Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.012
Filter
1.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38719752

ABSTRACT

Septins are cytoskeletal proteins that participate in cell adhesion, migration, and polarity establishment. The septin subunit SEPT9 directly interacts with the single LIM domain of epithelial protein lost in neoplasm (EPLIN), an actin-bundling protein. Using a human SEPT9 KO fibroblast cell line, we show that cell adhesion and migration are regulated by the interplay between both proteins. The low motility of SEPT9-depleted cells could be partly rescued by increased levels of EPLIN. The normal organization of actin-related filopodia and stress fibers was directly dependent on the expression level of SEPT9 and EPLIN. Increased levels of SEPT9 and EPLIN enhanced the size of focal adhesions in cell protrusions, correlating with stabilization of actin bundles. Conversely, decreased levels had the opposite effect. Our work thus establishes the interaction between SEPT9 and EPLIN as an important link between the septin and the actin cytoskeleton, influencing cell adhesion, motility, and migration.


Subject(s)
Cell Adhesion , Cell Movement , Fibroblasts , Focal Adhesions , LIM Domain Proteins , Septins , Humans , Septins/metabolism , Septins/genetics , Cell Movement/genetics , Fibroblasts/metabolism , LIM Domain Proteins/metabolism , LIM Domain Proteins/genetics , Focal Adhesions/metabolism , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Pseudopodia/metabolism , Actin Cytoskeleton/metabolism , Cell Line , Actins/metabolism , Stress Fibers/metabolism
2.
N Engl J Med ; 390(21): 1972-1984, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38709228

ABSTRACT

BACKGROUND: CEP290-associated inherited retinal degeneration causes severe early-onset vision loss due to pathogenic variants in CEP290. EDIT-101 is a clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) gene-editing complex designed to treat inherited retinal degeneration caused by a specific damaging variant in intron 26 of CEP290 (IVS26 variant). METHODS: We performed a phase 1-2, open-label, single-ascending-dose study in which persons 3 years of age or older with CEP290-associated inherited retinal degeneration caused by a homozygous or compound heterozygous IVS26 variant received a subretinal injection of EDIT-101 in the worse (study) eye. The primary outcome was safety, which included adverse events and dose-limiting toxic effects. Key secondary efficacy outcomes were the change from baseline in the best corrected visual acuity, the retinal sensitivity detected with the use of full-field stimulus testing (FST), the score on the Ora-Visual Navigation Challenge mobility test, and the vision-related quality-of-life score on the National Eye Institute Visual Function Questionnaire-25 (in adults) or the Children's Visual Function Questionnaire (in children). RESULTS: EDIT-101 was injected in 12 adults 17 to 63 years of age (median, 37 years) at a low dose (in 2 participants), an intermediate dose (in 5), or a high dose (in 5) and in 2 children 9 and 14 years of age at the intermediate dose. At baseline, the median best corrected visual acuity in the study eye was 2.4 log10 of the minimum angle of resolution (range, 3.9 to 0.6). No serious adverse events related to the treatment or procedure and no dose-limiting toxic effects were recorded. Six participants had a meaningful improvement from baseline in cone-mediated vision as assessed with the use of FST, of whom 5 had improvement in at least one other key secondary outcome. Nine participants (64%) had a meaningful improvement from baseline in the best corrected visual acuity, the sensitivity to red light as measured with FST, or the score on the mobility test. Six participants had a meaningful improvement from baseline in the vision-related quality-of-life score. CONCLUSIONS: The safety profile and improvements in photoreceptor function after EDIT-101 treatment in this small phase 1-2 study support further research of in vivo CRISPR-Cas9 gene editing to treat inherited retinal degenerations due to the IVS26 variant of CEP290 and other genetic causes. (Funded by Editas Medicine and others; BRILLIANCE ClinicalTrials.gov number, NCT03872479.).


Subject(s)
Antigens, Neoplasm , Cell Cycle Proteins , Cytoskeletal Proteins , Gene Editing , Retinal Degeneration , Humans , Male , Female , Adult , Adolescent , Cell Cycle Proteins/genetics , Child , Retinal Degeneration/therapy , Retinal Degeneration/genetics , Middle Aged , Young Adult , Antigens, Neoplasm/genetics , Cytoskeletal Proteins/genetics , Visual Acuity , Child, Preschool , Quality of Life , Genetic Therapy/adverse effects , Injections, Intraocular , Retina , CRISPR-Cas Systems
3.
J Cell Biol ; 223(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38781029

