Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25.010
Filter
1.
Nature ; 626(7999): 626-634, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326614

ABSTRACT

Adoptive T cell therapies have produced exceptional responses in a subset of patients with cancer. However, therapeutic efficacy can be hindered by poor T cell persistence and function1. In human T cell cancers, evolution of the disease positively selects for mutations that improve fitness of T cells in challenging situations analogous to those faced by therapeutic T cells. Therefore, we reasoned that these mutations could be co-opted to improve T cell therapies. Here we systematically screened the effects of 71 mutations from T cell neoplasms on T cell signalling, cytokine production and in vivo persistence in tumours. We identify a gene fusion, CARD11-PIK3R3, found in a CD4+ cutaneous T cell lymphoma2, that augments CARD11-BCL10-MALT1 complex signalling and anti-tumour efficacy of therapeutic T cells in several immunotherapy-refractory models in an antigen-dependent manner. Underscoring its potential to be deployed safely, CARD11-PIK3R3-expressing cells were followed up to 418 days after T cell transfer in vivo without evidence of malignant transformation. Collectively, our results indicate that exploiting naturally occurring mutations represents a promising approach to explore the extremes of T cell biology and discover how solutions derived from evolution of malignant T cells can improve a broad range of T cell therapies.


Subject(s)
Evolution, Molecular , Immunotherapy, Adoptive , Lymphoma, T-Cell, Cutaneous , Mutation , T-Lymphocytes , Humans , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cytokines/biosynthesis , Cytokines/immunology , Cytokines/metabolism , Guanylate Cyclase/genetics , Guanylate Cyclase/metabolism , Immunotherapy, Adoptive/methods , Lymphoma, T-Cell, Cutaneous/genetics , Lymphoma, T-Cell, Cutaneous/immunology , Lymphoma, T-Cell, Cutaneous/pathology , Lymphoma, T-Cell, Cutaneous/therapy , Phosphatidylinositol 3-Kinases , Signal Transduction/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/transplantation
2.
Inflammation ; 47(3): 909-920, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38183531

ABSTRACT

4-octyl itaconate (4-OI) is an anti-inflammatory metabolite that activates the nuclear-factor-E2-related factor 2 (NRF2) signaling. In the current work, we investigated whether 4-OI could affect the production of proinflammatory cytokines in Behcet's uveitis (BU) and experimental autoimmune uveitis (EAU). Peripheral blood mononuclear cells (PBMCs) of active BU patients and healthy individuals with in vitro 4-OI treatment were performed to assess the influence of 4-OI on the proinflammatory cytokine production. EAU was induced and used for investigating the influence of 4-OI on the proinflammatory cytokine production in vivo. The flow cytometry, qPCR, and ELISA were performed to detect proinflammatory cytokine expression. NRF2 signaling activation was evaluated by qPCR and western blotting (WB). Splenic lymphocyte transcriptome was performed by RNA sequencing. The NRF2 expression by BU patients-derived PBMCs was lower than that by healthy individuals. After treatment with 4-OI, the proportion of Th17 cells, along with the expression of proinflammatory cytokines (IL-17, TNF-α, MCP-1, and IL-6) by PBMCs, were downregulated, and anti-inflammatory cytokine (IL-10) expression was upregulated, although IFN-γ expression was unaffected. The EAU severity was ameliorated by 4-OI in association with a lower splenic Th1/Th17 cell proportion and increased nuclear NRF2 expression. Additionally, 4-OI downregulated a set of 248 genes, which were enriched in pathways of positive regulation of immune responses. The present study shows an inhibitory effect of 4-OI on the proinflammatory cytokine production in active BU patients and EAU mice, possibly mediated through activating NRF2 signaling. These findings suggest that 4-OI could act as a potential therapeutic drug for the treatment and prevention of BU in the future study.


Subject(s)
Autoimmune Diseases , Behcet Syndrome , Cytokines , NF-E2-Related Factor 2 , Succinates , Uveitis , Humans , Uveitis/drug therapy , Uveitis/immunology , Uveitis/metabolism , Cytokines/metabolism , Cytokines/biosynthesis , Animals , Mice , Behcet Syndrome/drug therapy , Behcet Syndrome/metabolism , Behcet Syndrome/immunology , Succinates/pharmacology , Succinates/therapeutic use , NF-E2-Related Factor 2/metabolism , Autoimmune Diseases/drug therapy , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Male , Female , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation Mediators/metabolism , Inflammation Mediators/antagonists & inhibitors , Adult , Th17 Cells/drug effects , Th17 Cells/metabolism , Th17 Cells/immunology
3.
Nature ; 625(7996): 805-812, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38093011

ABSTRACT

CRISPR-enabled screening is a powerful tool for the discovery of genes that control T cell function and has nominated candidate targets for immunotherapies1-6. However, new approaches are required to probe specific nucleotide sequences within key genes. Systematic mutagenesis in primary human T cells could reveal alleles that tune specific phenotypes. DNA base editors are powerful tools for introducing targeted mutations with high efficiency7,8. Here we develop a large-scale base-editing mutagenesis platform with the goal of pinpointing nucleotides that encode amino acid residues that tune primary human T cell activation responses. We generated a library of around 117,000 single guide RNA molecules targeting base editors to protein-coding sites across 385 genes implicated in T cell function and systematically identified protein domains and specific amino acid residues that regulate T cell activation and cytokine production. We found a broad spectrum of alleles with variants encoding critical residues in proteins including PIK3CD, VAV1, LCP2, PLCG1 and DGKZ, including both gain-of-function and loss-of-function mutations. We validated the functional effects of many alleles and further demonstrated that base-editing hits could positively and negatively tune T cell cytotoxic function. Finally, higher-resolution screening using a base editor with relaxed protospacer-adjacent motif requirements9 (NG versus NGG) revealed specific structural domains and protein-protein interaction sites that can be targeted to tune T cell functions. Base-editing screens in primary immune cells thus provide biochemical insights with the potential to accelerate immunotherapy design.


