Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
J Mol Histol ; 55(1): 121-138, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38165569

ABSTRACT

Differentiation of lens fiber cells involves a complex interplay of signals from growth factors together with tightly regulated gene expression via transcriptional and post-transcriptional regulators. Various studies have demonstrated that RNA-binding proteins, functioning in ribonucleoprotein granules, have important roles in regulating post-transcriptional expression during lens development. In this study, we examined the expression and localization of two members of the BTG/TOB family of RNA-binding proteins, TOB1 and TOB2, in the developing lens and examined the phenotype of mice that lack Tob1. By RT-PCR, both Tob1 and Tob2 mRNA were detected in epithelial and fiber cells of embryonic and postnatal murine lenses. In situ hybridization showed Tob1 and Tob2 mRNA were most intensely expressed in the early differentiating fibers, with weaker expression in anterior epithelial cells, and both appeared to be downregulated in the germinative zone of E15.5 lenses. TOB1 protein was detected from E11.5 to E16.5 and was predominantly detected in large cytoplasmic puncta in early differentiating fiber cells, often co-localizing with the P-body marker, DCP2. Occasional nuclear puncta were also observed. By contrast, TOB2 was detected in a series of interconnected peri-nuclear granules, in later differentiating fiber cells of the inner cortex. TOB2 did not appear to co-localize with DCP2 but did partially co-localize with an early stress granule marker (EIF3B). These data suggest that TOB1 and TOB2 are involved with different aspects of the mRNA processing cycle in lens fiber cells. In vitro experiments using rat lens epithelial explants treated with or without a fiber differentiating dose of FGF2 showed that both TOB1 and TOB2 were up-regulated during FGF-induced differentiation. In differentiating explants, TOB1 also co-localized with DCP2 in large cytoplasmic granules. Analyses of Tob1-/- mice revealed relatively normal lens morphology but a subtle defect in cell cycle arrest of some cells at the equator and in the lens fiber mass of E13.5 embryos. Overall, these findings suggest that TOB proteins play distinct regulatory roles in RNA processing during lens fiber differentiation.


Subject(s)
Cell Cycle Proteins , RNA Processing, Post-Transcriptional , Animals , Mice , Rats , Cell Cycle Proteins/metabolism , Cell Differentiation/genetics , Cytoplasmic Ribonucleoprotein Granules , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics
2.
Cell ; 186(22): 4737-4756, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37890457

ABSTRACT

Ribonucleoprotein (RNP) granules are diverse membrane-less organelles that form through multivalent RNA-RNA, RNA-protein, and protein-protein interactions between RNPs. RNP granules are implicated in many aspects of RNA physiology, but in most cases their functions are poorly understood. RNP granules can be described through four key principles. First, RNP granules often arise because of the large size, high localized concentrations, and multivalent interactions of RNPs. Second, cells regulate RNP granule formation by multiple mechanisms including posttranslational modifications, protein chaperones, and RNA chaperones. Third, RNP granules impact cell physiology in multiple manners. Finally, dysregulation of RNP granules contributes to human diseases. Outstanding issues in the field remain, including determining the scale and molecular mechanisms of RNP granule function and how granule dysfunction contributes to human disease.


Subject(s)
Cell Nucleus Structures , Cytoplasmic Granules , Ribonucleoproteins , Humans , Cytoplasmic Granules/metabolism , Cytoplasmic Granules/pathology , Cytoplasmic Ribonucleoprotein Granules , Protein Processing, Post-Translational , Ribonucleoproteins/metabolism , RNA/metabolism , Cell Nucleolus/metabolism , Cell Nucleus Structures/metabolism , Cell Nucleus Structures/pathology , Animals
3.
PLoS Genet ; 19(8): e1010877, 2023 08.
Article in English | MEDLINE | ID: mdl-37624861