ABSTRACT

The mitochondria-ER-cortex anchor (MECA) forms a tripartite membrane contact site between mitochondria, the endoplasmic reticulum (ER), and the plasma membrane (PM). The core component of MECA, Num1, interacts with the PM and mitochondria via two distinct lipid-binding domains; however, the molecular mechanism by which Num1 interacts with the ER is unclear. Here, we demonstrate that Num1 contains a FFAT motif in its C-terminus that interacts with the integral ER membrane protein Scs2. While dispensable for Num1's functions in mitochondrial tethering and dynein anchoring, the FFAT motif is required for Num1's role in promoting mitochondrial division. Unexpectedly, we also reveal a novel function of MECA in regulating the distribution of phosphatidylinositol-4-phosphate (PI(4)P). Breaking Num1 association with any of the three membranes it tethers results in an accumulation of PI(4)P on the PM, likely via disrupting Sac1-mediated PI(4)P turnover. This work establishes MECA as an important regulatory hub that spatially organizes mitochondria, ER, and PM to coordinate crucial cellular functions.


Subject(s)
Endoplasmic Reticulum , Mitochondria , Phosphatidylinositol Phosphates , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Cell Membrane/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mitochondria/metabolism , Mitochondria/genetics , Mitochondrial Dynamics , Phosphatidylinositol Phosphates/metabolism , Protein Binding , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics
4.
JCI Insight ; 9(9)2024 May 08.
Article in English | MEDLINE | ID: mdl-38716726

ABSTRACT

Childhood-onset essential hypertension (COEH) is an uncommon form of hypertension that manifests in childhood or adolescence and, in the United States, disproportionately affects children of African ancestry. The etiology of COEH is unknown, but its childhood onset, low prevalence, high heritability, and skewed ancestral demography suggest the potential to identify rare genetic variation segregating in a Mendelian manner among affected individuals and thereby implicate genes important to disease pathogenesis. However, no COEH genes have been reported to date. Here, we identify recessive segregation of rare and putatively damaging missense variation in the spectrin domain of spectrin repeat containing nuclear envelope protein 1 (SYNE1), a cardiovascular candidate gene, in 3 of 16 families with early-onset COEH without an antecedent family history. By leveraging exome sequence data from an additional 48 COEH families, 1,700 in-house trios, and publicly available data sets, we demonstrate that compound heterozygous SYNE1 variation in these COEH individuals occurred more often than expected by chance and that this class of biallelic rare variation was significantly enriched among individuals of African genetic ancestry. Using in vitro shRNA knockdown of SYNE1, we show that reduced SYNE1 expression resulted in a substantial decrease in the elasticity of smooth muscle vascular cells that could be rescued by pharmacological inhibition of the downstream RhoA/Rho-associated protein kinase pathway. These results provide insights into the molecular genetics and underlying pathophysiology of COEH and suggest a role for precision therapeutics in the future.


Subject(s)
Cytoskeletal Proteins , Essential Hypertension , Exome Sequencing , Nerve Tissue Proteins , Adolescent , Child , Female , Humans , Male , Age of Onset , Cytoskeletal Proteins/genetics , Essential Hypertension/genetics , Exome/genetics , Genetic Predisposition to Disease , Mutation, Missense/genetics , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Pedigree , rhoA GTP-Binding Protein/genetics , United States/epidemiology , Infant, Newborn , Infant , Child, Preschool , Young Adult
5.
Exp Neurol ; 377: 114805, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729552

ABSTRACT

Staufen-1 (STAU1) is a double-stranded RNA-binding protein (RBP) involved in a variety of pathological conditions. In this study, we investigated the potential role of STAU1 in Alzheimer's disease (AD), in which two hallmarks are well-established as cerebral ß-amyloid protein (Aß) deposition and Tau-centered neurofibrillary tangles. We found that STAU1 protein level was significantly increased in cells that stably express full-length APP and the brain of APP/PS1 mice, an animal model of AD. STAU1 knockdown, as opposed to overexpression, significantly decreased the protein levels of ß-amyloid converting enzyme 1 (BACE1) and Aß. We further found that STAU1 extended the half-life of the BACE1 mRNA through binding to the 3' untranslated region (3'UTR). Transcriptome analysis revealed that STAU1 enhanced the expression of growth arrest and DNA damage 45 ß (GADD45B) upstream of P38 MAPK signaling, which contributed to STAU1-induced regulation of Tau phosphorylation at Ser396 and Thr181. Together, STAU1 promoted amyloidogenesis by inhibiting BACE1 mRNA decay, and augmented Tau phosphorylation through activating GADD45B in relation to P38 MAPK. Targeting STAU1 that acts on both amyloidogenesis and tauopathy may serve as an optimistic approach for AD treatment.