Subject(s)
Alleles , Gene Editing , Mutagenesis , T-Lymphocytes , Humans , Amino Acids/genetics , CRISPR-Cas Systems/genetics , Mutagenesis/genetics , RNA, Guide, CRISPR-Cas Systems/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Lymphocyte Activation , Cytokines/biosynthesis , Cytokines/metabolism , Gain of Function Mutation , Loss of Function Mutation
4.
Allergol. immunopatol ; 51(3): 91-98, 01 mayo 2023. tab
Article in English | IBECS | ID: ibc-219817

ABSTRACT

Background: MicroRNA (miR)-185-5p participates in the pathology of asthma by regulating immune imbalance, inflammation, periostin synthesis, and smooth muscle contraction. This study intended to explore the dysregulation of miR-185p and its correlation with T-helper (Th)1, Th2 cells, and inflammatory cytokines in childhood asthma. Methods: In 150 childhood asthma patients and 30 healthy controls (HCs), miR-185-5p from peripheral blood mononuclear cells was detected using reverse transcription-quantitative polymerase chain reaction, Th cells from peripheral blood samples were detected using flow cytometry, inflammatory cytokines from serum samples were detected using enzyme-linked immunosorbent assay. Results: MiR-185-5p was increased in childhood asthma patients versus HCs [median (interquartile range (IQR)): 2.315 (1.770–3.855) versus 1.005 (0.655–1.520)] (P < 0.001). Meanwhile, miR-185-5p was negatively associated with Th1 cells (P = 0.035) but positively correlated with Th2 cells (P = 0.006) and IL-4 (P = 0.003) in childhood asthma patients; however, miR-185-5p was not linked to Th1 cells, Th2 cells, IFN-γ, or IL-4 in HCs (all P > 0.05). In addition, miR-185-5p was positively related to TNF-α (P < 0.001), IL-1β (P = 0.015), and IL-6 (P = 0.008) in childhood asthma patients, miR-185-5p was only linked to TNF-α (P = 0.040) but not IL-1β or IL-6 (both P > 0.05) in HCs. Moreover, miR-185-5p was increased in exacerbated childhood asthma patients versus remissive patients [median (IQR): 3.170 (2.070–4.905) versus 1.900 (1.525–2.615)] (P < 0.001). Besides, miR-185-5p was highest in patients with severe exacerbation followed by patients with moderate exacerbation, and lowest in patients with mild exacerbation (P = 0.010). Conclusion: MiR-185-5p is associated with imbalanced Th1/Th2 cells, increased inflammatory cytokines along with elevated exacerbation risk, and severity in childhood asthma patients (AU)


Subject(s)
Humans , Th2 Cells/metabolism , Th1 Cells/metabolism , Inflammation/metabolism , Cytokines/biosynthesis , Asthma/metabolism , Case-Control Studies , Risk Factors
5.
Int Immunopharmacol ; 117: 109940, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37012863

