Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.419
Filter
1.
J Cell Sci ; 137(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38841902

ABSTRACT

The model of RNA stability has undergone a transformative shift with the revelation of a cytoplasmic capping activity that means a subset of transcripts are recapped autonomously of their nuclear counterparts. The present study demonstrates nucleo-cytoplasmic shuttling of the mRNA-capping enzyme (CE, also known as RNA guanylyltransferase and 5'-phosphatase; RNGTT), traditionally acknowledged for its nuclear localization and functions, elucidating its contribution to cytoplasmic capping activities. A unique nuclear export sequence in CE mediates XPO1-dependent nuclear export of CE. Notably, during sodium arsenite-induced oxidative stress, cytoplasmic CE (cCE) congregates within stress granules (SGs). Through an integrated approach involving molecular docking and subsequent co-immunoprecipitation, we identify eIF3b, a constituent of SGs, as an interactive associate of CE, implying that it has a potential role in guiding cCE to SGs. We measured the cap status of specific mRNA transcripts from U2OS cells that were non-stressed, stressed and recovered from stress, which indicated that cCE-target transcripts lost their caps during stress but remarkably regained cap stability during the recovery phase. This comprehensive study thus uncovers a novel facet of cytoplasmic CE, which facilitates cellular recovery from stress by maintaining cap homeostasis of target mRNAs.


Subject(s)
Cytoplasm , Homeostasis , RNA, Messenger , Stress Granules , Humans , RNA, Messenger/metabolism , RNA, Messenger/genetics , Stress Granules/metabolism , Cytoplasm/metabolism , RNA Caps/metabolism , Arsenites/pharmacology , Oxidative Stress , Active Transport, Cell Nucleus , RNA Nucleotidyltransferases/metabolism , RNA Nucleotidyltransferases/genetics , Sodium Compounds/pharmacology , Exportin 1 Protein , Karyopherins/metabolism , Karyopherins/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Cytoplasmic Granules/metabolism , RNA Stability , Cell Nucleus/metabolism , Cell Line, Tumor , Nucleotidyltransferases
2.
Int Rev Neurobiol ; 176: 455-479, 2024.
Article in English | MEDLINE | ID: mdl-38802180

ABSTRACT

Amyotrophic lateral sclerosis (ALS) and related neurodegenerative diseases are characterised by dysfunction of a host of RNA-binding proteins (RBPs) and a severely disrupted RNA metabolism. Recently, RBP-harbouring phase-separated complexes, ribonucleoprotein (RNP) granules, have come into the limelight as "crucibles" of neuronal pathology in ALS. RNP granules are indispensable for the multitude of regulatory processes underlying cellular RNA metabolism and serve as critical organisers of cellular biochemistry. Neurons, highly specialised cells, heavily rely on RNP granules for efficient trafficking, signalling and stress responses. Multiple RNP granule components, primarily RBPs such as TDP-43 and FUS, are affected by ALS mutations. However, even in the absence of mutations, RBP proteinopathies represent pathophysiological hallmarks of ALS. Given the high local concentrations of RBPs and RNAs, their weakened or enhanced interactions within RNP granules disrupt their homeostasis. Thus, the physiological process of phase separation and RNP granule formation, vital for maintaining the high-functioning state of neuronal cells, becomes their Achilles heel. Here, we will review the recent literature on the causes and consequences of abnormal RNP granule functioning in ALS and related disorders. In particular, we will summarise the evidence for the network-level dysfunction of RNP granules in these conditions and discuss considerations for therapeutic interventions to target RBPs, RNP granules and their network as a whole.


Subject(s)
Amyotrophic Lateral Sclerosis , Cytoplasmic Granules , Ribonucleoproteins , Humans , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Ribonucleoproteins/metabolism , Animals , Cytoplasmic Granules/metabolism , Neurodegenerative Diseases/metabolism , Organelles/metabolism
3.
Nat Commun ; 15(1): 4127, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750080

ABSTRACT

Stress granules (SGs) are induced by various environmental stressors, resulting in their compositional and functional heterogeneity. SGs play a crucial role in the antiviral process, owing to their potent translational repressive effects and ability to trigger signal transduction; however, it is poorly understood how these antiviral SGs differ from SGs induced by other environmental stressors. Here we identify that TRIM25, a known driver of the ubiquitination-dependent antiviral innate immune response, is a potent and critical marker of the antiviral SGs. TRIM25 undergoes liquid-liquid phase separation (LLPS) and co-condenses with the SG core protein G3BP1 in a dsRNA-dependent manner. The co-condensation of TRIM25 and G3BP1 results in a significant enhancement of TRIM25's ubiquitination activity towards multiple antiviral proteins, which are mainly located in SGs. This co-condensation is critical in activating the RIG-I signaling pathway, thus restraining RNA virus infection. Our studies provide a conceptual framework for better understanding the heterogeneity of stress granule components and their response to distinct environmental stressors.