Subject(s)
Amyloid Precursor Protein Secretases , Aspartic Acid Endopeptidases , RNA-Binding Proteins , tau Proteins , Animals , tau Proteins/metabolism , tau Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Mice , Phosphorylation , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/genetics , Aspartic Acid Endopeptidases/metabolism , Aspartic Acid Endopeptidases/genetics , Humans , Mice, Transgenic , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Cells, Cultured , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics
7.
Int Immunopharmacol ; 134: 112193, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38723372

ABSTRACT

Retinal neurodegenerative diseases are a category of refractory blinding eye conditions closely associated with oxidative stress induced by mitochondrial dysfunction in retinal cells. SARM1, a core driver molecule leading to axonal degeneration, possesses NAD+ enzyme (NADase) activity. However, the role of the SARM1-NAD+ axis in oxidative stress-induced retinal cell death remains unclear. Here, we employed the SARM1 NADase inhibitor DSRM-3716 and established a glucose oxidase (GOx)-induced oxidative stress cell model. We found that compared to the GOx group, the DSRM-3716 pre-treated group reduced the hydrolysis of NAD+, inhibited the elevation of oxidative stress markers induced by GOx, decreased mitochondrial dysfunction, lowered the phosphorylation level of JNK, and attenuated the occurrence of pyroptosis in retinal and nerve cells, thereby providing protection for neurite growth. Further utilization of the JNK activator Anisomycin activated JNK, revealed that the JNK/c-Jun pathway down-regulated NMNAT2 expression. Consequently, it reduced cellular NAD+ synthesis, exacerbated mitochondrial dysfunction and cell pyroptosis, and reversed the protective effect of DSRM-3716 on cells. In summary, the inhibition of SARM1 NADase activity substantially mitigates oxidative damage to retinal cells and mitochondrial damage. Additionally, JNK simultaneously serves as both an upstream and downstream regulator in the SARM1-NAD+ axis, regulating retinal cell pyroptosis and neurite injury. Thus, this study provides new insights into the pathological processes of retinal cell oxidative stress and identifies potential therapeutic targets for retinal neurodegenerative diseases.


Subject(s)
Armadillo Domain Proteins , Cytoskeletal Proteins , NAD , Oxidative Stress , Armadillo Domain Proteins/metabolism , Armadillo Domain Proteins/genetics , Oxidative Stress/drug effects , Animals , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , NAD/metabolism , Retina/pathology , Retina/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Mice , Nicotinamide-Nucleotide Adenylyltransferase/metabolism , Nicotinamide-Nucleotide Adenylyltransferase/genetics , Cell Line , Pyroptosis/drug effects , Humans , NAD+ Nucleosidase/metabolism
8.
PLoS Genet ; 20(5): e1011287, 2024 May.
Article in English | MEDLINE | ID: mdl-38768229

ABSTRACT

In many organisms, stress responses to adverse environments can trigger secondary functions of certain proteins by altering protein levels, localization, activity, or interaction partners. Escherichia coli cells respond to the presence of specific cationic antimicrobial peptides by strongly activating the PhoQ/PhoP two-component signaling system, which regulates genes important for growth under this stress. As part of this pathway, a biosynthetic enzyme called QueE, which catalyzes a step in the formation of queuosine (Q) tRNA modification is upregulated. When cellular QueE levels are high, it co-localizes with the central cell division protein FtsZ at the septal site, blocking division and resulting in filamentous growth. Here we show that QueE affects cell size in a dose-dependent manner. Using alanine scanning mutagenesis of amino acids in the catalytic active site, we pinpoint residues in QueE that contribute distinctly to each of its functions-Q biosynthesis or regulation of cell division, establishing QueE as a moonlighting protein. We further show that QueE orthologs from enterobacteria like Salmonella typhimurium and Klebsiella pneumoniae also cause filamentation in these organisms, but the more distant counterparts from Pseudomonas aeruginosa and Bacillus subtilis lack this ability. By comparative analysis of E. coli QueE with distant orthologs, we elucidate a unique region in this protein that is responsible for QueE's secondary function as a cell division regulator. A dual-function protein like QueE is an exception to the conventional model of "one gene, one enzyme, one function", which has divergent roles across a range of fundamental cellular processes including RNA modification and translation to cell division and stress response.