ABSTRACT

Localization of oskar mRNA to the posterior of the Drosophila oocyte is essential for abdominal patterning and germline development. oskar localization is a multi-step process involving temporally and mechanistically distinct transport modes. Numerous cis-acting elements and trans-acting factors have been identified that mediate earlier motor-dependent transport steps leading to an initial accumulation of oskar at the posterior. Little is known, however, about the requirements for the later localization phase, which depends on cytoplasmic flows and results in the accumulation of large oskar ribonucleoprotein granules, called founder granules, by the end of oogenesis. Using super-resolution microscopy, we show that founder granules are agglomerates of smaller oskar transport particles. In contrast to the earlier kinesin-dependent oskar transport, late-phase localization depends on the sequence as well as on the structure of the spliced oskar localization element (SOLE), but not on the adjacent exon junction complex deposition. Late-phase localization also requires the oskar 3' untranslated region (3' UTR), which targets oskar to founder granules. Together, our results show that 3' UTR-mediated targeting together with SOLE-dependent agglomeration leads to accumulation of oskar in large founder granules at the posterior of the oocyte during late stages of oogenesis. In light of previous work showing that oskar transport particles are solid-like condensates, our findings indicate that founder granules form by a process distinct from that of well-characterized ribonucleoprotein granules like germ granules, P bodies, and stress granules. Additionally, they illustrate how an individual mRNA can be adapted to exploit different localization mechanisms depending on the cellular context.


Subject(s)
Cytoplasmic Ribonucleoprotein Granules , Stress Granules , Animals , 3' Untranslated Regions/genetics , Cytoplasm , Drosophila/genetics , RNA, Messenger/genetics
4.
Biomolecules ; 13(7)2023 06 23.
Article in English | MEDLINE | ID: mdl-37509063

ABSTRACT

Transposable elements (TEs) are DNA sequences that can transpose and replicate within the genome, leading to genetic changes that affect various aspects of host biology. Evolutionarily, hosts have also developed molecular mechanisms to suppress TEs at the transcriptional and post-transcriptional levels. Recent studies suggest that stress-induced formation of ribonucleoprotein (RNP) granules, including stress granule (SG) and processing body (P-body), can play a role in the sequestration of TEs to prevent transposition, suggesting an additional layer of the regulatory mechanism for TEs. RNP granules have been shown to contain factors involved in RNA regulation, including mRNA decay enzymes, RNA-binding proteins, and noncoding RNAs, which could potentially contribute to the regulation of TEs. Therefore, understanding the interplay between TEs and RNP granules is crucial for elucidating the mechanisms for maintaining genomic stability and controlling gene expression. In this review, we provide a brief overview of the current knowledge regarding the interplay between TEs and RNP granules, proposing RNP granules as a novel layer of the regulatory mechanism for TEs during stress.


Subject(s)
DNA Transposable Elements , RNA-Binding Proteins , DNA Transposable Elements/genetics , RNA-Binding Proteins/metabolism , Cytoplasmic Ribonucleoprotein Granules
5.
Trends Neurosci ; 46(7): 525-538, 2023 07.
Article in English | MEDLINE | ID: mdl-37202301

ABSTRACT

RNA granules are dynamic entities controlling the spatiotemporal distribution and translation of RNA molecules. In neurons, a variety of RNA granules exist both in the soma and in cellular processes. They contain transcripts encoding signaling and synaptic proteins as well as RNA-binding proteins causally linked to several neurological disorders. In this review, we highlight that neuronal RNA granules exhibit properties of biomolecular condensates that are regulated upon maturation and physiological aging and how they are reversibly remodeled in response to neuronal activity to control local protein synthesis and ultimately synaptic plasticity. Moreover, we propose a framework of how neuronal RNA granules mature over time in healthy conditions and how they transition into pathological inclusions in the context of late-onset neurodegenerative diseases.


Subject(s)
Cytoplasmic Granules , Neurons , Humans , Cytoplasmic Granules/metabolism , Neurons/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Cytoplasmic Ribonucleoprotein Granules , Neuronal Plasticity/physiology , RNA/metabolism
6.
Genes Dev ; 37(9-10): 354-376, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37137715

ABSTRACT

RNA granules are mesoscale assemblies that form in the absence of limiting membranes. RNA granules contain factors for RNA biogenesis and turnover and are often assumed to represent specialized compartments for RNA biochemistry. Recent evidence suggests that RNA granules assemble by phase separation of subsoluble ribonucleoprotein (RNP) complexes that partially demix from the cytoplasm or nucleoplasm. We explore the possibility that some RNA granules are nonessential condensation by-products that arise when RNP complexes exceed their solubility limit as a consequence of cellular activity, stress, or aging. We describe the use of evolutionary and mutational analyses and single-molecule techniques to distinguish functional RNA granules from "incidental condensates."


