Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters











Publication year range
1.
Nat Struct Mol Biol ; 26(12): 1176-1183, 2019 12.
Article in English | MEDLINE | ID: mdl-31792451

ABSTRACT

HIV-1 virion infectivity factor (Vif) promotes degradation of the antiviral APOBEC3 (A3) proteins through the host ubiquitin-proteasome pathway to enable viral immune evasion. Disrupting Vif-A3 interactions to reinstate the A3-catalyzed suppression of human immunodeficiency virus type 1 (HIV-1) replication is a potential approach for antiviral therapeutics. However, the molecular mechanisms by which Vif recognizes A3 proteins remain elusive. Here we report a cryo-EM structure of the Vif-targeted C-terminal domain of human A3F in complex with HIV-1 Vif and the cellular cofactor core-binding factor beta (CBFß) at 3.9-Å resolution. The structure shows that Vif and CBFß form a platform to recruit A3F, revealing a direct A3F-recruiting role of CBFß beyond Vif stabilization, and captures multiple independent A3F-Vif interfaces. Together with our biochemical and cellular studies, our structural findings establish the molecular determinants that are critical for Vif-mediated neutralization of A3F and provide a comprehensive framework of how HIV-1 Vif hijacks the host protein degradation machinery to counteract viral restriction by A3F.


Subject(s)
Cytosine Deaminase/chemistry , HIV-1/chemistry , vif Gene Products, Human Immunodeficiency Virus/chemistry , Core Binding Factor beta Subunit/chemistry , Cryoelectron Microscopy , Cytosine Deaminase/antagonists & inhibitors , Cytosine Deaminase/ultrastructure , Humans , Immune Evasion , Models, Molecular , Protein Conformation , Protein Domains , Protein Interaction Mapping , Proteolysis , Structure-Activity Relationship , vif Gene Products, Human Immunodeficiency Virus/pharmacology , vif Gene Products, Human Immunodeficiency Virus/ultrastructure
2.
J Mol Biol ; 428(17): 3514-28, 2016 08 28.
Article in English | MEDLINE | ID: mdl-27289067

ABSTRACT

The APOBEC3 locus consists of seven genes (A3A-A3C, A3DE, A3F-A3H) that encode DNA cytidine deaminases. These enzymes deaminate single-stranded DNA, the result being DNA peppered with CG →TA mutations preferentially in the context of 5'TpC with the exception of APOBEC3G (A3G), which prefers 5'CpC dinucleotides. Hepatitis B virus (HBV) DNA is vulnerable to genetic editing by APOBEC3 cytidine deaminases, A3G being a major restriction factor. APOBEC3DE (A3DE) stands out in that it is catalytically inactive due to a fixed Tyr320Cys substitution in the C-terminal domain. As A3DE is closely related to A3F and A3G, which can form homo- and heterodimers and multimers, the impact of A3DE on HBV replication via modulation of other APOBEC3 restriction factors was investigated. A3DE binds to itself, A3F, and A3G and antagonizes A3F and, to a lesser extent, A3G restriction of HBV replication. A3DE suppresses A3F and A3G from HBV particles, leading to enhanced HBV replication. Ironically, while being part of a cluster of innate restriction factors, the A3DE phenotype is proviral. As the gorilla genome encodes the same Tyr320Cys substitution, this proviral phenotype seems to have been selected for.


Subject(s)
APOBEC-3G Deaminase/antagonists & inhibitors , Cytidine Deaminase/metabolism , Cytosine Deaminase/antagonists & inhibitors , Hepatitis B virus/immunology , Hepatitis B virus/physiology , Virus Replication , APOBEC-3G Deaminase/metabolism , Animals , Cell Line , Cytosine Deaminase/metabolism , Gorilla gorilla , Humans , Protein Binding
3.
Cell Rep ; 11(8): 1236-50, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25981045

ABSTRACT

HIV-1 encodes the accessory protein Vif, which hijacks a host Cullin-RING ubiquitin ligase (CRL) complex as well as the non-canonical cofactor CBFß, to antagonize APOBEC3 antiviral proteins. Non-canonical cofactor recruitment to CRL complexes by viral factors, to date, has only been attributed to HIV-1 Vif. To further study this phenomenon, we employed a comparative approach combining proteomic, biochemical, structural, and virological techniques to investigate Vif complexes across the lentivirus genus, including primate (HIV-1 and simian immunodeficiency virus macaque [SIVmac]) and non-primate (FIV, BIV, and MVV) viruses. We find that CBFß is completely dispensable for the activity of non-primate lentiviral Vif proteins. Furthermore, we find that BIV Vif requires no cofactor and that MVV Vif requires a novel cofactor, cyclophilin A (CYPA), for stable CRL complex formation and anti-APOBEC3 activity. We propose modular conservation of Vif complexes allows for potential exaptation of functions through the acquisition of non-CRL-associated host cofactors while preserving anti-APOBEC3 activity.