Subject(s)
Cell Division , Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Cell Division/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Nucleoside Q/metabolism , Nucleoside Q/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Klebsiella pneumoniae/genetics , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Gene Expression Regulation, Bacterial , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , RNA, Transfer/genetics , RNA, Transfer/metabolism
9.
PLoS One ; 19(4): e0302251, 2024.
Article in English | MEDLINE | ID: mdl-38635746

ABSTRACT

Sterile alpha and TIR motif-containing 1 (SARM1) is a protein involved in programmed death of injured axons. Following axon injury or a drug-induced insult, the TIR domain of SARM1 degrades the essential molecule nicotinamide adenine dinucleotide (NAD+), leading to a form of axonal death called Wallerian degeneration. Degradation of NAD+ by SARM1 is essential for the Wallerian degeneration process, but accumulating evidence suggest that other activities of SARM1, beyond the mere degradation of NAD+, may be necessary for programmed axonal death. In this study we show that the TIR domains of both human and fruit fly SARM1 produce 1''-2' and 1''-3' glycocyclic ADP-ribose (gcADPR) molecules as minor products. As previously reported, we observed that SARM1 TIR domains mostly convert NAD+ to ADPR (for human SARM1) or cADPR (in the case of SARM1 from Drosophila melanogaster). However, we now show that human and Drosophila SARM1 additionally convert ~0.1-0.5% of NAD+ into gcADPR molecules. We find that SARM1 TIR domains produce gcADPR molecules both when purified in vitro and when expressed in bacterial cells. Given that gcADPR is a second messenger involved in programmed cell death in bacteria and likely in plants, we propose that gcADPR may play a role in SARM1-induced programmed axonal death in animals.


Subject(s)
NAD , Wallerian Degeneration , Animals , Humans , Wallerian Degeneration/metabolism , Wallerian Degeneration/pathology , NAD/metabolism , Drosophila melanogaster/metabolism , Axons/metabolism , Bacteria/metabolism , Adenosine Diphosphate Ribose/metabolism , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism
10.
Elife ; 132024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573307

ABSTRACT

The perinuclear theca (PT) is a dense cytoplasmic web encapsulating the sperm nucleus. The physiological roles of PT in sperm biology and the clinical relevance of variants of PT proteins to male infertility are still largely unknown. We reveal that cylicin-1, a major constituent of the PT, is vital for male fertility in both mice and humans. Loss of cylicin-1 in mice leads to a high incidence of malformed sperm heads with acrosome detachment from the nucleus. Cylicin-1 interacts with itself, several other PT proteins, the inner acrosomal membrane (IAM) protein SPACA1, and the nuclear envelope (NE) protein FAM209 to form an 'IAM-cylicins-NE' sandwich structure, anchoring the acrosome to the nucleus. WES (whole exome sequencing) of more than 500 Chinese infertile men with sperm head deformities was performed and a CYLC1 variant was identified in 19 patients. Cylc1-mutant mice carrying this variant also exhibited sperm acrosome/head deformities and reduced fertility, indicating that this CYLC1 variant most likely affects human male reproduction. Furthermore, the outcomes of assisted reproduction were reported for patients harbouring the CYLC1 variant. Our findings demonstrate a critical role of cylicin-1 in the sperm acrosome-nucleus connection and suggest CYLC1 variants as potential risk factors for human male fertility.


Subject(s)
Acrosome , Infertility, Male , Animals , Humans , Male , Mice , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Infertility, Male/genetics , Membrane Proteins/genetics , Semen , Sperm Head , Spermatozoa
11.
Commun Biol ; 7(1): 412, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575808

ABSTRACT

The CLIP1-LTK fusion was recently discovered as a novel oncogenic driver in non-small cell lung cancer (NSCLC). Lorlatinib, a third-generation ALK inhibitor, exhibited a dramatic clinical response in a NSCLC patient harboring CLIP1-LTK fusion. However, it is expected that acquired resistance will inevitably develop, particularly by LTK mutations, as observed in NSCLC induced by oncogenic tyrosine kinases treated with corresponding tyrosine kinase inhibitors (TKIs). In this study, we evaluate eight LTK mutations corresponding to ALK mutations that lead to on-target resistance to lorlatinib. All LTK mutations show resistance to lorlatinib with the L650F mutation being the highest. In vitro and in vivo analyses demonstrate that gilteritinib can overcome the L650F-mediated resistance to lorlatinib. In silico analysis suggests that introduction of the L650F mutation may attenuate lorlatinib-LTK binding. Our study provides preclinical evaluations of potential on-target resistance mutations to lorlatinib, and a novel strategy to overcome the resistance.