Subject(s)
Cytoplasmic Granules , Ribonucleoproteins , Ribonucleoproteins/genetics , Cytoplasmic Ribonucleoprotein Granules , RNA/chemistry
7.
J Neurosci ; 43(14): 2440-2459, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36849416

ABSTRACT

Local translation in neurons is partly mediated by the reactivation of stalled polysomes. Stalled polysomes may be enriched within the granule fraction, defined as the pellet of sucrose gradients used to separate polysomes from monosomes. The mechanism of how elongating ribosomes are reversibly stalled and unstalled on mRNAs is still unclear. In the present study, we characterize the ribosomes in the granule fraction using immunoblotting, cryogenic electron microscopy (cryo-EM), and ribosome profiling. We find that this fraction, isolated from 5-d-old rat brains of both sexes, is enriched in proteins implicated in stalled polysome function, such as the fragile X mental retardation protein (FMRP) and Up-frameshift mutation 1 homologue. Cryo-EM analysis of ribosomes in this fraction indicates they are stalled, mainly in the hybrid state. Ribosome profiling of this fraction reveals (1) an enrichment for footprint reads of mRNAs that interact with FMRPs and are associated with stalled polysomes, (2) an abundance of footprint reads derived from mRNAs of cytoskeletal proteins implicated in neuronal development, and (3) increased ribosome occupancy on mRNAs encoding RNA binding proteins. Compared with those usually found in ribosome profiling studies, the footprint reads were longer and were mapped to reproducible peaks in the mRNAs. These peaks were enriched in motifs previously associated with mRNAs cross-linked to FMRP in vivo, independently linking the ribosomes in the granule fraction to the ribosomes associated with FMRP in the cell. The data supports a model in which specific sequences in mRNAs act to stall ribosomes during translation elongation in neurons.SIGNIFICANCE STATEMENT Neurons send mRNAs to synapses in RNA granules, where they are not translated until an appropriate stimulus is given. Here, we characterize a granule fraction obtained from sucrose gradients and show that polysomes in this fraction are stalled on consensus sequences in a specific state of translational arrest with extended ribosome-protected fragments. This finding greatly increases our understanding of how neurons use specialized mechanisms to regulate translation and suggests that many studies on neuronal translation may need to be re-evaluated to include the large fraction of neuronal polysomes found in the pellet of sucrose gradients used to isolate polysomes.


Subject(s)
Fragile X Mental Retardation Protein , Ribosomes , Animals , Female , Male , Rats , Cytoplasmic Ribonucleoprotein Granules/metabolism , Fragile X Mental Retardation Protein/genetics , Polyribosomes , Protein Biosynthesis , Ribosomes/metabolism , RNA, Messenger/metabolism
8.
Andrology ; 11(5): 872-883, 2023 07.
Article in English | MEDLINE | ID: mdl-36273399

ABSTRACT

First reported in the 1800s, germ cell granules are small nonmembrane bound RNA-rich regions of the cytoplasm. These sites of critical RNA processing and storage in the male germ cell are essential for proper differentiation and development and are present in a wide range of species from Caenorhabditis elegans through mammals. Initially characterized by light and electron microscopy, more modern techniques such as immunofluorescence and genetic models have played a major role in expanding our understanding of the composition of these structures. While these methods have given light to potential granule functions, much work remains to be done. The current expansion of imaging technologies and omics-scale analyses to germ cell granule research will drive the field forward considerably. Many of these methods, both current and upcoming, have considerable caveats and limitations that necessitate a holistic approach to the study of germ granules. By combining and balancing different techniques, the field is poised to elucidate the nature of these critical structures.


Subject(s)
Germ Cells , RNA , Animals , Male , Germ Cells/metabolism , RNA/genetics , RNA/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Cytoplasmic Ribonucleoprotein Granules , Mammals/genetics , Mammals/metabolism
9.
Nucleic Acids Res ; 50(22): 12951-12968, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36503967