Subject(s)
DNA Helicases , Poly-ADP-Ribose Binding Proteins , RNA Helicases , RNA Recognition Motif Proteins , Signal Transduction , Stress Granules , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Ubiquitination , Humans , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , RNA Recognition Motif Proteins/metabolism , RNA Recognition Motif Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Stress Granules/metabolism , RNA Helicases/metabolism , DNA Helicases/metabolism , DEAD Box Protein 58/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Immunity, Innate , RNA, Double-Stranded/metabolism , HEK293 Cells , HeLa Cells , Cytoplasmic Granules/metabolism , RNA Virus Infections/virology , RNA Virus Infections/metabolism , RNA Virus Infections/immunology , Receptors, Immunologic/metabolism
4.
Front Immunol ; 15: 1358036, 2024.
Article in English | MEDLINE | ID: mdl-38690262

ABSTRACT

Background: It remains unclear whether BPIV3 infection leads to stress granules formation and whether G3BP1 plays a role in this process and in viral replication. This study aims to clarify the association between BPIV3 and stress granules, explore the effect of G3BP1 on BPIV3 replication, and provide significant insights into the mechanisms by which BPIV3 evades the host's antiviral immunity to support its own survival. Methods: Here, we use Immunofluorescence staining to observe the effect of BPIV3 infection on the assembly of stress granules. Meanwhile, the expression changes of eIF2α and G3BP1 were determined. Overexpression or siRNA silencing of intracellular G3BP1 levels was examined for its regulatory control of BPIV3 replication. Results: We identify that the BPIV3 infection elicited phosphorylation of the eIF2α protein. However, it did not induce the assembly of stress granules; rather, it inhibited the formation of stress granules and downregulated the expression of G3BP1. G3BP1 overexpression facilitated the formation of stress granules within cells and hindered viral replication, while G3BP1 knockdown enhanced BPIV3 expression. Conclusion: This study suggest that G3BP1 plays a crucial role in BPIV3 suppressing stress granule formation and viral replication.


Subject(s)
DNA Helicases , Poly-ADP-Ribose Binding Proteins , RNA Helicases , RNA Recognition Motif Proteins , Stress Granules , Virus Replication , Animals , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , RNA Recognition Motif Proteins/metabolism , DNA Helicases/metabolism , DNA Helicases/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , Stress Granules/metabolism , Cattle , Eukaryotic Initiation Factor-2/metabolism , Respirovirus Infections/immunology , Respirovirus Infections/metabolism , Host-Pathogen Interactions/immunology , Phosphorylation , Cell Line , Cytoplasmic Granules/metabolism
5.
Sci Adv ; 10(18): eadg8771, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38691600

ABSTRACT

To facilitate the interrogation of protein function at scale, we have developed high-throughput insertion of tags across the genome (HITAG). HITAG enables users to rapidly produce libraries of cells, each with a different protein of interest C-terminally tagged. HITAG is based on a modified strategy for performing Cas9-based targeted insertions, coupled with an improved approach for selecting properly tagged lines. Analysis of the resulting clones generated by HITAG reveals high tagging specificity, with most successful tagging events being indel free. Using HITAG, we fuse mCherry to a set of 167 stress granule-associated proteins and elucidate the features that drive a subset of proteins to strongly accumulate within these transient RNA-protein granules.