Subject(s)
Aminopyridines , Carcinoma, Non-Small-Cell Lung , Lactams , Lung Neoplasms , Pyrazoles , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/therapeutic use , Drug Resistance, Neoplasm/genetics , Lactams, Macrocyclic/pharmacology , Lactams, Macrocyclic/therapeutic use , Mutation , Cytoskeletal Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics
12.
J Cell Sci ; 137(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38587458

ABSTRACT

Talin (herein referring collectively to talin 1 and 2) couples the actomyosin cytoskeleton to integrins and transmits tension to the extracellular matrix. Talin also interacts with numerous additional proteins capable of modulating the actin-integrin linkage and thus downstream mechanosignaling cascades. Here, we demonstrate that the scaffold protein Caskin2 interacts directly with the R8 domain of talin through its C-terminal LD motif. Caskin2 also associates with the WAVE regulatory complex to promote cell migration in an Abi1-dependent manner. Furthermore, we demonstrate that the Caskin2-Abi1 interaction is regulated by growth factor-induced phosphorylation of Caskin2 on serine 878. In MCF7 and UACC893 cells, which contain an amplification of CASKIN2, Caskin2 localizes in plasma membrane-associated plaques and around focal adhesions in cortical microtubule stabilization complexes. Taken together, our results identify Caskin2 as a novel talin-binding protein that might not only connect integrin-mediated adhesion to actin polymerization but could also play a role in crosstalk between integrins and microtubules.


Subject(s)
Adaptor Proteins, Signal Transducing , Cell Movement , Cytoskeletal Proteins , Protein Binding , Talin , Humans , Talin/metabolism , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Phosphorylation , MCF-7 Cells , Microtubules/metabolism , Focal Adhesions/metabolism , Integrins/metabolism
13.
Transl Psychiatry ; 14(1): 197, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670959

ABSTRACT

Alcohol use and anxiety disorders occur in both males and females, but despite sharing similar presentation and classical symptoms, the prevalence of alcohol use disorder (AUD) is lower in females. While anxiety is a symptom and comorbidity shared by both sexes, the common underlying mechanism that leads to AUD and the subsequent development of anxiety is still understudied. Using a rodent model of adolescent intermittent ethanol (AIE) exposure in both sexes, we investigated the epigenetic mechanism mediated by enhancer of zeste 2 (EZH2), a histone methyltransferase, in regulating both the expression of activity-regulated cytoskeleton-associated protein (Arc) and an anxiety-like phenotype in adulthood. Here, we report that EZH2 protein levels were significantly higher in PKC-δ positive GABAergic neurons in the central nucleus of amygdala (CeA) of adult male and female rats after AIE. Reducing protein and mRNA levels of EZH2 using siRNA infusion in the CeA prevented AIE-induced anxiety-like behavior, increased H3K27me3, decreased H3K27ac at the Arc synaptic activity response element (SARE) site, and restored deficits in Arc mRNA and protein expression in both male and female adult rats. Our data indicate that an EZH2-mediated epigenetic mechanism in the CeA plays an important role in regulating anxiety-like behavior and Arc expression after AIE in both male and female rats in adulthood. This study suggests that EZH2 may serve as a tractable drug target for the treatment of adult psychopathology after adolescent alcohol exposure.


Subject(s)
Anxiety , Central Amygdaloid Nucleus , Enhancer of Zeste Homolog 2 Protein , Epigenesis, Genetic , Ethanol , Animals , Male , Female , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Central Amygdaloid Nucleus/metabolism , Central Amygdaloid Nucleus/drug effects , Rats , Anxiety/metabolism , Anxiety/genetics , Ethanol/pharmacology , Disease Models, Animal , Alcoholism/genetics , Alcoholism/metabolism , GABAergic Neurons/metabolism , GABAergic Neurons/drug effects , Rats, Sprague-Dawley , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
14.
Kaohsiung J Med Sci ; 40(6): 553-560, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38623867