Subject(s)
Cytosine Deaminase/antagonists & inhibitors , Gene Products, vif/immunology , HIV-1/metabolism , Ubiquitin-Protein Ligases/metabolism , APOBEC Deaminases , Animals , Cytidine Deaminase , Humans , Protein Binding , Sheep , Ubiquitin-Protein Ligases/genetics
4.
J Virol ; 89(4): 2342-57, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25505062

ABSTRACT

UNLABELLED: Retroviruses are pathogens with rapid infection cycles that can be a source of disease, genome instability, and tumor development in their hosts. Host intrinsic restriction factors, such as APOBEC3 (A3) proteins, are constitutively expressed and dedicated to interfering with the replication cycle of retroviruses. To survive, propagate, and persist, retroviruses must counteract these restriction factors, often by way of virus genome-encoded accessory proteins. Glycosylated Gag, also called glycosylated Pr80 Gag (gPr80), is a gammaretrovirus genome-encoded protein that inhibits the antiretroviral activity of mouse A3 (mA3). Here we show that gPr80 exerts two distinct inhibitory effects on mA3: one that antagonizes deamination-independent restriction and another one that inhibits its deaminase activity. More specifically, we find that the number of N-glycosylated residues in gPr80 inversely correlates with the sensitivity of a gammaretrovirus to deamination by mouse A3 and also, surprisingly, by human A3G. Finally, our work highlights that retroviruses which have successfully integrated into the mouse germ line generally express a gPr80 with fewer glycosylated sites than exogenous retroviruses. This observation supports the suggestion that modulation of A3 deamination intensity could be a desirable attribute for retroviruses to increase genetic diversification and avoid immune detection. Overall, we present here the first description of how gammaretroviruses employ posttranslational modification to antagonize and modulate the activity of a host genome-encoded retroviral restriction factor. IMPORTANCE: APOBEC3 proteins are host factors that have a major role in protecting humans and other mammals against retroviruses. These enzymes hinder their replication and intensely mutate their DNA, thereby inactivating viral progeny and the spread of infection. Here we describe a newly recognized way in which some retroviruses protect themselves against the mutator activity of APOBEC3 proteins. We show that gammaretroviruses expressing an accessory protein called glycosylated Gag, or gPr80, use the host's posttranslational machinery and, more specifically, N-linked glycosylation as a way to modulate their sensitivity to mutations by APOBEC3 proteins. By carefully controlling the amount of mutations caused by APOBEC3 proteins, gammaretroviruses can find a balance that helps them evolve and persist.


Subject(s)
Cytidine Deaminase/antagonists & inhibitors , Gene Products, gag/metabolism , Leukemia Virus, Murine/immunology , Protein Processing, Post-Translational , APOBEC Deaminases , Animals , Cell Line , Cytosine Deaminase/antagonists & inhibitors , Deamination , Glycosylation , Humans , Leukemia Virus, Murine/physiology , Mice, Inbred C57BL , Mice, Knockout
5.
J Virol ; 88(24): 14380-95, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25275135

ABSTRACT

UNLABELLED: The APOBEC3 deoxycytidine deaminases can restrict the replication of HIV-1 in cell culture to differing degrees. The effects of APOBEC3 enzymes are largely suppressed by HIV-1 Vif that interacts with host proteins to form a Cullin5-Ring E3 ubiquitin ligase that induces (48)K-linked polyubiquitination (poly-Ub) and proteasomal degradation of APOBEC3 enzymes. Vif variants have differing abilities to induce degradation of APOBEC3 enzymes and the underlying biochemical mechanisms for these differences is not fully understood. We hypothesized that by characterizing the interaction of multiple APOBEC3 enzymes and Vif variants we could identify common features that resulted in Vif-mediated degradation and further define the determinants required for efficient Vif-mediated degradation of APOBEC3 enzymes. We used Vifs from HIV-1 NL4-3 (IIIB) and HXB2 to characterize their induced degradation of and interaction with APOBEC3G, APOBEC3G D128K, APOBEC3H, and APOBEC3B in 293T cells. We quantified the APOBEC3G-Vif and APOBEC3H-Vif interaction strengths in vitro using rotational anisotropy. Our biochemical and cellular analyses of the interactions support a model in which the degradation efficiency of VifIIIB and VifHXB2 correlated with both the binding strength of the APOBEC3-Vif interaction and the APOBEC3-Vif interface, which differs for APOBEC3G and APOBEC3H. Notably, Vif bound to APOBEC3H and APOBEC3B in the natural absence of Vif-induced degradation and the interaction resulted in (63)K-linked poly-Ub of APOBEC3H and APOBEC3B, demonstrating additional functionality of the APOBEC3-Vif interaction apart from induction of proteasomal degradation. IMPORTANCE: APOBEC3 enzymes can potently restrict the replication of HIV-1 in the absence of HIV-1 Vif. Vif suppresses APOBEC3 action by inducing their degradation through a direct interaction with APOBEC3 enzymes and other host proteins. Vif variants from different HIV-1 strains have different effects on APOBEC3 enzymes. We used differing Vif degradation capacities of two Vif variants and various APOBEC3 enzymes with differential sensitivities to Vif to delineate determinants of the APOBEC3-Vif interaction that are required for inducing efficient degradation. Using a combined biochemical and cellular approach we identified that the strength of the APOBEC3-Vif binding interaction and the APOBEC3-Vif interface are determinants for degradation efficiency. Our results highlight the importance of using Vif variants with different degradation potential when delineating mechanisms of Vif-induced APOBEC3 degradation and identify features important for consideration in the development of HIV-1 therapies that disrupt the APOBEC3-Vif interaction.