Subject(s)
Genetic Loci , Humans , CRISPR-Cas Systems , Proteins/genetics , Proteins/metabolism , High-Throughput Screening Assays/methods , Cytoplasmic Granules/metabolism , Cytoplasmic Granules/genetics
6.
FEBS Lett ; 598(7): 774-786, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38499396

ABSTRACT

Membraneless organelles are RNA-protein assemblies which have been implicated in post-transcriptional control. Germ cells form membraneless organelles referred to as germ granules, which contain conserved proteins including Tudor domain-containing scaffold polypeptides and their partner proteins that interact with Tudor domains. Here, we show that in Drosophila, different germ granule proteins associate with the multi-domain Tudor protein using different numbers of Tudor domains. Furthermore, these proteins compete for interaction with Tudor in vitro and, surprisingly, partition to distinct and poorly overlapping clusters in germ granules in vivo. This partition results in minimization of the competition. Our data suggest that Tudor forms structurally different configurations with different partner proteins which dictate different biophysical properties and phase separation parameters within the same granule.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Cytoplasmic Granules/metabolism , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Germ Cell Ribonucleoprotein Granules , Germ Cells/metabolism
7.
Cell Rep ; 43(3): 113836, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38421874

ABSTRACT

Endocrine cells employ regulated exocytosis of secretory granules to secrete hormones and neurotransmitters. Secretory granule exocytosis depends on spatiotemporal variables such as proximity to the plasma membrane and age, with newly generated granules being preferentially released. Despite recent advances, we lack a comprehensive view of the molecular composition of insulin granules and associated changes over their lifetime. Here, we report a strategy for the purification of insulin secretory granules of distinct age from insulinoma INS-1 cells. Tagging the granule-resident protein phogrin with a cleavable CLIP tag, we obtain intact fractions of age-distinct granules for proteomic and lipidomic analyses. We find that the lipid composition changes over time, along with the physical properties of the membrane, and that kinesin-1 heavy chain (KIF5b) as well as Ras-related protein 3a (RAB3a) associate preferentially with younger granules. Further, we identify the Rho GTPase-activating protein (ARHGAP1) as a cytosolic factor associated with insulin granules.


Subject(s)
Insulinoma , Pancreatic Neoplasms , Humans , Insulin/metabolism , Proteomics , Lipidomics , Insulinoma/metabolism , Pancreatic Neoplasms/metabolism , Exocytosis , Secretory Vesicles/metabolism , Cytoplasmic Granules/metabolism
8.
Nat Commun ; 15(1): 1524, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374028

ABSTRACT

Oligodendrocyte (OL) injury and subsequent loss is a pathologic hallmark of multiple sclerosis (MS). Stress granules (SGs) are membrane-less organelles containing mRNAs stalled in translation and considered as participants of the cellular response to stress. Here we show SGs in OLs in active and inactive areas of MS lesions as well as in normal-appearing white matter. In cultures of primary human adult brain derived OLs, metabolic stress conditions induce transient SG formation in these cells. Combining pro-inflammatory cytokines, which alone do not induce SG formation, with metabolic stress results in persistence of SGs. Unlike sodium arsenite, metabolic stress induced SG formation is not blocked by the integrated stress response inhibitor. Glycolytic inhibition also induces persistent SGs indicating the dependence of SG formation and disassembly on the energetic glycolytic properties of human OLs. We conclude that SG persistence in OLs in MS reflects their response to a combination of metabolic stress and pro-inflammatory conditions.


Subject(s)
Cytoplasmic Granules , Multiple Sclerosis , Humans , Cytoplasmic Granules/metabolism , Stress Granules , Oligodendroglia , Cytokines/metabolism , Stress, Physiological , Multiple Sclerosis/metabolism
9.
Nucleic Acids Res ; 52(9): 5356-5375, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38366783

ABSTRACT

Stress granules (SGs) are cytoplasmic assemblies formed under various stress conditions as a consequence of translation arrest. SGs contain RNA-binding proteins, ribosomal subunits and messenger RNAs (mRNAs). It is well known that mRNAs contribute to SG formation; however, the connection between SG assembly and nuclear processes that involve mRNAs is not well established. Here, we examine the effects of inhibiting mRNA transcription, splicing and export on the assembly of SGs and the related cytoplasmic P body (PB). We demonstrate that inhibition of mRNA transcription, splicing and export reduces the formation of canonical SGs in a eukaryotic initiation factor 2α phosphorylation-independent manner, and alters PB size and quantity. We find that the splicing inhibitor madrasin promotes the assembly of stress-like granules. We show that the addition of synthetic mRNAs directly to the cytoplasm is sufficient for SG assembly, and that the assembly of these SGs requires the activation of stress-associated protein synthesis pathways. Moreover, we show that adding an excess of mRNA to cells that do not have active splicing, and therefore have low levels of cytoplasmic mRNAs, promotes SG formation under stress conditions. These findings emphasize the importance of the cytoplasmic abundance of newly transcribed mRNAs in the assembly of SGs.


