Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RNA ; 28(1): 97-113, 2022 01.
Article in English | MEDLINE | ID: mdl-34706979

ABSTRACT

The genetics of human disease serves as a robust and unbiased source of insight into human biology, both revealing fundamental cellular processes and exposing the vulnerabilities associated with their dysfunction. Over the last decade, the genetics of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have epitomized this concept, as studies of ALS-FTD-causing mutations have yielded fundamental discoveries regarding the role of biomolecular condensation in organizing cellular contents while implicating disturbances in condensate dynamics as central drivers of neurodegeneration. Here we review this genetic evidence, highlight its intersection with patient pathology, and discuss how studies in model systems have revealed a role for aberrant condensation in neuronal dysfunction and death. We detail how multiple, distinct types of disease-causing mutations promote pathological phase transitions that disturb the dynamics and function of ribonucleoprotein (RNP) granules. Dysfunction of RNP granules causes pleiotropic defects in RNA metabolism and can drive the evolution of these structures to end-stage pathological inclusions characteristic of ALS-FTD. We propose that aberrant phase transitions of these complex condensates in cells provide a parsimonious explanation for the widespread cellular abnormalities observed in ALS as well as certain histopathological features that characterize late-stage disease.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Biomolecular Condensates/chemistry , Cytoplasmic Ribonucleoprotein Granules/chemistry , Frontotemporal Dementia/genetics , RNA-Binding Proteins/chemistry , RNA/chemistry , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Binding Sites , Biomolecular Condensates/metabolism , Cell Death/genetics , Cytoplasmic Ribonucleoprotein Granules/genetics , Cytoplasmic Ribonucleoprotein Granules/metabolism , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Humans , Molecular Dynamics Simulation , Mutation , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Neurons/pathology , Phase Transition , Protein Binding , RNA/genetics , RNA/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ribonucleoproteins/chemistry , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism
2.
Int J Mol Sci ; 22(23)2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34884825

ABSTRACT

RNA-binding proteins (RBPs) act as posttranscriptional regulators controlling the fate of target mRNAs. Unraveling how RNAs are recognized by RBPs and in turn are assembled into neuronal RNA granules is therefore key to understanding the underlying mechanism. While RNA sequence elements have been extensively characterized, the functional impact of RNA secondary structures is only recently being explored. Here, we show that Staufen2 binds complex, long-ranged RNA hairpins in the 3'-untranslated region (UTR) of its targets. These structures are involved in the assembly of Staufen2 into RNA granules. Furthermore, we provide direct evidence that a defined Rgs4 RNA duplex regulates Staufen2-dependent RNA localization to distal dendrites. Importantly, disrupting the RNA hairpin impairs the observed effects. Finally, we show that these secondary structures differently affect protein expression in neurons. In conclusion, our data reveal the importance of RNA secondary structure in regulating RNA granule assembly, localization and eventually translation. It is therefore tempting to speculate that secondary structures represent an important code for cells to control the intracellular fate of their mRNAs.


Subject(s)
Cytoplasmic Ribonucleoprotein Granules/chemistry , Neurons/metabolism , RGS Proteins/genetics , RNA, Messenger/chemistry , RNA-Binding Proteins/metabolism , 3' Untranslated Regions , Animals , Cells, Cultured , Cytoplasmic Ribonucleoprotein Granules/metabolism , Female , Neurons/cytology , Nucleic Acid Conformation , RNA Interference , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/genetics , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...