ABSTRACT

Overexpression of pro-inflammatory cytokines and iNOS have been found to be concomitant with several chronic inflammatory diseases and hence targeting their inhibition would be a useful therapy for inflammation. In view of this, study on discovery of natural pro-inflammatory cytokines inhibitory lead molecules from Penicillium polonicum, an endophytic fungus isolated from the fresh fruits of Piper nigrum was performed. When the culture broth extract of P. polonicum (EEPP) was subjected to LPS-induced cytokines expression (ELISA in RAW 264.7 cells), it exhibited inhibition of TNF-α, IL-6 and IL-1ß and this encouraged us to do chemical investigation on EEPP to explore the bioactive components. Four compounds isolated and characterised as 3,5-di-tert-butyl-4-hydroxy-phenyl propionic acid (1), 2,4-di-tert-butyl phenol (2), indole 3-carboxylic acid (3) and tyrosol (4) were tested for their effect on the production of TNF-α, IL-1ß and IL-6 in RAW 264.7 cells (ELISA). All the compounds exhibited a highly significant (P < 0.0001) inhibition effect, particularly against IL-1ß (IC50: 4-0.91 µM, 1-2.81 µM, 3-4.38 µM, and 2-5.54 µM). Tyrosol (4) was most active with IC50 values of 0.91, 2.67 and 4.60 µM against IL-1ß, IL-6 and TNF-α, respectively. On observing the potential activity of the compounds, two compositions C1 and C2 were prepared by mixing equimolar concentrations of compounds 1, 2, 3 & 4 (C1) and compounds 1, 2, 3, 4 & piperine (C2) in equal ratio. A synergistic effect was observed with C1 exhibiting potential suppression of IL-6 secretion (IC50 1.91 µM) and C2 against IL-1ß (IC50 5.98 µM). Also, the individual compounds and C1 were effective in controlling iNOS expressions in RAW 264.7 cells (RTPCR). Further, the in vivo performance of the compounds and compositions were studied under two in vivo inflammatory models (LPS-induced endotoxaemia and carrageenan-induced paw oedema). Compounds 1, 2, 3, 4, C1 and C2 at 50 mg/kg oral dose showed a significant control over the LPS-stimulated TNF-α, IL-1ß and IL-6 levels in plasma. C1, C2 and 1 exhibited > 50% pan-cytokine inhibition effect. Under the carrageenan-induced anti-inflammatory model, a significant reduction in the paw oedema measured in terms of the difference in the paw thickness was observed. Further, attenuation of pro-inflammatory cytokines levels following ELISA and RT-PCR experiments in the paw tissue homogenate was in agreement with paw thickness results. All compounds and C1 decreased the iNOS gene expression levels, and also the MPO activity and NO production in the paw tissue homogenate with tyrosol (4) as the most active molecule. Further, the mechanism of action was explored by testing the effect of the compounds on the expression of inflammatory markers using western blot analysis (in vitro). They were found to regulate the expression of pro-form and matured-form of IL-1ß by inhibiting NFκB. Also, the compounds reduced the translocation of the NF-κB subunit p65 to the nucleus. Thus, compounds 3,5-di-tert-butyl-4-hydroxy-phenyl propionic acid (1), 2,4-di-tert-butyl phenol (2), indole 3-carboxylic acid (3) and tyrosol (4) are reported as new natural multiple pro-inflammatory cytokines inhibitory leads. The interesting results of C1 might lay a footing for the development of a new anti-inflammatory composition.


Subject(s)
Cytokines , Nitric Oxide Synthase Type II , Penicillium , Animals , Mice , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Cytokines/biosynthesis , Drug Synergism , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Nitric Oxide Synthase Type II/antagonists & inhibitors , Penicillium/chemistry , Protein Biosynthesis/drug effects , RAW 264.7 Cells
7.
Macromol Biosci ; 23(3): e2200459, 2023 03.
Article in English | MEDLINE | ID: mdl-36575859

ABSTRACT

Oxidized bacterial nanocellulose (OBC) is reported to prevent microbial growth, but its antibacterial characteristics and mechanism are still unclear. Here, the antibacterial mechanism of OBC is explored by detecting and assessing the interaction of OBC with different carboxyl content on Staphylococcus aureus and Escherichia coli. The results show that OBC has strong antibacterial activity and antibiofilm activity against S. aureus and E. coli, which is positively correlated with the carboxyl content of OBC. After OBC treatment, the bacteria adhesion is inhibited and the cell membrane is destroyed leading to increased permeability. Further investigation reveals that the concentration of cyclic diguanosine monophosphate (c-di-GMP) that induced biofilm formation is significantly decreased to 1.81 pmol mg-1 after OBC treatment. In addition, OBC inactivates mature biofilms, with inactivation rates up to 79.3%. This study suggests that OBC has excellent antibacterial and antiadhesion properties, which can increase the cell membrane permeability and inhibit c-di-GMP formation. In addition, OBC also has a strong inactivation effect on mature biofilm, which can be used as an effective antibiofilm agent.


Subject(s)
Anti-Bacterial Agents , Bacteria , Nanostructures , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/cytology , Bacteria/drug effects , Bacteria/metabolism , Bacterial Adhesion/drug effects , Biofilms/drug effects , Cell Membrane Permeability/drug effects , Cytokines/biosynthesis , Escherichia coli/drug effects , Meat/microbiology , Microbial Sensitivity Tests , Nanostructures/chemistry , Oxidation-Reduction , Staphylococcus aureus/drug effects , Animals
8.
Front Cell Infect Microbiol ; 12: 941939, 2022.
Article in English | MEDLINE | ID: mdl-35967844

ABSTRACT

Lymphostatin is a virulence factor of enteropathogenic E. coli (EPEC) and non-O157 serogroup enterohaemorrhagic E. coli. Previous studies using whole-cell lysates of EPEC showed that lymphostatin inhibits the mitogen-activated proliferation of bulk human peripheral blood mononuclear cells (PBMCs) and the production of cytokines IL-2, IL-4, IL-5, and IFN-γ. Here, we used highly purified lymphostatin and PBMC-derived T cells to show that lymphostatin inhibits anti-CD3/anti-CD28-activated proliferation of human CD4+ and CD8+ T cells and blocks the synthesis of IL-2, IL-4, IL-10 and IFN-γ without affecting cell viability and in a manner dependent on an N-terminal DTD glycosyltransferase motif. Such inhibition was not observed with T cells activated by phorbol 12-myristate 13-acetate and ionomycin, implying that lymphostatin targets T cell receptor signaling. Analysis of the expression of CD69 indicated that lymphostatin suppresses T cell activation at an early stage and no impacts on apoptosis or necrosis were observed. Flow cytometric analysis of the DNA content of lymphostatin-treated CD4+ and CD8+ T cells showed a concentration- and DTD-dependent accumulation of the cells in the G0/G1 phase of the cell cycle, and corresponding reduction of the percentage of cells in S phase. Consistent with this, we found a marked reduction in the abundance of cyclins D3, E and A and loss of phosphorylated Rb over time in activated T cells from 8 donors treated with lymphostatin. Moreover, the cyclin-dependent kinase (cdk) inhibitor p27kip1, which inhibits progression of the cell cycle at G1 by acting on cyclin E-cdk2 or cyclin D-cdk4 complexes, was found to be accumulated in lymphostatin-treated T cells. Analysis of the abundance of phosphorylated kinases involved in signal transduction found that 30 of 39 were reduced in abundance following lymphostatin treatment of T cells from 5 donors, albeit not significantly so. Our data provide novel insights into the mode of action of lymphostatin on human T lymphocytes.