Subject(s)
Cell Nucleus , Cytoplasmic Granules , RNA Splicing , RNA, Messenger , Cytoplasmic Granules/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Humans , Cell Nucleus/metabolism , Cell Nucleus/genetics , Stress Granules/metabolism , Transcription, Genetic , Cytoplasm/metabolism , HeLa Cells , Eukaryotic Initiation Factor-2/metabolism , Phosphorylation
10.
Nucleic Acids Res ; 52(6): 3310-3326, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38165001

ABSTRACT

L1TD1 is a cytoplasmic RNA-binding protein specifically expressed in pluripotent stem cells and, unlike its mouse ortholog, is essential for the maintenance of stemness in human cells. Although L1TD1 is the only known protein-coding gene domesticated from a LINE-1 (L1) retroelement, the functional legacy of its ancestral protein, ORF1p of L1, and how it is manifested in L1TD1 are still unknown. Here, we determined RNAs associated with L1TD1 and found that, like ORF1p, L1TD1 binds L1 RNAs and localizes to high-density ribonucleoprotein (RNP) condensates. Unexpectedly, L1TD1 enhanced the translation of a subset of mRNAs enriched in the condensates. L1TD1 depletion promoted the formation of stress granules in embryonic stem cells. In HeLa cells, ectopically expressed L1TD1 facilitated the dissolution of stress granules and granules formed by pathological mutations of TDP-43 and FUS. The glutamate-rich domain and the ORF1-homology domain of L1TD1 facilitated dispersal of the RNPs and induced autophagy, respectively. These results provide insights into how L1TD1 regulates gene expression in pluripotent stem cells. We propose that the ability of L1TD1 to dissolve stress granules may provide novel opportunities for treatment of neurodegenerative diseases caused by disturbed stress granule dynamics.


Subject(s)
Embryonic Stem Cells , RNA-Binding Proteins , Ribonucleoproteins , Animals , Humans , Mice , Cytoplasmic Granules/metabolism , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , HeLa Cells , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , RNA/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
11.
Biochem Biophys Res Commun ; 697: 149497, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38262290

ABSTRACT

Stress granule (SG) is a temporary cellular structure that plays a crucial role in the regulation of mRNA and protein sequestration during various cellular stress conditions. SG enables cells to cope with stress more effectively, conserving vital energy and resources. Focusing on the NTF2-like domain of G3BP1, a key protein in SG dynamics, we explore to identify and characterize novel small molecules involved in SG modulation without external stressors. Through in silico molecular docking approach to simulate the interaction between various compounds and the NTF2-like domain of G3BP1, we identified three compounds as potential candidates that could bind to the NTF2-like domain of G3BP1. Subsequent immunofluorescence experiments demonstrated that these compounds induce the formation of SG-like, G3BP1-positive granules. Importantly, the granule formation by these compounds occurs independent from the phosphorylation of eIF2α, a common mechanism in SG formation, suggesting that it might offer a new strategy for influencing SG dynamics implicated in various diseases.


Subject(s)
DNA Helicases , RNA Helicases , DNA Helicases/metabolism , RNA Helicases/metabolism , RNA Recognition Motif Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , Molecular Docking Simulation , Cytoplasmic Granules/metabolism
12.
Geriatr Gerontol Int ; 24 Suppl 1: 7-14, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37726158