ABSTRACT

Mitochondrial RNA metabolism is suggested to occur in identified compartmentalized foci, i.e. mitochondrial RNA granules (MRGs). Mitochondrial aminoacyl-tRNA synthetases (mito aaRSs) catalyze tRNA charging and are key components in mitochondrial gene expression. Mutations of mito aaRSs are associated with various human disorders. However, the suborganelle distribution, interaction network and regulatory mechanism of mito aaRSs remain largely unknown. Here, we found that all mito aaRSs partly colocalize with MRG, and this colocalization is likely facilitated by tRNA-binding capacity. A fraction of human mitochondrial AlaRS (hmtAlaRS) and hmtSerRS formed a direct complex via interaction between catalytic domains in vivo. Aminoacylation activities of both hmtAlaRS and hmtSerRS were fine-tuned upon complex formation in vitro. We further established a full spectrum of interaction networks via immunoprecipitation and mass spectrometry for all mito aaRSs and discovered interactions between hmtSerRS and hmtAsnRS, between hmtSerRS and hmtTyrRS and between hmtThrRS and hmtArgRS. The activity of hmtTyrRS was also influenced by the presence of hmtSerRS. Notably, hmtSerRS utilized the same catalytic domain in mediating several interactions. Altogether, our results systematically analyzed the suborganelle localization and interaction network of mito aaRSs and discovered several mito aaRS-containing complexes, deepening our understanding of the functional and regulatory mechanisms of mito aaRSs.


Subject(s)
Amino Acyl-tRNA Synthetases , Transfer RNA Aminoacylation , Humans , Amino Acyl-tRNA Synthetases/metabolism , Cytoplasmic Ribonucleoprotein Granules/metabolism , RNA, Mitochondrial/metabolism , RNA, Transfer/metabolism
10.
J Virol ; 96(22): e0146922, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36326276

ABSTRACT

Herpesviral infection reflects thousands of years of coevolution and the constant struggle between virus and host for control of cellular gene expression. During Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication, the virus rapidly seizes control of host gene expression machinery by triggering a massive RNA decay event via a virally encoded endoribonuclease, SOX. This virus takeover strategy decimates close to 80% of cellular transcripts, reallocating host resources toward viral replication. The host cell, however, is not entirely passive in this assault on RNA stability. A small pool of host transcripts that actively evade SOX cleavage has been identified over the years. One such "escapee," C19ORF66 (herein referred to as Shiftless [SHFL]), encodes a potent antiviral protein capable of restricting the replication of multiple DNA and RNA viruses and retroviruses, including KSHV. Here, we show that SHFL restricts KSHV replication by targeting the expression of critical viral early genes, including the master transactivator protein, KSHV ORF50, and thus subsequently the entire lytic gene cascade. Consistent with previous reports, we found that the SHFL interactome throughout KSHV infection is dominated by RNA-binding proteins that influence both translation and protein stability, including the viral protein ORF57, a crucial regulator of viral RNA fate. We next show that SHFL affects cytoplasmic RNA granule formation, triggering the disassembly of processing bodies. Taken together, our findings provide insights into the complex relationship between RNA stability, RNA granule formation, and the antiviral response to KSHV infection. IMPORTANCE In the past 5 years, SHFL has emerged as a novel and integral piece of the innate immune response to viral infection. SHFL has been reported to restrict the replication of multiple viruses, including several flaviviruses and the retrovirus HIV-1. However, to date, the mechanism(s) by which SHFL restricts DNA virus infection remains largely unknown. We have previously shown that following its escape from KSHV-induced RNA decay, SHFL acts as a potent antiviral factor, restricting nearly every stage of KSHV lytic replication. In this study, we set out to determine the mechanism by which SHFL restricts KSHV infection. We demonstrate that SHFL impacts all classes of KSHV genes and found that SHFL restricts the expression of several key early genes, including KSHV ORF50 and ORF57. We then mapped the interactome of SHFL during KSHV infection and found several host and viral RNA-binding proteins that all play crucial roles in regulating RNA stability and translation. Lastly, we found that SHFL expression influences RNA granule formation both outside and within the context of KSHV infection, highlighting its broader impact on global gene expression. Collectively, our findings highlight a novel relationship between a critical piece of the antiviral response to KSHV infection and the regulation of RNA-protein dynamics.