Subject(s)
Bacterial Toxins , Escherichia coli Infections , Escherichia coli Proteins , Escherichia coli , T-Lymphocytes , Apoptosis , Bacterial Toxins/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Cycle Checkpoints/immunology , Cell Division , Cell Proliferation/physiology , Cytokines/biosynthesis , Cytokines/immunology , Enteropathogenic Escherichia coli/immunology , Enteropathogenic Escherichia coli/pathogenicity , Escherichia coli/immunology , Escherichia coli/pathogenicity , Escherichia coli Infections/immunology , Escherichia coli Proteins/immunology , Humans , Interleukin-2 , Interleukin-4 , Leukocytes, Mononuclear/immunology , Necrosis , T-Lymphocytes/immunology , Virulence Factors/immunology
9.
Sci Rep ; 12(1): 11078, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35773325

ABSTRACT

Immune cell chemotaxis to the sites of pathogen invasion is critical for fighting infection, but in life-threatening conditions such as sepsis and Covid-19, excess activation of the innate immune system is thought to cause a damaging invasion of immune cells into tissues and a consequent excessive release of cytokines, chemokines and neutrophil extracellular traps (NETs). In these circumstances, tempering excessive activation of the innate immune system may, paradoxically, promote recovery. Here we identify the antimalarial compound artemisinin as a potent and selective inhibitor of neutrophil and macrophage chemotaxis induced by a range of chemotactic agents. Artemisinin released calcium from intracellular stores in a similar way to thapsigargin, a known inhibitor of the Sarco/Endoplasmic Reticulum Calcium ATPase pump (SERCA), but unlike thapsigargin, artemisinin blocks only the SERCA3 isoform. Inhibition of SERCA3 by artemisinin was irreversible and was inhibited by iron chelation, suggesting iron-catalysed alkylation of a specific cysteine residue in SERCA3 as the mechanism by which artemisinin inhibits neutrophil motility. In murine infection models, artemisinin potently suppressed neutrophil invasion into both peritoneum and lung in vivo and inhibited the release of cytokines/chemokines and NETs. This work suggests that artemisinin may have value as a therapy in conditions such as sepsis and Covid-19 in which over-activation of the innate immune system causes tissue injury that can lead to death.


Subject(s)
Artemisinins , COVID-19 Drug Treatment , Extracellular Traps , Macrophages , Neutrophils , Sepsis , Animals , Artemisinins/pharmacology , Calcium/metabolism , Calcium-Transporting ATPases/metabolism , Chemotaxis/drug effects , Cytokines/biosynthesis , Cytokines/metabolism , Extracellular Traps/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice , Neutrophils/drug effects , Neutrophils/metabolism , Thapsigargin/pharmacology
10.
Iran J Immunol ; 19(2): 184-192, 2022 06.
Article in English | MEDLINE | ID: mdl-35767891

ABSTRACT

BACKGROUND: Concomitant signals from IL-6 and TGF-ß have a central role in the Th17 cells development and differentiation, and these cells are the main promoters of demyelinating inflammation in the central nervous system (CNS) resulting in multiple sclerosis (MS). OBJECTIVES: To evaluate the simultaneous IL-6 and TGF-ß gene and their receptor protein expression in patients with Relapsing-Remitting (RR)-MS. MATERIALS AND METHODS: IL-6 and TGF-ß mRNA and their receptor expression on the surface of CD4+T cells were evaluated using real-time PCR (RT-PCR) and flow cytometry, respectively. RESULTS: The IL-6 mRNA expression in patients with RRMS was significantly higher than in the controls (p= 0.019). When patients who did not receive any other treatment were compared with the controls, the significant difference was substantial (p=0.006). The TGF-ß mRNA expression in patients was lower than in the controls (p = 0.03). However, in patients receiving IFNß, it increased compared with the other patients (p= 0.036). There was no difference in cytokine receptor expression between patients and the control group. CONCLUSION: Our data conclude an increase and decrease in mRNA expression levels of IL-6 and TGF-ß in patients with RRMS, respectively. Moreover, there were no significant differences in receptor expression of either cytokines. Based on our data the balance of TGF and IL-6 appears to have a positive impact on the disease control.