ABSTRACT

Living organisms experience a range of stresses. To cope effectively with these stresses, eukaryotic cells have evolved a sophisticated mechanism involving the formation of stress granules (SGs), which play a crucial role in protecting various types of RNA species under stress, such as mRNAs and long non-coding RNAs (lncRNAs). SGs are non-membranous cytoplasmic ribonucleoprotein (RNP) granules, and the RNAs they contain are translationally stalled. Importantly, SGs have been thought to contribute to the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD). SGs also contain multiple RNA-binding proteins (RBPs), several of which have been implicated in AD progression. SGs are transient structures that dissipate after stress relief. However, the chronic stresses associated with aging lead to the persistent formation of SGs and subsequently to solid-like pathological SGs, which could impair cellular RNA metabolism and also act as a nidus for the aberrant aggregation of AD-associated proteins. In this paper, we provide a comprehensive summary of the physical basis of SG-enriched RNAs and SG-resident RBPs. We then review the characteristics of AD-associated gene transcripts and their similarity to the SG-enriched RNAs. Furthermore, we summarize and discuss the functional implications of SGs in neuronal RNA metabolism and the aberrant aggregation of AD-associated proteins mediated by SG-resident RBPs in the context of AD pathogenesis. Geriatr Gerontol Int 2024; 24: 7-14.


Subject(s)
Alzheimer Disease , RNA , Humans , RNA/genetics , RNA/metabolism , Alzheimer Disease/pathology , Stress Granules , Cytoplasmic Granules/genetics , Cytoplasmic Granules/metabolism , Cytoplasmic Granules/pathology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
13.
Chem Commun (Camb) ; 60(6): 762-765, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38126399

ABSTRACT

The formation of membrane-less organelles is driven by multivalent weak interactions while mediation of such interactions by small molecules remains an unparalleled challenge. Here, we uncovered a bivalent inhibitor that blocked the recruitment of TDRD3 by the two methylated arginines of G3BP1. Relative to the monovalent inhibitor, this bivalent inhibitor demonstrated an enhanced binding affinity to TDRD3 and capability to suppress the phase separation of methylated G3BP1, TDRD3, and RNAs, and in turn inhibit the stress granule growth in cells. Our result paves a new path to mediate multivalent interactions involved in SG assembly for potential combinational chemotherapy by bivalent inhibitors.


Subject(s)
DNA Helicases , RNA Helicases , DNA Helicases/metabolism , RNA Helicases/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Recognition Motif Proteins/metabolism , Phase Separation , Cytoplasmic Granules/metabolism
14.
J Phys Chem B ; 127(49): 10498-10507, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38051203

ABSTRACT

The Coding Region Determinant-Binding Protein (CRDBP) is a carcinoembryonic protein, and it is overexpressed in various cancer cells in the form of granules. We speculated the formation of CRDBP granules possibly through liquid-liquid phase separation (LLPS) processes due to the existence of intrinsically disordered regions (IDRs) in CRDBP. So far, we did not know whether or how phase separation processes of CRDBP occur in single living cells due to the lack of in vivo methods for studying intracellular protein phase separation. Therefore, to develop an in situ method for studying protein phase separation in living cells is a very urgent task. In this work, we proposed an efficient method for studying phase separation behavior of CRDBP in a single living cell by combining in situ fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) with a fluorescence protein fusion technique. We first predicted and confirmed that CRDBP has phase separation in solution by conventional fluorescence imaging and FCS methods. And then, we in situ studied the phase separation behaviors of CRDBP in living cells and observed three states of CRDBP phase separation such as monomer state, cluster state, and granule state. We studied the effects of CRDBP truncated forms and its inhibitor on the CRDBP phase separation. Furthermore, we discovered the recruitment of CRDBP to ß-catenin protein in living cells and investigated the effects of CRDBP structures and inhibitor on CRDBP recruitment behavior. This finding may help us to further understand the mechanism of CRDBP protein for regulating Wnt signaling pathway. Additionally, our results documented that FCS/FCCS is an efficient and alternative method for studying protein phase separation in situ in living cells.


Subject(s)
Carrier Proteins , Intrinsically Disordered Proteins , Carrier Proteins/metabolism , Catenins/metabolism , Intrinsically Disordered Proteins/chemistry , Cytoplasmic Granules/metabolism
15.
PLoS Biol ; 21(11): e3002381, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37983241