ABSTRACT

Working memory (WM) is a cognitive function important for guiding the on-going or upcoming behavior. A memory-related protein Arc (activity-regulated cytoskeleton-associated protein) is implicated in long-term memory consolidation. Recent evidence further suggests the involvement of hippocampal Arc in spatial WM. The medial prefrontal cortex (mPFC) is a key brain region mediating WM. However, the role of mPFC Arc in WM is still uncertain. To investigate whether mPFC Arc protein is involved in WM performance, delayed non-match to sample (DNMS) T-maze task was performed in rats with or without blocking new synthesis of mPFC Arc. In DNMS task, a 10-s or 30-s delay between the sample run and the choice run was given to evaluate WM performance. To block new Arc protein synthesis during the DNMS task, Arc antisense oligodeoxynucleotides (ODNs) were injected to the bilateral mPFC. The results show that, in rats without surgery for cannula implantation and subsequent intracerebral injection of ODNs, WM was functioning well during the DNMS task with a delay of 10 s but not 30 s, which was accompanied with a significantly increased level of mPFC Arc protein, indicating a possible link between enhanced Arc protein expression and the performance of WM. After preventing the enhancement of mPFC Arc protein expression with Arc antisense ODNs, rat's WM performance was impaired. These findings support enhanced mPFC Arc protein expression playing a role during WM performance.


Subject(s)
Cytoskeletal Proteins , Memory, Short-Term , Nerve Tissue Proteins , Prefrontal Cortex , Animals , Prefrontal Cortex/metabolism , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Male , Memory, Short-Term/physiology , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Rats , Maze Learning/physiology , Rats, Sprague-Dawley
15.
Biochem Biophys Res Commun ; 714: 149947, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38657442

ABSTRACT

Here, we characterized the p.Arg583His (R583H) Kv7.1 mutation, identified in two unrelated families suffered from LQT syndrome. This mutation is located in the HС-HD linker of the cytoplasmic portion of the Kv7.1 channel. This linker, together with HD helix are responsible for binding the A-kinase anchoring protein 9 (AKAP9), Yotiao. We studied the electrophysiological characteristics of the mutated channel expressed in CHO-K1 along with KCNE1 subunit and Yotiao protein, using the whole-cell patch-clamp technique. We found that R583H mutation, even at the heterozygous state, impedes IKs activation. Molecular modeling showed that HС and HD helixes of the C-terminal part of Kv7.1 channel are swapped along the C-terminus length of the channel and that R583 position is exposed to the outer surface of HC-HD tandem coiled-coil. Interestingly, the adenylate cyclase activator, forskolin had a smaller effect on the mutant channel comparing with the WT protein, suggesting that R583H mutation may disrupt the interaction of the channel with the adaptor protein Yotiao and, therefore, may impair phosphorylation of the KCNQ1 channel.


Subject(s)
A Kinase Anchor Proteins , Cytoskeletal Proteins , KCNQ1 Potassium Channel , Long QT Syndrome , Animals , Female , Humans , Male , A Kinase Anchor Proteins/metabolism , A Kinase Anchor Proteins/genetics , A Kinase Anchor Proteins/chemistry , CHO Cells , Cricetulus , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , KCNQ1 Potassium Channel/genetics , KCNQ1 Potassium Channel/metabolism , KCNQ1 Potassium Channel/chemistry , Long QT Syndrome/genetics , Long QT Syndrome/metabolism , Models, Molecular , Mutation , Potassium Channels, Voltage-Gated/chemistry , Potassium Channels, Voltage-Gated/genetics , Potassium Channels, Voltage-Gated/metabolism , Protein Binding
16.
J Psychiatr Res ; 174: 84-93, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626565

ABSTRACT

Schizophrenia (SCZ) represents a set of enduring mental illnesses whose underlying etiology remains elusive, posing a significant challenge to public health. Previous studies have shown that the neurodevelopmental process involving small molecules such as miRNA and mRNA is one of the etiological hypotheses of SCZ. We identified and verified that miR-30e-3p and ABI1 can be used as biomarkers in peripheral blood transcriptome sequencing data of patients with SCZ, and confirmed the regulatory relationship between them. To further explore their involvement, we employed retinoic acid (RA)-treated SH-SY5Y differentiated cells as a model system. Our findings indicate that in RA-induced SH-SY5Y cells, ABI1 expression is up-regulated, while miR-30e-3p expression is down-regulated. Functionally, both miR-30e-3p down-regulation and ABI1 up-regulation promote apoptosis and inhibit the proliferation of SH-SY5Y cells. Subsequently, the immunofluorescence assay detected the expression location and abundance of the neuron-specific protein ß-tubulinIII. The expression levels of neuronal marker genes MAPT, TUBB3 and SYP were detected by RT-qPCR. We observed that these changes of miR-30e-3p and ABI1 inhibit the neurite growth of SH-SY5Y cells. Rescue experiments further support that ABI1 silencing can correct miR-30e-3p down-regulation-induced SH-SY5Y neurodevelopmental defects. Collectively, our results establish that miR-30e-3p's regulation of neurite development in SH-SY5Y cells is mediated through ABI1, highlighting a potential mechanism in SCZ pathogenesis.