Subject(s)
Interferon-beta , Interleukin-6 , Multiple Sclerosis, Relapsing-Remitting , Transforming Growth Factor beta , Cytokines/biosynthesis , Cytokines/blood , Cytokines/genetics , Humans , Interferon-beta/genetics , Interferon-beta/pharmacology , Interleukin-6/analogs & derivatives , Interleukin-6/biosynthesis , Interleukin-6/blood , Interleukin-6/genetics , Multiple Sclerosis, Relapsing-Remitting/blood , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transforming Growth Factor beta/biosynthesis , Transforming Growth Factor beta/blood , Transforming Growth Factor beta/genetics
11.
Atherosclerosis ; 351: 18-25, 2022 06.
Article in English | MEDLINE | ID: mdl-35605368

ABSTRACT

BACKGROUND AND AIMS: Despite mechanistic data implicating unresolving inflammation in stroke pathogenesis, data regarding circulating immune cell phenotypes - key determinants of inflammation propagation versus resolution - and incident stroke are lacking. Therefore, we aimed to comprehensively define associations of circulating immune phenotypes and activation profiles with incident stroke. METHODS: We investigated circulating leukocyte phenotypes and activation profiles with incident adjudicated stroke in 2104 diverse adults from the Multi-Ethnic Study of Atherosclerosis (MESA) followed over a median of 16.6 years. Cryopreserved cells from the MESA baseline examination were thawed and myeloid and lymphoid lineage cell subsets were measured using polychromatic flow cytometry and intracellular cytokine activation staining. We analyzed multivariable-adjusted associations of cell phenotypes, as a proportion of parent cell subsets, with incident stroke (overall) and ischemic stroke using Cox regression models. RESULTS: We observed associations of intermediate monocytes, early-activated CD4+ T cells, and both CD4+ and CD8+ T cells producing interleukin-4 after cytokine stimulation (Th2 and Tc2, respectively) with higher risk for incident stroke; effect sizes ranged from 35% to 62% relative increases in risk for stroke. Meanwhile, differentiated and memory T cell phenotypes were associated with lower risk for incident stroke. In sex-stratified analyses, positive and negative associations were especially strong among men but null among women. CONCLUSIONS: Circulating IL-4 producing T cells and intermediate monocytes were significantly associated with incident stroke over nearly two decades of follow-up. These associations were stronger among men and not among women. Further translational studies are warranted to define more precise targets for prognosis and intervention.


Subject(s)
Atherosclerosis , Interleukin-4 , Stroke , Atherosclerosis/epidemiology , Atherosclerosis/immunology , Atherosclerosis/pathology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes , Cytokines/biosynthesis , Cytokines/blood , Cytokines/immunology , Female , Follow-Up Studies , Humans , Incidence , Inflammation , Interleukin-4/biosynthesis , Interleukin-4/blood , Interleukin-4/immunology , Ischemic Stroke/blood , Ischemic Stroke/epidemiology , Ischemic Stroke/immunology , Lymphocyte Activation/immunology , Male , Monocytes/immunology , Stroke/blood , Stroke/epidemiology , Stroke/immunology , T-Lymphocyte Subsets/immunology
12.
Acta Trop ; 232: 106497, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35508271

ABSTRACT

Chikungunya virus (CHIKV) is a zoonotic arthropod-borne virus that causes Chikungunya fever (CHIKF), a self-limiting disease characterized by myalgia and acute or chronic arthralgia. CHIKF pathogenesis has an important immunological component since higher levels of pro-inflammatory factors, including cytokines and chemokines, are detected in CHIKV-infected patients. In vitro studies, using monocytes and macrophages have shown that CHIKV infection promotes elevated production of pro-inflammatory cytokines and antiviral response factors. Vitamin D3 (VD3) has been described as an important modulator of immune response and as an antiviral factor for several viruses. Here, we aimed to study the effects of VD3 treatment on viral replication and pro-inflammatory response in CHIKV-infected human monocytes (VD3-Mon) and monocyte-derived macrophages differentiated in the absence (MDMs) or the presence of VD3 (VD3-MDMs). We found that VD3 treatment did not suppress CHIKV replication in either VD3-Mon or VD3-MDMs. However, the expression of VDR, CAMP and CYP24A1 mRNAs was altered by CHIKV infection. Furthermore, VD3 treatment alters TLRs mRNA expression and production of pro-inflammatory cytokines, including TNFα and CXCL8/IL8, but not IL1ß and IL6, in response to CHIKV infection in both VD3-Mon and VD3-MDMs. While a significant decrease in CXCL8/IL8 production was observed in CHIKV-infected VD3-Mon, significantly higher production of CXCL8/IL8 was observed in CHIKV-infected VD3-MDM at 24 hpi. Altogether, our results suggest that vitamin D3 may play an important role in ameliorating pro-inflammatory response during CHIKV infection in human Mon, but not in MDMs. Although further studies are needed to evaluate the efficacy of VD3; nevertheless, this study provides novel insights into its benefits in modulating the inflammatory response elicited by CHIKV infection in humans.


