced PPARγ transcriptional activity and decreased expression of PPARγ. Moreover, PPARγ agonist troglitazone significantly reduced high doses of influenza infection-induced lung pathology. In addition, flu infection reduced PPARγ expression in all mouse macrophages, including AMs, interstitial macrophages, and bone-marrow-derived macrophages but not in alveolar epithelial cells. Our results indicate that the influenza virus specifically targets the PPARγ pathway in macrophages to cause acute injury to the lung.


Subject(s)
Antiviral Agents , Influenza, Human , Lung , Macrophages , PPAR gamma , Troglitazone , Acute Lung Injury/drug therapy , Acute Lung Injury/genetics , Acute Lung Injury/immunology , Animals , Antiviral Agents/immunology , Antiviral Agents/therapeutic use , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/immunology , Humans , Influenza, Human/drug therapy , Influenza, Human/genetics , Influenza, Human/immunology , Lung/immunology , Macrophages/immunology , Mice , Orthomyxoviridae , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , PPAR gamma/agonists , PPAR gamma/genetics , PPAR gamma/immunology , Troglitazone/immunology , Troglitazone/therapeutic use
15.
J Virol ; 96(14): e0043822, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35758667

ABSTRACT

In this study, we assessed the potential synergistic effect of the Erns RNase activity and the poly-U insertion in the 3' untranslated region (UTR) of the low-virulence classical swine fever virus (CSFV) isolate Pinar de Rio (PdR) in innate and adaptive immunity regulation and its relationship with classical swine fever (CSF) pathogenesis in pigs. We knocked out the Erns RNase activity of PdR and replaced the long polyuridine sequence of the 3' UTR with 5 uridines found typically at this position, resulting in a double mutant, vPdR-H30K-5U. This mutant induced severe CSF in 5-day-old piglets and 3-week-old pigs, with higher lethality in the newborn (89.5%) than in the older (33.3%) pigs. However, the viremia and viral excretion were surprisingly low, while the virus load was high in the tonsils. Only alpha interferon (IFN-α) and interleukin 12 (IL-12) were highly and consistently elevated in the two groups. Additionally, high IL-8 levels were found in the newborn but not in the older pigs. This points toward a role of these cytokines in the CSF outcome, with age-related differences. The disproportional activation of innate immunity might limit systemic viral spread from the tonsils and increase virus clearance, inducing strong cytokine-mediated symptoms. Infection with vPdR-H30K-5U resulted in poor neutralizing antibody responses compared with results obtained previously with the parent and RNase knockout PdR. This study shows for the first time the synergistic effect of the 3' UTR and the Erns RNase function in regulating innate immunity against CSFV, favoring virus replication in target tissue and thus contributing to disease severity. IMPORTANCE CSF is one of the most relevant viral epizootic diseases of swine, with high economic and sanitary impact. Systematic stamping out of infected herds with and without vaccination has permitted regional virus eradication. However, the causative agent, CSFV, persists in certain areas of the world, leading to disease reemergence. Nowadays, low- and moderate-virulence strains that could induce unapparent CSF forms are prevalent, posing a challenge for disease eradication. Here, we show for the first time the synergistic role of lacking the Erns RNase activity and the 3' UTR polyuridine insertion from a low-virulence CSFV isolate in innate immunity disproportional activation. This might limit systemic viral spread to the tonsils and increase virus clearance, inducing strong cytokine-mediated symptoms, thus contributing to disease severity. These results highlight the role played by the Erns RNase activity and the 3' UTR in CSFV pathogenesis, providing new perspectives for novel diagnostic tools and vaccine strategies.


Subject(s)
Classical Swine Fever Virus , Classical Swine Fever , Cytokine Release Syndrome , 3' Untranslated Regions/genetics , Adaptive Immunity/genetics , Animals , Classical Swine Fever/immunology , Classical Swine Fever/pathology , Classical Swine Fever/virology , Classical Swine Fever Virus/enzymology , Classical Swine Fever Virus/genetics , Classical Swine Fever Virus/immunology , Classical Swine Fever Virus/pathogenicity , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/virology , Cytokines , Immunity, Innate/genetics , Interferon-alpha/immunology , Interleukin-12/immunology , Ribonucleases/genetics , Ribonucleases/metabolism , Swine , Viral Vaccines , Virulence/genetics
17.
Front Immunol ; 13: 849140, 2022.
Article in English | MEDLINE | ID: mdl-35222440