Subject(s)
Cytosine Deaminase/antagonists & inhibitors , HIV-1/physiology , Host-Pathogen Interactions , vif Gene Products, Human Immunodeficiency Virus/metabolism , APOBEC Deaminases , Cell Line , Cytidine Deaminase , Cytosine Deaminase/immunology , Cytosine Deaminase/metabolism , HIV-1/immunology , Humans , Protein Binding , Proteolysis , vif Gene Products, Human Immunodeficiency Virus/immunology
6.
J Virol ; 88(21): 12528-40, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25142583

ABSTRACT

UNLABELLED: Human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) viral infectivity factor (Vif) form a CRL5 E3 ubiquitin ligase complex to suppress virus restriction by host APOBEC3 (A3) proteins. The primate lentiviral Vif complex is composed of the unique cofactor core binding factor ß (CBF-ß) and canonical ligase components Cullin 5 (CUL5), Elongin B/C (ELOB/C), and RBX2. However, the mechanism by which the Vif protein of the related lentivirus bovine immunodeficiency virus (BIV) overcomes its host A3 proteins is less clear. In this study, we show that BIV Vif interacts with Cullin 2 (CUL2), ELOB/C, and RBX1, but not with CBF-ß or CUL5, to form a CRL2 E3 ubiquitin ligase and degrade the restrictive bovine A3 proteins (A3Z2Z3 and A3Z3). RNA interference-mediated knockdown of ELOB or CUL2 inhibited BIV Vif-mediated degradation of these A3 proteins, whereas knockdown of CUL5 or CBF-ß did not. BIV Vif with mutations in the BC box (Vif SLQ-AAA) or putative VHL box (Vif YI-AA), which cannot interact with ELOB/C or CUL2, respectively, lost the ability to counteract bovine A3 proteins. Moreover, CUL2 and UBE2M dominant negative mutants competitively inhibited the BIV Vif-mediated degradation mechanism. Thus, although the general strategy for inhibiting A3 proteins is conserved between HIV-1/SIV and BIV, the precise mechanisms can differ substantially, with only the HIV-1/SIV Vif proteins requiring CBF-ß as a cofactor, HIV-1/SIV Vif using CUL5-RBX2, and BIV Vif using CUL2-RBX1. IMPORTANCE: Primate lentivirus HIV-1 and SIV Vif proteins form a ubiquitin ligase complex to target host antiviral APOBEC3 proteins for degradation. However, the mechanism by which the nonprimate lentivirus BIV Vif inhibits bovine APOBEC3 proteins is unclear. In the present study, we determined the mechanism for BIV Vif-mediated degradation of bovine APOBEC3 proteins and found that it differs from the mechanism of HIV-1/SIV Vif by being CBF-ß independent and requiring different ubiquitin ligase scaffolding proteins (CUL2-RBX1 instead of CUL5-RBX2). BIV Vif is the only known retroviral protein that can interact with CUL2. This information broadens our understanding of the distinct mechanisms by which the Vif proteins of different lentiviruses facilitate viral infection. This novel mechanism for assembly of the BIV Vif-APOBEC3 ubiquitin ligase complex advances our understanding of viral hijacking of host E3 ubiquitin ligases and illustrates the evolutionary flexibility of lentiviruses.


Subject(s)
Carrier Proteins/metabolism , Cullin Proteins/metabolism , Cytosine Deaminase/antagonists & inhibitors , Gene Products, vif/metabolism , Host-Pathogen Interactions , Immunodeficiency Virus, Bovine/physiology , Ubiquitin-Protein Ligases/metabolism , Animals , Cattle , Immune Evasion , Immune Tolerance , Protein Binding , Protein Interaction Mapping , Proteolysis
7.
Retrovirology ; 11: 4, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24422669

ABSTRACT

BACKGROUND: HIV-1 Vif promotes the degradation of host anti-retroviral factor family, APOBEC3 proteins via the recruitment of a multi-subunit E3 ubiquitin ligase complex. The complex is composed of a scaffold protein, Cullin 5 (Cul5), RING-box protein (Rbx), a SOCS box binding protein complex, Elongins B/C (Elo B/C), as well as newly identified host co-factor, core binding factor beta (CBF-ß). Cul5 has previously been shown to bind amino acids within an HCCH domain as well as a PPLP motif at the C-terminus of Vif; however, it is unclear whether Cul5 binding requires additional regions of the Vif polypeptide. RESULTS: Here, we provide evidence that an amino terminal region of full length Vif is necessary for the Vif-Cul5 interaction. Single alanine replacement of select amino acids spanning residues 25-30 (25VXHXMY30) reduced the ability for Vif to bind Cul5, but not CBF-ß or Elo B/C in pull-down experiments. In addition, recombinant Vif mutants had a reduced binding affinity for Cul5 compared to wild-type as measured by isothermal titration calorimetry. N-terminal mutants that demonstrated reduced Cul5 binding were also unable to degrade APOBEC3G as well as APOBEC3F and were unable to restore HIV infectivity, in the presence of APOBEC3G. Although the Vif N-terminal amino acids were necessary for Cul5 interaction, the mutation of each residue to alanine induced a change in the secondary structure of the Vif-CBF-ß-Elo B/C complex as suggested by results from circular dichroism spectroscopy and size-exclusion chromatography experiments. Surprisingly, the replacement of His108 to alanine also contributed to the Vif structure. Thus, it is unclear whether the amino acids contribute to a direct interaction with Cul5 or whether the amino acids are responsible for the structural organization of the Vif protein that promotes Cul5 binding. CONCLUSIONS: Taken together, we propose a novel Vif N-terminal motif that is responsible for Vif recruitment of Cul5. Motifs in Vif that are absent from cellular proteins represent attractive targets for future HIV pharmaceutical design.