Subject(s)
Chikungunya Fever , Chikungunya virus , Macrophages , Monocytes , Toll-Like Receptors , Virus Replication , Chikungunya Fever/virology , Chikungunya virus/drug effects , Cholecalciferol/pharmacology , Cytokines/biosynthesis , Humans , Macrophages/drug effects , Macrophages/virology , Monocytes/drug effects , Monocytes/virology , Toll-Like Receptors/biosynthesis , Virus Replication/drug effects , Vitamin D/pharmacology
13.
Cell Immunol ; 376: 104531, 2022 06.
Article in English | MEDLINE | ID: mdl-35576719

ABSTRACT

Psoriasis is a chronic dermal inflammatory disease with a world-wide prevalence in which different immune/non-immune cells, e.g. T cells, macrophages, neutrophils, and keratinocytes play a decisive role. These immune cells interact among themselves by releasing multiple mediators which eventually cause characteristic psoriatic plaques in the skin. T cells are reported to be significant contributors to psoriatic inflammation through release of multiple cytokines which are controlled by several kinases, one of them being Lymphocyte-specific protein tyrosine kinase (Lck). Lck has been reported to be crucial for expression/production of several key inflammatory cytokines though modulation of several other kinases/transcription factors in T cells. Therefore, in this investigation, effect of Lck inhibitor, A-770041 was examined on PLCγ, p38MAPK, NFATc1, NFkB and STAT3, TNF-α, IFN-γ, Foxp3, IL-17A, in CD4+ T cells in imiquimod (IMQ)-induced psoriatic inflammation in mice. Results from the present study exhibit that p-Lck expression is enhanced in CD4+ T cells of IMQ-treated mice which is concomitant with enhanced clinical features of psoriatic inflammation (ear/back skin thickness, MPO activity, acanthosis/leukocytic infiltration) and molecular parameters (enhanced expression of p-Lck, p-PLCγ, p-p38-MAPK, NFATc1, p-NFkB, TNF-α, IFN-γ, p-STAT3, and IL-17A in CD4+ T cells). Inhibition of Lck signaling led to amelioration of clinical features of psoriasis through attenuation of Th1/Th17 immune responses and upregulation of Treg cells in IMQ-treated mice. In summary, current investigations reveal that Lck signaling is a crucial executor of inflammatory signaling in CD4+ T cells in the context of psoriatic inflammation. Therefore, Lck inhibition may be pursued as an effective strategy to counteract psoriatic inflammation.


Subject(s)
CD4-Positive T-Lymphocytes , Interleukin-17 , Psoriasis , Pyrazoles , Pyrimidines , Adjuvants, Immunologic/adverse effects , Adjuvants, Immunologic/pharmacology , Animals , CD4-Positive T-Lymphocytes/immunology , Cytokines/biosynthesis , Cytokines/immunology , Disease Models, Animal , Imiquimod/adverse effects , Imiquimod/pharmacology , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/immunology , Interleukin-17/immunology , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/antagonists & inhibitors , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/biosynthesis , Mice , Psoriasis/drug therapy , Psoriasis/immunology , Pyrazoles/immunology , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Pyrimidines/immunology , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Skin/drug effects , Skin/immunology , Tumor Necrosis Factor-alpha/immunology
14.
J Dermatol Sci ; 106(2): 93-100, 2022 May.
Article in English | MEDLINE | ID: mdl-35437207

ABSTRACT

BACKGROUND: The "itch-scratch cycle" is a clinically well-known cause of exacerbation of atopic dermatitis (AD), but the underlying molecular mechanisms remain largely unknown. OBJECTIVE: To test our hypothesis that some molecules released from damaged epidermal keratinocytes by scratching inducetype 2 responses in intact skin dermal cells, leading to exacerbation of AD. METHODS: Normal human dermal fibroblasts (NHDF) and human dermal blood microvascular endothelial cells (HMVEC-dBl) were treated with an epidermal keratinocyte homogenate (EKH). We used qPCR and ELISA, respectively, to measure the mRNA expressions and protein concentrations of various cytokines, including IL-6, IL-8, thymic stromal lymphopoietin (TSLP), and IL-33. We analyzed IL-33 protein expression in the nuclear fractions of NHDF by Western blotting. We also investigated the effects of IL-1R1 gene-silencing and several AD therapeutic drugs on EKH induction of cytokine production by the dermal cells. RESULTS: EKH significantly induced IL-6 and IL-8 in NHDF and HMVEC-dBl. EKH also induced type 2 cytokines, TSLP and IL-33, in NHDF. IL-1R1 gene-silencing in NHDF partially attenuated the induction. Dexamethasone (a corticosteroid) significantly inhibited, while ABT494 (a JAK1 inhibitor) partially inhibited, EKH's induction of cytokines in fibroblasts. In contrast, ABT494 was more effective than dexamethasone in inhibiting the cytokine induction in HMVEC-dBl. CONCLUSION: This study showed that a homogenate of epidermal keratinocytes significantly induced AD-related cytokines in cultured dermal cells, and IL-1α, an alarmin, might be involved in that induction. Combined use of corticosteroids and JAK1 inhibitors is likely to block the itch-scratch cycle by targeting different types of dermal cells.