ABSTRACT

Antiviral responses are often accompanied by translation inhibition and formation of stress granules (SGs) in infected cells. However, the triggers for these processes and their role during infection remain subjects of active investigation. Copy-back viral genomes (cbVGs) are the primary inducers of the mitochondrial antiviral signaling (MAVS) pathway and antiviral immunity during Sendai virus (SeV) and respiratory syncytial virus (RSV) infections. The relationship between cbVGs and cellular stress during viral infections is unknown. Here, we show that SGs form during infections containing high levels of cbVGs, and not during infections with low levels of cbVGs. Moreover, using RNA fluorescent in situ hybridization to differentiate accumulation of standard viral genomes from cbVGs at a single-cell level during infection, we show that SGs form exclusively in cells that accumulate high levels of cbVGs. Protein kinase R (PKR) activation is increased during high cbVG infections and, as expected, is necessary for virus-induced SGs. However, SGs form independent of MAVS signaling, demonstrating that cbVGs induce antiviral immunity and SG formation through 2 independent mechanisms. Furthermore, we show that translation inhibition and SG formation do not affect the overall expression of interferon and interferon stimulated genes during infection, making the stress response dispensable for global antiviral immunity. Using live-cell imaging, we show that SG formation is highly dynamic and correlates with a drastic reduction of viral protein expression even in cells infected for several days. Through analysis of active protein translation at a single-cell level, we show that infected cells that form SGs show inhibition of protein translation. Together, our data reveal a new cbVG-driven mechanism of viral interference where cbVGs induce PKR-mediated translation inhibition and SG formation, leading to a reduction in viral protein expression without altering overall antiviral immunity.


Subject(s)
Interferons , Viral Proteins , Humans , Viral Proteins/genetics , Viral Proteins/metabolism , In Situ Hybridization, Fluorescence , Interferons/metabolism , Protein Biosynthesis , Genome, Viral , Cytoplasmic Granules/metabolism , Virus Replication/genetics
16.
Platelets ; 34(1): 2267147, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37927048

ABSTRACT

Platelets play many roles in the vasculature ensuring proper hemostasis and maintaining integrity. These roles are facilitated, in part, by cargo molecules released from platelet granules via Soluble NSF Attachment Protein Receptor (SNARE) mediated membrane fusion, which is controlled by several protein-protein interactions. Chaperones have been characterized for t-SNAREs (i.e. Munc18b for Syntaxin-11), but none have been clearly identified for v-SNAREs. α-Synuclein has been proposed as a v-SNARE chaperone which may affect SNARE-complex assembly, fusion pore opening, and thus secretion. Despite its abundance and that it is the only isoform present, α-synuclein's role in platelet secretion is uncharacterized. In this study, immunofluorescence showed that α-synuclein was present on punctate structures that co-stained with markers for α-granules and lysosomes and in a cytoplasmic pool. We analyzed the phenotype of α-synuclein-/- mice and their platelets. Platelets from knockout mice had a mild, agonist-dependent secretion defect but aggregation and spreading in vitro were unaffected. Consistently, thrombosis/hemostasis were unaffected in the tail-bleeding, FeCl3 carotid injury and jugular vein puncture models. None of the platelet secretory machinery examined, e.g. the v-SNAREs, were affected by α-synuclein's loss. The results indicate that, despite its abundance, α-synuclein has only a limited role in platelet function and thrombosis.


What did we know? The N-terminus of α-Synuclein affects SNARE-complex assembly, fusion pore opening, and granule docking.Microvascular bleeding is seen in Parkinson Disease patients where α-synuclein has a pathological role.What did we discover? α-Synuclein colocalizes with P-selectin (α-granules) and LAMP-1 (lysosomes) in platelets.The loss of α-synuclein has only a mild, agonist-dependent effect on platelet secretion.The loss of α-synuclein had no effect on thrombosis/hemostasis in 3 injury models.What is the impact? Despite its abundance, α-synuclein is not required for platelet secretion.α-Synuclein is not required for hemostasis or thrombosis.


Subject(s)
Thrombosis , alpha-Synuclein , Animals , Mice , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Blood Platelets/metabolism , Cytoplasmic Granules/metabolism , Exocytosis/physiology , Mice, Knockout , Platelet Activation , Protein Isoforms/metabolism , SNARE Proteins/metabolism , Thrombosis/metabolism
17.
Nat Commun ; 14(1): 7390, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37968266

ABSTRACT

Stress granules (SGs) are highly dynamic cytoplasmic membrane-less organelles that assemble when cells are challenged by stress. RNA molecules are sorted into SGs where they play important roles in maintaining the structural stability of SGs and regulating gene expression. Herein, we apply a proximity-dependent RNA labeling method, CAP-seq, to comprehensively investigate the content of SG-proximal transcriptome in live mammalian cells. CAP-seq captures 457 and 822 RNAs in arsenite- and sorbitol-induced SGs in HEK293T cells, respectively, revealing that SG enrichment is positively correlated with RNA length and AU content, but negatively correlated with translation efficiency. The high spatial specificity of CAP-seq dataset is validated by single-molecule FISH imaging. We further apply CAP-seq to map dynamic changes in SG-proximal transcriptome along the time course of granule assembly and disassembly processes. Our data portray a model of AU-rich and translationally repressed SG nanostructure that are memorized long after the removal of stress.