Subject(s)
Cullin Proteins/metabolism , Cytidine Deaminase/antagonists & inhibitors , Cytosine Deaminase/antagonists & inhibitors , HIV-1/immunology , HIV-1/physiology , Immune Evasion , APOBEC-3G Deaminase , Cytidine Deaminase/metabolism , Cytosine Deaminase/metabolism , Humans , Protein Interaction Mapping , Proteolysis , vif Gene Products, Human Immunodeficiency Virus
8.
Cancer Res ; 73(12): 3494-8, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23598277

ABSTRACT

High frequency of cytidine to thymidine conversions was identified in the genome of several types of cancer cells. In breast cancer cells, these mutations are clustered in long DNA regions associated with single-strand DNA (ssDNA), double-strand DNA breaks (DSB), and genomic rearrangements. The observed mutational pattern resembles the deamination signature of cytidine to uridine carried out by members of the APOBEC3 family of cellular deaminases. Consistently, APOBEC3B (A3B) was recently identified as the mutational source in breast cancer cells. A3G is another member of the cytidine deaminases family predominantly expressed in lymphoma cells, where it is involved in mutational DSB repair following ionizing radiation treatments. This activity provides us with a new paradigm for cancer cell survival and tumor promotion and a mechanistic link between ssDNA, DSBs, and clustered mutations. Cancer Res; 73(12); 3494-8. ©2013 AACR.


Subject(s)
Cytosine Deaminase/metabolism , DNA Breaks, Double-Stranded , DNA Repair , Neoplasms/genetics , APOBEC Deaminases , APOBEC-3G Deaminase , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/therapy , Cell Survival/drug effects , Cell Survival/genetics , Cytidine Deaminase/antagonists & inhibitors , Cytidine Deaminase/metabolism , Cytosine Deaminase/antagonists & inhibitors , DNA, Single-Stranded , Enzyme Inhibitors/therapeutic use , Humans , Lymphoma/genetics , Lymphoma/metabolism , Lymphoma/therapy , Minor Histocompatibility Antigens , Models, Genetic , Mutation , Neoplasms/metabolism , Neoplasms/therapy
9.
Retrovirology ; 9: 58, 2012 Jul 24.
Article in English | MEDLINE | ID: mdl-22828015

ABSTRACT

BACKGROUND: One of the unique features of gammaretroviruses is that they contain an additional extended form of Gag, glyco-gag, which initiates in the leader sequence. MuLV glyco-gag, gPr80Gag, promotes retrovirus replication and disease progression. Although virtually all infectious MuLVs encode glyco-gag, XMRV (xenotropic murine leukemia virus-related virus) lacks the classical gPr80Gag sequence. We examined XMRV to determine if its leader sequence contains glyco-gag activity, whether the presence of conventional gPr80Gag affects replication of XMRV, and we describe the evolution of glyco-gag-deficient MuLVs in Mus. RESULTS: We introduced several mutations disrupting two putative but noncanonical glyco-gag proteins in the leader sequence region in XMRV and found that those mutations did not affect virus release nor susceptibility to the antiviral activity of hA3G (human APOBEC3G). A chimeric XMRV encoding the Moloney MuLV (M-MuLV) leader sequence (MXMRV) demonstrated that M-MuLV glyco-gag facilitated MXMRV release and increased infectivity. Infectivity assays with several cell lines showed that glyco-gag increases XMRV infectivity in all cell lines tested, but the level of this increase varies in different cell lines. Because MuLV glyco-gag counteracts mouse APOBEC3, we investigated whether M-MuLV glyco-gag enhances XMRV infection by counteracting human APOBEC3. Comparison of hAPOBEC3 isoforms expressed in different cell lines indicated that hA3B was the most likely candidate for a restrictive hA3. However over-expression of hA3B showed no enhanced restriction of infection by XMRV compared to MXMRV. Endogenous MuLVs in the sequenced mouse genome were screened for canonical glyco-gag, which was identified in two clades of xenotropic MuLVs (X-MuLVs) and ecotropic MuLVs, but not in other X-MuLVs or in any polytropic MuLVs. CONCLUSIONS: M-MuLV glyco-gag facilitates XMRV replication, and the leader sequence region in XMRV does not encode proteins equivalent to M-MuLV glyco-gag. The fact that the ability of glyco-gag to enhance XMRV infection varies in different cell lines suggests a glyco-gag sensitive restrictive factor that further reduces XMRV infectivity. The M-MuLV glyco-gag enhancement for XMRV replication is through a hAPOBEC3 independent mechanism. The absence of glyco-gag in MuLVs carried by western European mice suggests that loss of this sequence is a relatively recent event with limited subspecies distribution.