Subject(s)
Cytokines , Dermatitis, Atopic , Cells, Cultured , Cytokines/biosynthesis , Cytokines/metabolism , Dermatitis, Atopic/genetics , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Endothelial Cells/metabolism , Humans , Interleukins/metabolism , Keratinocytes/metabolism
15.
JCI Insight ; 7(11)2022 06 08.
Article in English | MEDLINE | ID: mdl-35471938

ABSTRACT

K-ras-mutant lung adenocarcinoma (KM-LUAD) is associated with abysmal prognosis and is tightly linked to tumor-promoting inflammation. A human mAb, canakinumab, targeting the proinflammatory cytokine IL-1ß, significantly decreased the risk of lung cancer in the Canakinumab Anti-inflammatory Thrombosis Outcomes Study. Interestingly, we found high levels of IL-1ß in the lungs of mice with K-rasG12D-mutant tumors (CC-LR mice). Here, we blocked IL-1ß using an anti-IL-1ß mAb in cohorts of 6- or 14-week-old CC-LR mice to explore its preventive and therapeutic effect, respectively. IL-1ß blockade significantly reduced lung tumor burden, which was associated with reprogramming of the lung microenvironment toward an antitumor phenotype characterized by increased infiltration of cytotoxic CD8+ T cells (with high IFN-γ and granzyme B expression but low programmed cell death 1 [PD-1] expression) while suppressing neutrophils and polymorphonuclear (PMN) myeloid-derived suppressor cells. When querying the Cancer Genome Atlas data set, we found positive correlations between IL1B expression and infiltration of immunosuppressive PMNs and expression of their chemoattractant, CXCL1, and PDCD1 expressions in patients with KM-LUAD. Our data provide evidence that IL-1ß blockade may be a preventive strategy for high-risk individuals and an alternative therapeutic approach in combination with currently available treatments for KM-LUAD.


Subject(s)
Adenocarcinoma of Lung , Antibodies, Monoclonal, Humanized , Interleukin-1beta , Lung Neoplasms , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/immunology , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Cytokines/biosynthesis , Cytokines/immunology , Genes, ras , Humans , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/immunology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Mice , Molecular Targeted Therapy , Mutation , Neutrophils/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Tumor Microenvironment
16.
Molecules ; 27(4)2022 Feb 20.
Article in English | MEDLINE | ID: mdl-35209214

ABSTRACT

Anti-rheumatoid arthritis (RA) effects of α-tocopherol (α-T) have been shown in human patients in a double-blind trial. However, the effects of α-T and its derivatives on fibroblast-like synoviocytes (FLS) during the pathogenesis of RA remain unclear. In the present study, we compared the expression levels of genes related to RA progression in FLS treated with α-T, succinic ester of α-T (TS), and phosphate ester of α-T (TP), as determined via RT-PCR. The mRNA levels of interleukin (IL)-6, tumor necrosis factor-α (TNF-α), matrix metalloproteinase (MMP)-3, and MMP-13 were reduced by treatment with TP without cytotoxicity, while α-T and TS did not show such effects. Furthermore, intraperitoneal injection of TP ameliorated the edema of the foot and joint and improved the arthritis score in laminarin-induced RA model mice. Therefore, TP exerted anti-RA effects through by inhibiting RA-related gene expression.


Subject(s)
Antirheumatic Agents/pharmacology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Gene Expression Regulation/drug effects , alpha-Tocopherol/analogs & derivatives , Animals , Arthritis, Rheumatoid/chemically induced , Cytokines/biosynthesis , Glucans/toxicity , Humans , Matrix Metalloproteinase 13/biosynthesis , Matrix Metalloproteinase 3/biosynthesis , Mice , alpha-Tocopherol/pharmacology
17.
Comput Math Methods Med ; 2022: 4200605, 2022.
Article in English | MEDLINE | ID: mdl-35111234

ABSTRACT

Sepsis is a systemic inflammatory response syndrome caused by viral infection. The circulatory dysfunction caused by sepsis is also called septic shock or septic shock. The main characteristics are rapid onset, rapid changes, and involvement. Multiple organs in the body make diagnosis difficult, which seriously threatens the survival of patients. As many as one million people worldwide die every year because of SIRS, it is also the leading cause of death among children in hospital ICUs. This article is aimed at studying the clinical characteristics of severe sepsis in children and the risk factors for death. Based on the analysis of the pathogenesis of sepsis and the treatment of septic shock, 65 cases of children with PICU sepsis admitted to a hospital were selected. Data, to study its clinical characteristics and risk factors for death. The results of the study showed that despite the interaction among the removal factors of the three indexes of serum lactic acid value, PCIS level, and the number of organs involved in MODS, they are still related to the mortality of children with severe sepsis.


Subject(s)
Sepsis/diagnosis , Sepsis/mortality , Apoptosis , Bacterial Infections/complications , Child , Child, Preschool , China/epidemiology , Computational Biology , Cytokines/biosynthesis , Disseminated Intravascular Coagulation/complications , Female , Humans , Immunity, Innate , Infant , Intensive Care Units, Pediatric , Male , Multiple Organ Failure/diagnosis , Multiple Organ Failure/etiology , Multiple Organ Failure/mortality , Retrospective Studies , Risk Factors , Sepsis/etiology , Shock, Septic/etiology , Shock, Septic/mortality , Shock, Septic/therapy
18.
ACS Appl Bio Mater ; 5(2): 483-491, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35112841