ABSTRACT

We report a case of inflammatory colitis after SARS-CoV-2 infection in a patient with no additional co-morbidity who died within three weeks of hospitalization. As it is becoming increasingly clear that SARS-CoV-2 infection can cause immunological alterations, we investigated the expression of the inhibitory checkpoint PD-1 and its ligand PD-L1 to explore the potential role of this axis in the break of self-tolerance. The presence of the SARS-CoV-2 virus in colon tissue was demonstrated by qRT-PCR and immunohistochemical localization of the nucleocapsid protein. Expression of lymphocyte markers, PD-1, and PD-L1 in colon tissue was investigated by IHC. SARS-CoV-2-immunoreactive cells were detected both in the ulcerated and non-ulcerated mucosal areas. Compared to healthy tissue, where PD-1 is weakly expressed and PD-L1 is absent, PD-1 and PD-L1 expression appears in the inflamed mucosal tissue, as expected, but was mainly confined to non-ulcerative areas. At the same time, these markers were virtually undetectable in areas of mucosal ulceration. Our data show an alteration of the PD-1/PD-L1 axis and suggest a link between SARS-CoV-2 infection and an aberrant autoinflammatory response due to concomitant breakdown of the PD-1/PD-L1 interaction leading to early death of the patient.


Subject(s)
COVID-19/immunology , Colitis/immunology , Colon/metabolism , Cytokine Release Syndrome/immunology , Inflammation/immunology , SARS-CoV-2/physiology , Aged , B7-H1 Antigen/metabolism , Colon/pathology , Fatal Outcome , Female , Humans , Programmed Cell Death 1 Receptor/metabolism , Self Tolerance , Signal Transduction
19.
Viruses ; 14(2)2022 01 19.
Article in English | MEDLINE | ID: mdl-35215785

ABSTRACT

SARS-CoV-2, a member of the coronavirus family, is the causative agent of the COVID-19 pandemic. Currently, there is still an urgent need in developing an efficient therapeutic intervention. In this study, we aimed at evaluating the therapeutic effect of a single intranasal treatment of the TLR3/MDA5 synthetic agonist Poly(I:C) against a lethal dose of SARS-CoV-2 in K18-hACE2 transgenic mice. We demonstrate here that early Poly(I:C) treatment acts synergistically with SARS-CoV-2 to induce an intense, immediate and transient upregulation of innate immunity-related genes in lungs. This effect is accompanied by viral load reduction, lung and brain cytokine storms prevention and increased levels of macrophages and NK cells, resulting in 83% mice survival, concomitantly with long-term immunization. Thus, priming the lung innate immunity by Poly(I:C) or alike may provide an immediate, efficient and safe protective measure against SARS-CoV-2 infection.


Subject(s)
COVID-19/immunology , COVID-19/prevention & control , Immunity, Innate , Poly I-C/immunology , Poly I-C/therapeutic use , SARS-CoV-2/drug effects , Toll-Like Receptor 3/agonists , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/prevention & control , Disease Models, Animal , Female , Humans , Lung/immunology , Lung/virology , Mice , Mice, Transgenic , SARS-CoV-2/immunology , Toll-Like Receptor 3/immunology , Viral Load/drug effects , COVID-19 Drug Treatment
20.
Life Sci ; 294: 120392, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35149115

ABSTRACT

The SARS coronavirus 2 (SARS CoV-2) causes Coronavirus Disease (COVID-19), is an emerging viral infection. SARS CoV-2 infects target cells by attaching to Angiotensin-Converting Enzyme (ACE2). SARS CoV-2 could cause cardiac damage in patients with severe COVID-19, as ACE2 is expressed in cardiac cells, including cardiomyocytes, pericytes, and fibroblasts, and coronavirus could directly infect these cells. Cardiovascular disorders are the most frequent comorbidity found in COVID-19 patients. Immune cells such as monocytes, macrophages, and T cells may produce inflammatory cytokines and chemokines that contribute to COVID-19 pathogenesis if their functions are uncontrolled. This causes a cytokine storm in COVID-19 patients, which has been associated with cardiac damage. Tregs are a subset of immune cells that regulate immune and inflammatory responses. Tregs suppress inflammation and improve cardiovascular function through a variety of mechanisms. This is an exciting research area to explore the cellular, molecular, and immunological mechanisms related to reducing risks of cardiovascular complications in severe COVID-19. This review evaluated whether Tregs can affect COVID-19-related cardiovascular complications, as well as the mechanisms through which Tregs act.


Subject(s)
COVID-19/immunology , Cardiovascular Diseases/immunology , Cardiovascular Diseases/prevention & control , SARS-CoV-2 , T-Lymphocytes, Regulatory/physiology , Adoptive Transfer , Animals , Cardiovascular Diseases/virology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/prevention & control , Humans , Inflammation/immunology , T-Lymphocytes, Regulatory/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...