Subject(s)
Cytosine Deaminase/metabolism , Gene Products, gag/metabolism , Glycoproteins/metabolism , Moloney murine leukemia virus/metabolism , Virus Replication , Xenotropic murine leukemia virus-related virus/physiology , APOBEC Deaminases , Amino Acid Sequence , Animals , Base Sequence , Cytidine Deaminase , Cytosine Deaminase/antagonists & inhibitors , Cytosine Deaminase/genetics , Evolution, Molecular , Gene Products, gag/classification , Gene Products, gag/genetics , Genome, Viral , Glycoproteins/genetics , Glycosylation , HEK293 Cells , HeLa Cells , Hep G2 Cells , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Mice , Molecular Sequence Data , Moloney murine leukemia virus/genetics , Mutagenesis, Site-Directed , Mutation , Phylogeny , Rats , Virus Release , Xenotropic murine leukemia virus-related virus/genetics , Xenotropic murine leukemia virus-related virus/metabolism
10.
J Virol ; 84(16): 8193-201, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20519393

ABSTRACT

All lentiviruses except equine infectious anemia virus (EIAV) use the small accessory protein Vif to counteract the restriction activity of the relevant APOBEC3 (A3) proteins of their host species. Prior studies have suggested that the Vif-A3 interaction is species specific. Here, using the APOBEC3H (Z3)-type proteins from five distinct mammals, we report that this is generally not the case: some lentiviral Vif proteins are capable of triggering the degradation of both the A3Z3-type protein of their normal host species and those of several other mammals. For instance, SIV(mac) Vif can mediate the degradation of the human, macaque, and cow A3Z3-type proteins but not of the sheep or cat A3Z3-type proteins. Maedi-visna virus (MVV) Vif is similarly promiscuous, degrading not only sheep A3Z3 but also the A3Z3-type proteins of humans, macaques, cows, and cats. In contrast to the neutralization capacity of these Vif proteins, human immunodeficiency virus (HIV), bovine immunodeficiency virus (BIV), and feline immunodeficiency virus (FIV) Vif appear specific to the A3Z3-type protein of their hosts. We conclude, first, that the Vif-A3Z3 interaction can be promiscuous and, second, despite this tendency, that each lentiviral Vif protein is optimized to degrade the A3Z3 protein of its mammalian host. Our results thereby suggest that the Vif-A3Z3 interaction is relevant to lentivirus biology.


Subject(s)
Cytosine Deaminase/antagonists & inhibitors , Gene Products, vif/metabolism , Lentivirus/pathogenicity , Virulence Factors/metabolism , Animals , Cats , Cattle , Humans , Macaca , Sheep
11.
J Virol ; 84(11): 5741-50, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20335268

ABSTRACT

The human cytidine deaminases APOBEC3G (A3G) and APOBEC3F (A3F) potently restrict human immunodeficiency virus type 1 (HIV-1) replication, but they are neutralized by the viral protein Vif. Vif bridges A3G and A3F with a Cullin 5 (Cul5)-based E3 ubiquitin ligase and mediates their proteasomal degradation. This mechanism has been extensively studied, and several Vif domains have been identified that are critical for A3G and A3F neutralization. Here, we identified two additional domains. Via sequence analysis of more than 2,000 different HIV-1 Vif proteins, we identified two highly conserved amino acid sequences, (81)LGxGxSIEW(89) and (171)EDRWN(175). Within the (81)LGxGxSIEW(89) sequence, residues L81, G82, G84, and, to a lesser extent, I87 and W89 play very critical roles in A3G/A3F neutralization. In particular, residues L81 and G82 determine Vif binding to A3F, residue G84 determines Vif binding to both A3G and A3F, and residues (86)SIEW(89) affect Vif binding to A3F, A3G, and Cul5. Accordingly, this (81)LGxGxSIEW(89) sequence was designated the (81)LGxGxxIxW(89) domain. Within the (171)EDRWN(175) sequence, all residues except N175 are almost equally important for regulation of A3F neutralization, and consistently, they determine Vif binding only to A3F. Accordingly, this domain was designated (171)EDRW(174). The LGxGxxIxW domain is also partially conserved in simian immunodeficiency virus Vif from rhesus macaques (SIVmac239) and has a similar activity. Thus, (81)LGxGxxIxW(89) and (171)EDRW(174) are two novel functional domains that are very critical for Vif function. They could become new targets for inhibition of Vif activity during HIV replication.


Subject(s)
Conserved Sequence , Cytidine Deaminase/metabolism , Cytosine Deaminase/metabolism , vif Gene Products, Human Immunodeficiency Virus/chemistry , APOBEC-3G Deaminase , Amino Acid Sequence , Animals , Binding Sites , Cytidine Deaminase/antagonists & inhibitors , Cytosine Deaminase/antagonists & inhibitors , Gene Products, vif/chemistry , HIV-1 , Macaca , Protein Binding , Protein Structure, Tertiary , Simian Immunodeficiency Virus/chemistry , Ubiquitin-Protein Ligases/metabolism , vif Gene Products, Human Immunodeficiency Virus/metabolism , vif Gene Products, Human Immunodeficiency Virus/physiology
12.
Biochemistry ; 49(7): 1404-17, 2010 Feb 23.
Article in English | MEDLINE | ID: mdl-20088569