ABSTRACT

Interleukin-mediated deep cytokine storm, an aggressive inflammatory response to SARS-CoV-2 virus infection in COVID-19 patients, is correlated directly with lung injury, multi-organ failure, and poor prognosis of severe COVID-19 patients. Curcumin (CUR), a phenolic antioxidant compound obtained from turmeric (Curcuma longa L.), is well-known for its strong anti-inflammatory activity. However, its in vivo efficacy is constrained due to poor bioavailability. Herein, we report that CUR-encapsulated polysaccharide nanoparticles (CUR-PS-NPs) potently inhibit the release of cytokines, chemokines, and growth factors associated with damage of SARS-CoV-2 spike protein (CoV2-SP)-stimulated liver Huh7.5 and lung A549 epithelial cells. Treatment with CUR-PS-NPs effectively attenuated the interaction of ACE2 and CoV2-SP. The effects of CUR-PS-NPs were linked to reduced NF-κB/MAPK signaling which in turn decreased CoV2-SP-mediated phosphorylation of p38 MAPK, p42/44 MAPK, and p65/NF-κB as well as nuclear p65/NF-κB expression. The findings of the study strongly indicate that organic NPs of CUR can be used to control hyper-inflammatory responses and prevent lung and liver injuries associated with CoV2-SP-mediated cytokine storm.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Curcumin/pharmacology , Cytokine Release Syndrome/prevention & control , MAP Kinase Signaling System/drug effects , NF-kappa B/metabolism , Nanoparticles/chemistry , Signal Transduction/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Anti-Inflammatory Agents/pharmacokinetics , Cell Survival/drug effects , Chemokines/biosynthesis , Curcumin/chemistry , Curcumin/pharmacokinetics , Cytokines/biosynthesis , Humans , Intercellular Signaling Peptides and Proteins/biosynthesis , Phosphorylation , Spike Glycoprotein, Coronavirus/physiology
19.
Nat Commun ; 13(1): 878, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35169141

ABSTRACT

In addition to its role as a TB vaccine, BCG has been shown to elicit heterologous protection against many other pathogens including viruses through a process termed trained immunity. Despite its potential as a broadly protective vaccine, little has been done to determine if BCG-mediated trained immunity levels can be optimized. Here we re-engineer BCG to express high levels of c-di-AMP, a PAMP recognized by stimulator of interferon genes (STING). We find that BCG overexpressing c-di-AMP elicits more potent signatures of trained immunity including higher pro-inflammatory cytokine responses, greater myeloid cell reprogramming toward inflammatory and activated states, and enhances epigenetic and metabolomic changes. In a model of bladder cancer, we also show that re-engineered BCG induces trained immunity and improved functionality. These results indicate that trained immunity levels and antitumor efficacy may be increased by modifying BCG to express higher levels of key PAMP molecules.


Subject(s)
BCG Vaccine/immunology , Cancer Vaccines/immunology , Dinucleoside Phosphates/immunology , Urinary Bladder Neoplasms/immunology , Urinary Bladder Neoplasms/therapy , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Cytokines/biosynthesis , Cytokines/immunology , Dinucleoside Phosphates/biosynthesis , Dinucleoside Phosphates/genetics , Humans , Immunity, Innate/immunology , Macrophages/immunology , Membrane Proteins/metabolism , Mice , Myeloid Cells/immunology , Pathogen-Associated Molecular Pattern Molecules/immunology , Rats , Urothelium/pathology , Vaccination
20.
Vet Med Sci ; 8(2): 517-523, 2022 03.
Article in English | MEDLINE | ID: mdl-35044092

ABSTRACT

BACKGROUND: Peripheral blood mononuclear cells (PBMCs) have been identified as a possible marker of inflammation in obesity. Understanding the expression of pro- and anti-inflammatory cytokines in PBMCs in obese dogs will help control obesity-related inflammatory diseases. OBJECTIVES: The aim of this study was to evaluate the role of PBMCs in obesity-associated chronic inflammation by analyzing the expression of adipokines and inflammatory cytokines. METHODS: Blood samples were obtained from 25 subjects and real-time quantitative polymerase chain reaction determinations were performed to quantify the gene expression levels of adipokines and inflammatory cytokines, including TNF-α, IL-17, leptin, MCP-1, and adiponectin, in the PBMCs. RESULTS: The results showed that the gene expression levels of TNF-α (p < 0.001), IL-17 (p < 0.0001), and leptin (p < 0.0001) were strongly upregulated in the PBMCs of obese dogs compared to that in non-obese dogs. CONCLUSIONS: The changes in gene expression levels of inflammation-related adipokines and pro-inflammatory cytokines occur in PBMCs, which may contribute to the low-grade chronic inflammation that is present in obesity.


Subject(s)
Adipokines , Cytokines , Dog Diseases , Leukocytes, Mononuclear , Adipokines/biosynthesis , Adipokines/blood , Adipokines/genetics , Animals , Cytokines/biosynthesis , Cytokines/blood , Cytokines/genetics , Dog Diseases/blood , Dog Diseases/genetics , Dogs , Gene Expression , Humans , Inflammation/blood , Inflammation/veterinary , Interleukin-17/genetics , Interleukin-17/metabolism , Leptin/blood , Leptin/genetics , Leukocytes, Mononuclear/metabolism , Obesity/blood , Obesity/genetics , Obesity/veterinary , Tumor Necrosis Factor-alpha/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...