Subject(s)
Biomarkers , MicroRNAs , Schizophrenia , Humans , MicroRNAs/blood , MicroRNAs/genetics , Schizophrenia/blood , Schizophrenia/metabolism , Cell Line, Tumor , Biomarkers/blood , Biomarkers/metabolism , Neurites/drug effects , Tretinoin/pharmacology , Tubulin/metabolism , Apoptosis/drug effects , Apoptosis/physiology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Neuroblastoma
17.
J Biol Chem ; 300(5): 107254, 2024 May.
Article in English | MEDLINE | ID: mdl-38569934

ABSTRACT

Nesprins comprise a family of multi-isomeric scaffolding proteins, forming the linker of nucleoskeleton-and-cytoskeleton complex with lamin A/C, emerin and SUN1/2 at the nuclear envelope. Mutations in nesprin-1/-2 are associated with Emery-Dreifuss muscular dystrophy (EDMD) with conduction defects and dilated cardiomyopathy (DCM). We have previously observed sarcomeric staining of nesprin-1/-2 in cardiac and skeletal muscle, but nesprin function in this compartment remains unknown. In this study, we show that specific nesprin-2 isoforms are highly expressed in cardiac muscle and localize to the Z-disc and I band of the sarcomere. Expression of GFP-tagged nesprin-2 giant spectrin repeats 52 to 53, localized to the sarcomere of neonatal rat cardiomyocytes. Yeast two-hybrid screening of a cardiac muscle cDNA library identified telethonin and four-and-half LIM domain (FHL)-2 as potential nesprin-2 binding partners. GST pull-down and immunoprecipitation confirmed the individual interactions between nesprin-2/telethonin and nesprin-2/FHL-2, and showed that nesprin-2 and telethonin binding was dependent on telethonin phosphorylation status. Importantly, the interactions between these binding partners were impaired by mutations in nesprin-2, telethonin, and FHL-2 identified in EDMD with DCM and hypertrophic cardiomyopathy patients. These data suggest that nesprin-2 is a novel sarcomeric scaffold protein that may potentially participate in the maintenance and/or regulation of sarcomeric organization and function.


Subject(s)
Connectin , LIM Domain Proteins , Muscle Proteins , Myocytes, Cardiac , Nerve Tissue Proteins , Nuclear Proteins , Sarcomeres , Myocytes, Cardiac/metabolism , Animals , Sarcomeres/metabolism , Muscle Proteins/metabolism , Muscle Proteins/genetics , Rats , Humans , Connectin/metabolism , Connectin/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , LIM Domain Proteins/metabolism , LIM Domain Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Protein Binding , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Transcription Factors , LIM-Homeodomain Proteins
18.
Indian J Ophthalmol ; 72(Suppl 3): S509-S513, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38648460

ABSTRACT

PURPOSE: Mutations of G protein-coupled receptor 143 (GPR143) and FERM domain containing 7 (FRMD7) may result in congenital nystagmus (CN) in the first 6 months of life. We aimed to compare the differences in ocular oscillations between patients with these two gene mutations as well as the functional and structural changes in their retinas and visual pathways. METHODS: Medical records were retrospectively reviewed to identify patients of congenital nystagmus with confirmed mutations in either GPR143 or FMRD7 genes from January 2018 to May 2023. The parameters of the ocular oscillations were recorded using Eyelink 1000 Plus. The retinal structure and function were evaluated using optical coherence tomography and multi-focal electroretinography (mERG). The visual pathway and optical nerve projection were evaluated using visual evoked potentials. The next-generation sequencing technique was used to identify the pathogenic variations in the disease-causing genes for CN. RESULTS: Twenty nystagmus patients of GPR143 and 21 patients of FMRD7 who had been confirmed by molecular testing between January 2018 and May 2023 were included. Foveal hypoplasia was detected only in patients with the GPR143 pathogenic variant. mERG examination showed a flat response topography in the GPR143 group compared to the FRMD7 group. VEP showed that bilateral amplitude inconsistency was detected only in the patients with GPR143 gene mutation. The amplitude and frequency of the ocular oscillations were not found to differ between patients with two different genetic mutations. CONCLUSIONS: Although the etiology and molecular mechanisms are completely different between CN patients, they may have similar ocular oscillations. A careful clinical examination and electrophysiological test will be helpful in making a differential diagnosis. Our novel identified variants will further expand the spectrum of the GPR143 and FRMD7 variants.