ABSTRACT

Ribonucleotide reductase (RNR) from Lactobacillus leichmannii, a 76 kDa monomer using adenosylcobalamin (AdoCbl) as a cofactor, catalyzes the conversion of nucleoside triphosphates to deoxynucleotides and is rapidly (<30 s) inactivated by 1 equiv of 2',2'-difluoro-2'-deoxycytidine 5'-triphosphate (F(2)CTP). [1'-(3)H]- and [5-(3)H]F(2)CTP were synthesized and used independently to inactivate RNR. Sephadex G-50 chromatography of the inactivation mixture revealed that 0.47 equiv of a sugar was covalently bound to RNR and that 0.71 equiv of cytosine was released. Alternatively, analysis of the inactivated RNR by SDS-PAGE without boiling resulted in 33% of RNR migrating as a 110 kDa protein. Inactivation of RNR with a mixture of [1'-(3)H]F(2)CTP and [1'-(2)H]F(2)CTP followed by reduction with NaBH(4), alkylation with iodoacetamide, trypsin digestion, and HPLC separation of the resulting peptides allowed isolation and identification by MALDI-TOF mass spectrometry (MS) of a (3)H/(2)H-labeled peptide containing C(731) and C(736) from the C-terminus of RNR accounting for 10% of the labeled protein. The MS analysis also revealed that the two cysteines were cross-linked to a furanone species derived from the sugar of F(2)CTP. Incubation of [1'-(3)H]F(2)CTP with C119S-RNR resulted in 0.3 equiv of sugar being covalently bound to the protein, and incubation with NaBH(4) subsequent to inactivation resulted in trapping of 2'-fluoro-2'-deoxycytidine. These studies and the ones in the preceding paper (DOI: 10.1021/bi9021318 ) allow proposal of a mechanism of inactivation of RNR by F(2)CTP involving multiple reaction pathways. The proposed mechanisms share many common features with F(2)CDP inactivation of the class I RNRs.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Cytidine Triphosphate/analogs & derivatives , Enzyme Inhibitors/chemistry , Lactobacillus leichmannii/enzymology , Ribonucleotide Reductases/antagonists & inhibitors , Ribonucleotide Reductases/metabolism , Alkylation , Amino Acid Sequence , Cobamides/chemistry , Cobamides/metabolism , Cytidine Triphosphate/chemistry , Cytidine Triphosphate/metabolism , Cytosine Deaminase/antagonists & inhibitors , Cytosine Deaminase/chemical synthesis , Enzyme Inhibitors/metabolism , Humans , Molecular Sequence Data , Peptide Fragments/chemistry , Peptide Fragments/isolation & purification , Peptide Fragments/metabolism , Protein Binding , Protein Conformation , Ribonucleotide Reductases/isolation & purification , Tandem Mass Spectrometry
13.
J Virol ; 84(4): 1902-11, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19939923

ABSTRACT

Several variants of APOBEC3H (A3H) have been identified in different human populations. Certain variants of this protein are particularly potent inhibitors of retrotransposons and retroviruses, including HIV-1. However, it is not clear whether HIV-1 Vif can recognize and suppress the antiviral activity of A3H variants, as it does with other APOBEC3 proteins. We now report that A3H_Haplotype II (HapII), a potent inhibitor of HIV-1 in the absence of Vif, can indeed be degraded by HIV-1 Vif. Vif-induced degradation of A3H_HapII was blocked by the proteasome inhibitor MG132 and a Cullin5 (Cul5) dominant negative mutant. In addition, Vif mutants that were incapable of assembly with the host E3 ligase complex factors Cul5, ElonginB, and ElonginC were also defective for A3H_HapII suppression. Although we found that Vif hijacks the same E3 ligase to degrade A3H_HapII as it does to inactivate APOBEC3G (A3G) and APOBEC3F (A3F), more Vif motifs were involved in A3H_HapII inactivation than in either A3G or A3F suppression. In contrast to A3H_HapII, A3H_Haplotype I (HapI), which differs in only three amino acids from A3H_HapII, was resistant to HIV-1 Vif-mediated degradation. We also found that residue 121 was critical for determining A3H sensitivity and binding to HIV-1 Vif.


Subject(s)
Cytosine Deaminase/genetics , Cytosine Deaminase/physiology , Genetic Variation , HIV-1/physiology , vif Gene Products, Human Immunodeficiency Virus/physiology , Amino Acid Sequence , Amino Acid Substitution , Aminohydrolases , Base Sequence , Cell Line , Cytosine Deaminase/antagonists & inhibitors , Cytosine Deaminase/chemistry , Genes, vif , HIV-1/genetics , HIV-1/pathogenicity , Haplotypes , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/physiology , Humans , Models, Molecular , Molecular Sequence Data , Plasmids/genetics , Proteasome Endopeptidase Complex/metabolism , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Transfection , vif Gene Products, Human Immunodeficiency Virus/chemistry , vif Gene Products, Human Immunodeficiency Virus/genetics
14.
J Virol ; 84(1): 88-95, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19828612

ABSTRACT

The APOBEC3H gene is polymorphic in humans, with four major population-dependent haplotypes that encode proteins with different levels of antiviral activity. Haplotype II, present most frequently in African populations, encodes the most stable protein and is most active against human immunodeficiency virus type 1 (HIV-1). In contrast to human APOBEC3G, which can be completely counteracted by HIV-1 Vif, the protein encoded by APOBEC3H haplotype II is only partially sensitive to Vif, while the protein encoded by APOBEC3H haplotype I is completely resistant to HIV-1 Vif. We mapped a residue on APOBEC3H that determines this partial Vif sensitivity. However, it is unclear how HIV-1 can replicate in vivo without the ability to neutralize APOBEC3H antiviral activity. In order to directly address this question, we cloned vif genes from HIV-1-infected individuals with different APOBEC3H genotypes and tested them for their ability to inhibit human APOBEC3H. We found that while the APOBEC3H genotype of infected individuals significantly influences the activity of Vif encoded by their virus, none of the Vif variants tested can completely neutralize APOBEC3H as well as they neutralize APOBEC3G. Consistent with this genetic result, APOBEC3H protein expression in human peripheral blood mononuclear cells was below our limit of detection using newly developed antibodies against the endogenous protein. These results demonstrate that human APOBEC3H is not as strong of a selective force for current HIV-1 infections as human APOBEC3G.