Subject(s)
Herpesviridae Infections , Herpesvirus 8, Human , Humans , Herpesvirus 8, Human/physiology , Gene Expression Regulation, Viral , Cytoplasmic Ribonucleoprotein Granules , Virus Replication , Herpesviridae Infections/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Gene Expression , Antiviral Agents/metabolism , Viral Regulatory and Accessory Proteins/metabolism
11.
J Cell Sci ; 135(23)2022 12 01.
Article in English | MEDLINE | ID: mdl-36373798

ABSTRACT

Cytoplasmic RNA granules compartmentalize phases of the translation cycle in eukaryotes. We previously reported the localization of oxidized RNA to cytoplasmic foci called oxidized RNA bodies (ORBs) in human cells. We show here that ORBs are RNA granules in Saccharomyces cerevisiae. Several lines of evidence support a role for ORBs in the compartmentalization of no-go decay and ribosome quality control, the translation quality control pathways that recognize and clear aberrant mRNAs, including those with oxidized bases. Translation is required by these pathways and ORBs. Translation quality control factors localize to ORBs. A substrate of translation quality control, a stalled mRNA-ribosome-nascent-chain complex, localizes to ORBs. Translation quality control mutants have altered ORB numbers, sizes or both. In addition, we identify 68 ORB proteins by immunofluorescence staining directed by proteomics, which further support their role in translation quality control and reveal candidate new factors for these pathways.


Subject(s)
Proteomics , Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/genetics , Cytoplasmic Ribonucleoprotein Granules , RNA
12.
Nat Commun ; 13(1): 5584, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36151083

ABSTRACT

Energy metabolism and membraneless organelles have been implicated in human diseases including neurodegeneration. How energy deficiency regulates ribonucleoprotein particles such as stress granules (SGs) is still unclear. Here we identified a unique type of granules induced by energy deficiency under physiological conditions and uncovered the mechanisms by which the dynamics of diverse stress-induced granules are regulated. Severe energy deficiency induced the rapid formation of energy deficiency-induced stress granules (eSGs) independently of eIF2α phosphorylation, whereas moderate energy deficiency delayed the clearance of conventional SGs. The formation of eSGs or the clearance of SGs was regulated by the mTOR-4EBP1-eIF4E pathway or eIF4A1, involving assembly of the eIF4F complex or RNA condensation, respectively. In neurons or brain organoids derived from patients carrying the C9orf72 repeat expansion associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), the eSG formation was enhanced, and the clearance of conventional SGs was impaired. These results reveal a critical role for intracellular energy in the regulation of diverse granules and suggest that disruptions in energy-controlled granule dynamics may contribute to the pathogenesis of relevant diseases.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/metabolism , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Cytoplasmic Granules/metabolism , Cytoplasmic Ribonucleoprotein Granules , Eukaryotic Initiation Factor-4E/metabolism , Eukaryotic Initiation Factor-4F/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Humans , RNA/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Stress, Physiological/physiology , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
13.
Sci Adv ; 8(39): eabo5578, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36170367

ABSTRACT

RNA binding proteins and messenger RNAs (mRNAs) assemble into ribonucleoprotein granules that regulate mRNA trafficking, local translation, and turnover. The dysregulation of RNA-protein condensation disturbs synaptic plasticity and neuron survival and has been widely associated with human neurological disease. Neuronal granules are thought to condense around particular proteins that dictate the identity and composition of each granule type. Here, we show in Drosophila that a previously uncharacterized long noncoding RNA, mimi, is required to scaffold large neuronal granules in the adult nervous system. Neuronal ELAV-like proteins directly bind mimi and mediate granule assembly, while Staufen maintains condensate integrity. mimi granules contain mRNAs and proteins involved in synaptic processes; granule loss in mimi mutant flies impairs nervous system maturity and neuropeptide-mediated signaling and causes phenotypes of neurodegeneration. Our work reports an architectural RNA for a neuronal granule and provides a handle to interrogate functions of a condensate independently of those of its constituent proteins.


Subject(s)
Neuropeptides , RNA, Long Noncoding , Cytoplasmic Ribonucleoprotein Granules , Humans , Neurons/physiology , Neuropeptides/metabolism , RNA/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
14.
Mol Biol Cell ; 33(12): ar108, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35921164