Subject(s)
Cytoskeletal Proteins , Membrane Proteins , Nystagmus, Congenital , Female , Humans , Male , Cytoskeletal Proteins/genetics , DNA/genetics , DNA Mutational Analysis , Electroretinography , Evoked Potentials, Visual/physiology , Eye Movements/physiology , Eye Proteins/genetics , Membrane Glycoproteins/genetics , Membrane Proteins/genetics , Mutation , Nystagmus, Congenital/genetics , Nystagmus, Congenital/physiopathology , Nystagmus, Congenital/diagnosis , Retina/physiopathology , Retrospective Studies , Tomography, Optical Coherence/methods
19.
Elife ; 132024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639993

ABSTRACT

In the Firmicutes phylum, GpsB is a membrane associated protein that coordinates peptidoglycan synthesis with cell growth and division. Although GpsB has been studied in several bacteria, the structure, function, and interactome of Staphylococcus aureus GpsB is largely uncharacterized. To address this knowledge gap, we solved the crystal structure of the N-terminal domain of S. aureus GpsB, which adopts an atypical, asymmetric dimer, and demonstrates major conformational flexibility that can be mapped to a hinge region formed by a three-residue insertion exclusive to Staphylococci. When this three-residue insertion is excised, its thermal stability increases, and the mutant no longer produces a previously reported lethal phenotype when overexpressed in Bacillus subtilis. In S. aureus, we show that these hinge mutants are less functional and speculate that the conformational flexibility imparted by the hinge region may serve as a dynamic switch to fine-tune the function of the GpsB complex and/or to promote interaction with its various partners. Furthermore, we provide the first biochemical, biophysical, and crystallographic evidence that the N-terminal domain of GpsB binds not only PBP4, but also FtsZ, through a conserved recognition motif located on their C-termini, thus coupling peptidoglycan synthesis to cell division. Taken together, the unique structure of S. aureus GpsB and its direct interaction with FtsZ/PBP4 provide deeper insight into the central role of GpsB in S. aureus cell division.


Subject(s)
Bacterial Proteins , Cytoskeletal Proteins , Protein Binding , Protein Conformation , Staphylococcus aureus , Staphylococcus aureus/metabolism , Staphylococcus aureus/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/chemistry , Crystallography, X-Ray , Penicillin-Binding Proteins/metabolism , Penicillin-Binding Proteins/genetics , Penicillin-Binding Proteins/chemistry , Models, Molecular
20.
EMBO Rep ; 25(5): 2418-2440, 2024 May.
Article in English | MEDLINE | ID: mdl-38605277

ABSTRACT

Microcephaly is a common feature in inherited bone marrow failure syndromes, prompting investigations into shared pathways between neurogenesis and hematopoiesis. To understand this association, we studied the role of the microcephaly gene Mcph1 in hematological development. Our research revealed that Mcph1-knockout mice exhibited congenital macrocytic anemia due to impaired terminal erythroid differentiation during fetal development. Anemia's cause is a failure to complete cell division, evident from tetraploid erythroid progenitors with DNA content exceeding 4n. Gene expression profiling demonstrated activation of the p53 pathway in Mcph1-deficient erythroid precursors, leading to overexpression of Cdkn1a/p21, a major mediator of p53-dependent cell cycle arrest. Surprisingly, fetal brain analysis revealed hypertrophied binucleated neuroprogenitors overexpressing p21 in Mcph1-knockout mice, indicating a shared pathophysiological mechanism underlying both erythroid and neurological defects. However, inactivating p53 in Mcph1-/- mice failed to reverse anemia and microcephaly, suggesting that p53 activation in Mcph1-deficient cells resulted from their proliferation defect rather than causing it. These findings shed new light on Mcph1's function in fetal hematopoietic development, emphasizing the impact of disrupted cell division on neurogenesis and erythropoiesis - a common limiting pathway.


Subject(s)
Cell Cycle Proteins , Cyclin-Dependent Kinase Inhibitor p21 , Erythropoiesis , Mice, Knockout , Microcephaly , Tumor Suppressor Protein p53 , Animals , Erythropoiesis/genetics , Microcephaly/genetics , Microcephaly/pathology , Mice , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Mutation , Anemia, Macrocytic/genetics , Anemia, Macrocytic/pathology , Anemia, Macrocytic/metabolism , Cell Differentiation/genetics , Erythroid Precursor Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...