Subject(s)
Cytosine Deaminase/antagonists & inhibitors , Gene Products, vif/physiology , HIV-1/chemistry , Polymorphism, Genetic , APOBEC-3G Deaminase , Aminohydrolases , Cloning, Molecular , Cytidine Deaminase/antagonists & inhibitors , Cytosine Deaminase/analysis , Gene Products, vif/genetics , Genotype , Haplotypes , Human Immunodeficiency Virus Proteins/physiology , Humans , Leukocytes, Mononuclear/chemistry , Leukocytes, Mononuclear/virology
15.
Arch Virol ; 154(10): 1579-88, 2009.
Article in English | MEDLINE | ID: mdl-19669862

ABSTRACT

Apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like (APOBEC) proteins are members of a protein family sharing the common characteristic of cytidine deaminase activity. The antiviral activity of APOBEC3G and APOBEC3F has been studied more extensively than that of the other members of this family. The antiviral activity of APOBEC3B and APOBEC3DE has also been described. Studies of other APOBEC proteins have not revealed any antiviral activities against HIV-1; however, further investigation is required. In the absence of human immunodeficiency virus type 1 (HIV-1) virion infectivity factor (Vif), APOBEC3G and APOBEC3F are incorporated into HIV-1 virions and hypermutate the viral genomic DNA by their cytidine deaminase activity. HIV-1 Vif protein suppresses the antiviral role of APOBEC proteins by several mechanisms that lead to inhibition of incorporation of APOBEC3G/3F into HIV-1 virions. The detailed mechanisms involved in the suppression of APOBEC proteins by Vif are still being elucidated. Novel studies in which as yet undefined aspects of the suppression of APOBEC proteins are investigated could reveal important and potentially exploitable information for addressing HIV-1 infection in humans.


Subject(s)
Cytidine Deaminase/physiology , Cytosine Deaminase/physiology , HIV-1/physiology , vif Gene Products, Human Immunodeficiency Virus/physiology , APOBEC-3G Deaminase , Cytidine Deaminase/antagonists & inhibitors , Cytosine Deaminase/antagonists & inhibitors , DNA, Viral/metabolism , Gene Expression Regulation, Viral/physiology , Humans , Ubiquitination , Virion/metabolism
16.
J Virol ; 83(17): 8544-52, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19535447

ABSTRACT

The function of lentiviral Vif proteins is to neutralize the host antiviral cytidine deaminases APOBEC3G (A3G) and APOBEC3F (A3F). Vif bridges a cullin 5-based E3 ubiquitin ligase with A3G and A3F and mediates their degradation by proteasomes. Recent studies have found that Vif uses different domains to bind to A3G and A3F. A (14)DRMR(17) domain binds to A3F, (40)YRHHY(44) binds to A3G, and (69)YxxL(72) binds to both A3G and A3F. Here, we report another functional domain of Vif. Previously, we demonstrated that human immunodeficiency virus type 1 (HIV-1) Vif failed to mediate A3G proteasomal degradation when all 16 lysines were mutated to arginines. Here, we show that K26, and to a lesser extent K22, is critical for A3G neutralization. K22 and K26 are part of a conserved (21)WxSLVK(26) (x represents N, K, or H) motif that is found in most primate lentiviruses and that shows species-specific variation. Both K22 and K26 in this motif regulated Vif specificity only for A3G, whereas the SLV residues regulated Vif specificity for both A3F and A3G. Interestingly, SLV and K26 in HIV-1 Vif did not directly mediate Vif interaction with either A3G or A3F. Previously, other groups have reported an important role for W21 in A3F and A3G neutralization. Thus, (21)WxSLVK(26) is a novel functional domain that regulates Vif activity toward both A3F and A3G and is a potential drug target to inhibit Vif activity and block HIV-1 replication.


Subject(s)
Amino Acid Motifs , Cytidine Deaminase/antagonists & inhibitors , Cytosine Deaminase/antagonists & inhibitors , Gene Products, vif/metabolism , HIV-1/physiology , Simian Immunodeficiency Virus/physiology , Virus Replication , APOBEC-3G Deaminase , Amino Acid Sequence , Animals , Cell Line , Cells, Cultured , Gene Products, vif/genetics , HIV-1/genetics , Humans , Molecular Sequence Data , Sequence Alignment , Simian Immunodeficiency Virus/genetics
18.
Nat Biotechnol ; 26(10): 1187-92, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18806783

ABSTRACT

The HIV-1 protein Vif, essential for in vivo viral replication, targets the human DNA-editing enzyme, APOBEC3G (A3G), which inhibits replication of retroviruses and hepatitis B virus. As Vif has no known cellular homologs, it is an attractive, yet unrealized, target for antiviral intervention. Although zinc chelation inhibits Vif and enhances viral sensitivity to A3G, this effect is unrelated to the interaction of Vif with A3G. We identify a small molecule, RN-18, that antagonizes Vif function and inhibits HIV-1 replication only in the presence of A3G. RN-18 increases cellular A3G levels in a Vif-dependent manner and increases A3G incorporation into virions without inhibiting general proteasome-mediated protein degradation. RN-18 enhances Vif degradation only in the presence of A3G, reduces viral infectivity by increasing A3G incorporation into virions and enhances cytidine deamination of the viral genome. These results demonstrate that the HIV-1 Vif-A3G axis is a valid target for developing small molecule-based new therapies for HIV infection or for enhancing innate immunity against viruses.