ABSTRACT

Prolonged manganese exposure causes manganism, a neurodegenerative movement disorder. The identity of adaptive and nonadaptive cellular processes targeted by manganese remains mostly unexplored. Here we study mechanisms engaged by manganese in genetic cellular models known to increase susceptibility to manganese exposure, the plasma membrane manganese efflux transporter SLC30A10 and the mitochondrial Parkinson's gene PARK2. We found that SLC30A10 and PARK2 mutations as well as manganese exposure compromised the mitochondrial RNA granule composition and function, resulting in disruption of mitochondrial transcript processing. These RNA granule defects led to impaired assembly and function of the mitochondrial respiratory chain. Notably, cells that survived a cytotoxic manganese challenge had impaired RNA granule function, thus suggesting that this granule phenotype was adaptive. CRISPR gene editing of subunits of the mitochondrial RNA granule, FASTKD2 or DHX30, as well as pharmacological inhibition of mitochondrial transcription-translation, were protective rather than deleterious for survival of cells acutely exposed to manganese. Similarly, adult Drosophila mutants with defects in the mitochondrial RNA granule component scully were safeguarded from manganese-induced mortality. We conclude that impairment of the mitochondrial RNA granule function is a protective mechanism for acute manganese toxicity.


Subject(s)
Cytoplasmic Ribonucleoprotein Granules , Manganese , Manganese/toxicity , Membrane Transport Proteins , Mitochondria/metabolism , RNA, Mitochondrial
15.
Science ; 377(6607): 712-713, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35951697

ABSTRACT

Ribonucleoprotein granules allow activation of translation to complete mouse spermatogenesis.


Subject(s)
Cytoplasmic Ribonucleoprotein Granules , Protein Biosynthesis , Spermatogenesis , Animals , Cytoplasmic Ribonucleoprotein Granules/metabolism , Male , Mice , Protein Biosynthesis/genetics , Spermatogenesis/genetics
16.
Cells ; 11(13)2022 06 29.
Article in English | MEDLINE | ID: mdl-35805146

ABSTRACT

Cells possess membraneless ribonucleoprotein (RNP) granules, including stress granules, processing bodies, Cajal bodies, or paraspeckles, that play physiological or pathological roles. RNP granules contain RNA and numerous RNA-binding proteins, transiently formed through the liquid-liquid phase separation. The assembly or disassembly of numerous RNP granules is strongly controlled to maintain their homeostasis and perform their cellular functions properly. Normal RNA granules are reversibly assembled, whereas abnormal RNP granules accumulate and associate with various neurodegenerative diseases. This review summarizes current studies on the physiological or pathological roles of post-translational modifications of various cellular RNP granules and discusses the therapeutic methods in curing diseases related to abnormal RNP granules by autophagy.


Subject(s)
Cytoplasmic Granules , Ribonucleoproteins , Cytoplasmic Granules/metabolism , Cytoplasmic Ribonucleoprotein Granules , Protein Processing, Post-Translational , RNA-Binding Proteins/metabolism , Ribonucleoproteins/metabolism
17.
Cell ; 185(8): 1308-1324.e23, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35325593

ABSTRACT

Asymmetric localization of oskar ribonucleoprotein (RNP) granules to the oocyte posterior is crucial for abdominal patterning and germline formation in the Drosophila embryo. We show that oskar RNP granules in the oocyte are condensates with solid-like physical properties. Using purified oskar RNA and scaffold proteins Bruno and Hrp48, we confirm in vitro that oskar granules undergo a liquid-to-solid phase transition. Whereas the liquid phase allows RNA incorporation, the solid phase precludes incorporation of additional RNA while allowing RNA-dependent partitioning of client proteins. Genetic modification of scaffold granule proteins or tethering the intrinsically disordered region of human fused in sarcoma (FUS) to oskar mRNA allowed modulation of granule material properties in vivo. The resulting liquid-like properties impaired oskar localization and translation with severe consequences on embryonic development. Our study reflects how physiological phase transitions shape RNA-protein condensates to regulate the localization and expression of a maternal RNA that instructs germline formation.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/metabolism , Embryo, Nonmammalian/metabolism , Animals , Cytoplasmic Ribonucleoprotein Granules , Drosophila/embryology , Drosophila Proteins/genetics , Embryonic Development , Oocytes/metabolism , RNA/metabolism
18.
Biomed Pharmacother ; 145: 112382, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34864307

ABSTRACT

Platinum-based antineoplastic drugs, such as cisplatin, are commonly used to induce tumor cell death. Cisplatin is believed to induce apoptosis as a result of cisplatin-DNA adducts that inhibit DNA and RNA synthesis. Although idea that DNA damage underlines anti-proliferative effects of cisplatin is dominant in cancer research, there is a poor correlation between the degree of the cell sensitivity to cisplatin and the extent of DNA platination. Here, we examined possible effects of cisplatin on post-transcriptional gene regulation that may contribute to cisplatin-mediated cytotoxicity. We show that cisplatin suppresses formation of stress granules (SGs), pro-survival RNA granules with multiple roles in cellular metabolism. Mechanistically, cisplatin inhibits cellular translation to promote disassembly of polysomes and aggregation of ribosomal subunits. As SGs are in equilibrium with polysomes, cisplatin-induced shift towards ribosomal aggregation suppresses SG formation. Our data uncover previously unknown effects of cisplatin on RNA metabolism.


Subject(s)
Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Cytoplasmic Ribonucleoprotein Granules/drug effects , Protein Processing, Post-Translational/drug effects , Animals , Cell Line, Tumor , Cells, Cultured , Cytoplasmic Ribonucleoprotein Granules/metabolism , Humans , Mice , Stress Granules/drug effects
19.
RNA ; 28(1): 97-113, 2022 01.
Article in English | MEDLINE | ID: mdl-34706979

ABSTRACT

The genetics of human disease serves as a robust and unbiased source of insight into human biology, both revealing fundamental cellular processes and exposing the vulnerabilities associated with their dysfunction. Over the last decade, the genetics of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have epitomized this concept, as studies of ALS-FTD-causing mutations have yielded fundamental discoveries regarding the role of biomolecular condensation in organizing cellular contents while implicating disturbances in condensate dynamics as central drivers of neurodegeneration. Here we review this genetic evidence, highlight its intersection with patient pathology, and discuss how studies in model systems have revealed a role for aberrant condensation in neuronal dysfunction and death. We detail how multiple, distinct types of disease-causing mutations promote pathological phase transitions that disturb the dynamics and function of ribonucleoprotein (RNP) granules. Dysfunction of RNP granules causes pleiotropic defects in RNA metabolism and can drive the evolution of these structures to end-stage pathological inclusions characteristic of ALS-FTD. We propose that aberrant phase transitions of these complex condensates in cells provide a parsimonious explanation for the widespread cellular abnormalities observed in ALS as well as certain histopathological features that characterize late-stage disease.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Biomolecular Condensates/chemistry , Cytoplasmic Ribonucleoprotein Granules/chemistry , Frontotemporal Dementia/genetics , RNA-Binding Proteins/chemistry , RNA/chemistry , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Binding Sites , Biomolecular Condensates/metabolism , Cell Death/genetics , Cytoplasmic Ribonucleoprotein Granules/genetics , Cytoplasmic Ribonucleoprotein Granules/metabolism , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Humans , Molecular Dynamics Simulation , Mutation , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Neurons/pathology , Phase Transition , Protein Binding , RNA/genetics , RNA/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ribonucleoproteins/chemistry , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism
20.
Curr Protoc ; 1(12): e325, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34879178

ABSTRACT

Fluorescence microscopy is a powerful tool enabling the visualization of protein localization within cells. In this article, we outline an automated and non-biased way to detect and quantify subcellular particles using immunocytochemistry, fluorescence microscopy, and the program CellProfiler. We discuss the examination of two types of subcellular particles: messenger ribonucleoprotein (mRNP) granules, namely processing bodies and stress granules, and autophagosomes. Fluorescent microscopy Z-stacks are acquired and deconvolved, and maximum intensity images are generated. The number of subcellular particles per cell is then quantified using the described CellProfiler pipeline. We also explain how to isolate primary myoblast progenitor cells from mice, which were used to obtain the presented results. Last, we discuss the critical parameters to be considered for each of these techniques. Both mRNP granules and autophagosomes play important roles in sequestering intracellular cargo, such as messenger RNAs and RNA-binding proteins for mRNP granules and cytoplasmic waste for autophagosomes. The methods outlined in this article are widely applicable for studies relating to subcellular particle formation, localization, and flux during homeostasis, following stimuli, and during disease. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Immunofluorescence microscopy of messenger ribonucleoprotein granules in primary myoblasts Alternate Protocol: Immunofluorescence microscopy of autophagosomes in primary myoblasts Support Protocol: Isolation of primary myoblasts from mice Basic Protocol 2: Automated quantification of subcellular particles.


Subject(s)
Cytoplasmic Granules , Cytoplasmic Ribonucleoprotein Granules , Animals , Mice , Processing Bodies , RNA-Binding Proteins , Stress Granules
SELECTION OF CITATIONS
SEARCH DETAIL
...