Subject(s)
Cytoplasmic Granules , RNA , Humans , Animals , RNA/metabolism , HEK293 Cells , Cytoplasmic Granules/metabolism , Stress, Physiological/genetics , Mammals/genetics
18.
Biochim Biophys Acta Rev Cancer ; 1878(6): 189006, 2023 11.
Article in English | MEDLINE | ID: mdl-37913942

ABSTRACT

Stress granules (SGs) are membrane-less organelles that cell forms via liquid-liquid phase separation (LLPS) under stress conditions such as oxidative stress, ER stress, heat shock and hypoxia. SG assembly is a stress-responsive mechanism by regulating gene expression and cellular signaling pathways. Cancer cells face various stress conditions in tumor microenvironment during tumorigenesis, while SGs contribute to hallmarks of cancer including proliferation, invasion, migration, avoiding apoptosis, metabolism reprogramming and immune evasion. Here, we review the connection between SGs and cancer development, the limitation of SGs on current cancer therapy and promising cancer therapeutic strategies targeting SGs in the future.


Subject(s)
Cytoplasmic Granules , Stress, Physiological , Humans , Cytoplasmic Granules/metabolism , Stress Granules , Oxidative Stress , Carcinogenesis/metabolism , Tumor Microenvironment
19.
Cell Rep ; 42(11): 113358, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37917584

ABSTRACT

Stress granules (SGs) constitute a signaling hub that plays a critical role in type I interferon responses. Here, we report that growth arrest and DNA damage-inducible beta (Gadd45ß) act as a positive regulator of SG-mediated interferon signaling by targeting G3BP upon RNA virus infection. Gadd45ß deficiency markedly impairs SG formation and SG-mediated activation of interferon signaling in vitro. Gadd45ß knockout mice are highly susceptible to RNA virus infection, and their ability to produce interferon and cytokines is severely impaired. Specifically, Gadd45ß interacts with the RNA-binding domain of G3BP, leading to conformational expansion of G3BP1 via dissolution of its autoinhibitory electrostatic intramolecular interaction. The acidic loop 1- and RNA-binding properties of Gadd45ß markedly increase the conformational expansion and RNA-binding affinity of the G3BP1-Gadd45ß complex, thereby promoting assembly of SGs. These findings suggest a role for Gadd45ß as a component and critical regulator of G3BP1-mediated SG formation, which facilitates RLR-mediated interferon signaling.


Subject(s)
Interferon Type I , RNA Virus Infections , Animals , Mice , Cytoplasmic Granules/metabolism , DNA Helicases/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , RNA , RNA Helicases/metabolism , RNA Recognition Motif Proteins/genetics , Stress Granules
20.
Nat Commun ; 14(1): 7782, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012130

ABSTRACT

Stress granules (SGs) are dynamic, membrane-less organelles. With their formation and disassembly processes characterized, it remains elusive how compositional transitions are coordinated during prolonged stress to meet changing functional needs. Here, using time-resolved proteomic profiling of the acute to prolonged heat-shock SG life cycle, we identify dynamic SG proteins, further segregated into early and late proteins. Comparison of different groups of SG proteins suggests that their biochemical properties help coordinate SG compositional and functional transitions. In particular, early proteins, with high phase-separation-propensity, drive the rapid formation of the initial SG platform, while late proteins are subsequently recruited as discrete modules to further functionalize SGs. This model, supported by immunoblotting and immunofluorescence imaging, provides a conceptual framework for the compositional transitions throughout the acute to prolonged SG life cycle. Additionally, an early SG constituent, non-muscle myosin II, is shown to promote SG formation by increasing SG fusion, underscoring the strength of this dataset in revealing the complexity of SG regulation.


Subject(s)
Cytoplasmic Granules , Proteomics , Cytoplasmic Granules/metabolism , Stress Granules , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...