Subject(s)
Anti-HIV Agents/therapeutic use , Cytidine Deaminase/immunology , Cytosine Deaminase/antagonists & inhibitors , Cytosine Deaminase/immunology , HIV Infections/immunology , HIV Infections/prevention & control , Immunity, Innate/immunology , vif Gene Products, Human Immunodeficiency Virus/immunology , APOBEC-3G Deaminase , Anti-HIV Agents/immunology , Cytidine Deaminase/genetics , HIV-1/drug effects , HIV-1/physiology , Humans , Immunity, Innate/drug effects
19.
J Mol Biol ; 381(4): 1000-11, 2008 Sep 12.
Article in English | MEDLINE | ID: mdl-18619467

ABSTRACT

Apolipoprotein B mRNA-editing catalytic polypeptide-like 3G (APOBEC3G, or A3G) and related cytidine deaminases such as apolipoprotein B mRNA-editing catalytic polypeptide-like 3F (APOBEC3F, or A3F) are potent inhibitors of retroviruses. Formation of infectious human immunodeficiency virus (HIV)-1 requires suppression of multiple cytidine deaminases by Vif. HIV-1 Vif suppresses various APOBEC3 proteins through a common mechanism by recruiting Cullin5, ElonginB, and ElonginC E3 ubiquitin ligase to induce target protein polyubiquitination and proteasome-mediated degradation. Domains in Vif that mediate APOBEC3 recognition have not been fully characterized. In the present study, we identified a VxIPLx(4-5)LxPhix(2)YWxL motif in HIV-1 Vif, which is required for efficient interaction between Vif and A3G, Vif-mediated A3G degradation and virion exclusion, and functional suppression of the A3G antiviral activity. Amino acids 52 to 72 of HIV-1 Vif (including the VxIPLx(4-5)LxPhix(2)YWxL motif) alone could mediate interaction with A3G, and this interaction was abolished by mutations of two hydrophobic amino acids in this region. We have also observed that a Vif mutant was ineffective against A3G, yet it retained the ability to interact with Cullin5-E3 ubiquitin complex and A3G, suggesting that interaction with A3G is necessary but not sufficient to inhibit its antiviral function. Unlike the previously identified motif of HIV-1 Vif amino acids 40 to 44, which is only important for A3G suppression, the VxIPLx(4-5)LxPhix(2)YWxL motif is also required for efficient A3F interaction and suppression. On the other hand, another motif, TGERxW, of HIV-1 Vif amino acids 74 to 79 was found to be mainly important for A3F interaction and inhibition. Both the VxIPLx(4-5)LxPhix(2)YWxL and TGERxW motifs are highly conserved among HIV-1, HIV-2, and various simian immunodeficiency virus Vif proteins. Our data suggest that primate lentiviral Vif molecules recognize their autologous APOBEC3 proteins through conserved structural features that represent attractive targets for the development of novel inhibitors.


Subject(s)
Conserved Sequence , Cytidine Deaminase/metabolism , Cytosine Deaminase/metabolism , HIV-1/metabolism , vif Gene Products, Human Immunodeficiency Virus/chemistry , vif Gene Products, Human Immunodeficiency Virus/metabolism , APOBEC-3G Deaminase , Amino Acid Motifs , Amino Acid Sequence , Cell Line , Cytidine Deaminase/antagonists & inhibitors , Cytosine Deaminase/antagonists & inhibitors , HIV-2/metabolism , Humans , Molecular Sequence Data , Mutation/genetics , Peptides/chemistry , Peptides/metabolism , Protein Binding , Protein Structure, Tertiary , Structure-Activity Relationship
20.
Retrovirology ; 5: 51, 2008 Jun 24.
Article in English | MEDLINE | ID: mdl-18577210

ABSTRACT

Members of the APOBEC family of cellular cytidine deaminases represent a recently identified group of proteins that provide immunity to infection by retroviruses and protect the cell from endogenous mobile retroelements. Yet, HIV-1 is largely immune to the intrinsic antiviral effects of APOBEC proteins because it encodes Vif (viral infectivity factor), an accessory protein that is critical for in vivo replication of HIV-1. In the absence of Vif, APOBEC proteins are encapsidated by budding virus particles and either cause extensive cytidine to uridine editing of negative sense single-stranded DNA during reverse transcription or restrict virus replication through deaminase-independent mechanisms. Thus, the primary function of Vif is to prevent encapsidation of APOBEC proteins into viral particles. This is in part accomplished by the ability of Vif to induce the ubiquitin-dependent degradation of some of the APOBEC proteins. However, Vif is also able to prevent encapsidation of APOBEC3G and APOBEC3F through degradation-independent mechanism(s). The goal of this review is to recapitulate current knowledge of the functional interaction of HIV-1 and its Vif protein with the APOBEC3 subfamily of proteins and to summarize our present understanding of the mechanism of APOBEC3-dependent retrovirus restriction.


Subject(s)
Cytosine Deaminase/antagonists & inhibitors , Cytosine Deaminase/immunology , HIV Infections/immunology , HIV-1/physiology , vif Gene Products, Human Immunodeficiency Virus/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL