Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 885
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731935

ABSTRACT

Cancer treatment is greatly challenged by drug resistance, highlighting the need for novel drug discoveries. Here, we investigated novel organoarsenic compounds regarding their resistance-breaking and apoptosis-inducing properties in leukemia and lymphoma. Notably, the compound (2,6-dimethylphenyl)arsonic acid (As2) demonstrated significant inhibition of cell proliferation and induction of apoptosis in leukemia and lymphoma cells while sparing healthy leukocytes. As2 reached half of its maximum activity (AC50) against leukemia cells at around 6.3 µM. Further experiments showed that As2 overcomes multidrug resistance and sensitizes drug-resistant leukemia and lymphoma cell lines to treatments with the common cytostatic drugs vincristine, daunorubicin, and cytarabine at low micromolar concentrations. Mechanistic investigations of As2-mediated apoptosis involving FADD (FAS-associated death domain)-deficient or Smac (second mitochondria-derived activator of caspases)/DIABLO (direct IAP binding protein with low pI)-overexpressing cell lines, western blot analysis of caspase-9 cleavage, and measurements of mitochondrial membrane integrity identified the mitochondrial apoptosis pathway as the main mode of action. Downregulation of XIAP (x-linked inhibitor of apoptosis protein) and apoptosis induction independent of Bcl-2 (B-cell lymphoma 2) and caspase-3 expression levels suggest the activation of additional apoptosis-promoting mechanisms. Due to the selective apoptosis induction, the synergistic effects with common anti-cancer drugs, and the ability to overcome multidrug resistance in vitro, As2 represents a promising candidate for further preclinical investigations with respect to refractory malignancies.


Subject(s)
Apoptosis , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Leukemia , Lymphoma , Mitochondria , X-Linked Inhibitor of Apoptosis Protein , X-Linked Inhibitor of Apoptosis Protein/metabolism , Humans , Apoptosis/drug effects , Drug Resistance, Neoplasm/drug effects , Lymphoma/drug therapy , Lymphoma/metabolism , Lymphoma/pathology , Leukemia/metabolism , Leukemia/drug therapy , Leukemia/pathology , Drug Resistance, Multiple/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line, Tumor , Down-Regulation/drug effects , Cell Proliferation/drug effects , Cytostatic Agents/pharmacology , Antineoplastic Agents/pharmacology
2.
Sci Total Environ ; 933: 173175, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38750736

ABSTRACT

Antineoplastic drugs are not effectively removed by wastewater treatment plants, ending up in surface waters. Since these drugs can interfere with the structure and functions of DNA, they pose a potential threat to aquatic biota. Unfortunately, many chemotherapeutic agents have not been studied in an environmental context. Additionally, there is a significant lack of information about the impact of anticancer drugs on marine organisms compared to freshwater species, and most studies only focus on the toxicity of single compounds rather than considering their occurrence as complex mixtures in the environment. Therefore, the aim of this study was to evaluate the ecotoxicity of two commonly used cytostatics, bleomycin and vincristine, toward six biomodels: Pseudokirchneriella subcapitata, Phaeodactylum tricornutum, Brachionus plicatilis, Brachionus calyciflorus, Thamnocephalus platyurus, and Artemia franciscana. These selected aquatic organisms are representatives of both freshwater and marine environments and belong to different trophic levels. The pharmaceuticals were investigated both individually and in combination. Binary mixture toxicity predictions were performed according to the Response Additivity and Independent Action models. Additionally, the toxicity data obtained from these experiments were utilized for risk assessment in the context of the drugs' environmental occurrence. The results indicated that freshwater species were generally more sensitive to both tested compounds than marine organisms, with T. platyurus being the most sensitive. Based on the tests performed on this biomodel, bleomycin was categorized as extremely toxic, while vincristine was considered moderately toxic. Neither of the applied models suitably predicted binary mixture toxicity, as the combination of drugs showed additive, synergistic, and antagonistic effects, suggesting that single compound toxicity data are insufficient for predicting the aquatic toxicities of cytostatics mixtures. The environmental risk of vincristine ranged from low to high, and for bleomycin varied from moderate to high, depending on the matrices examined. Therefore, further research on drug removal is recommended.


Subject(s)
Aquatic Organisms , Bleomycin , Fresh Water , Vincristine , Water Pollutants, Chemical , Bleomycin/toxicity , Vincristine/toxicity , Animals , Water Pollutants, Chemical/toxicity , Aquatic Organisms/drug effects , Cytostatic Agents/toxicity
3.
Bull Environ Contam Toxicol ; 112(5): 66, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38643435

ABSTRACT

In this study, the toxicogenomic effects of five cytostatics (tamoxifen, methotrexate, capecitabine, cyclophosphamide, and ifosfamide) on fathead minnow (Pimephales promelas) larvae were evaluated. Post-fertilization eggs were exposed to increasing concentrations of the drugs for six days. The expression levels of two genetic biomarkers for toxicity and four thyroid hormone-related gene pathways were measured. Interestingly, the results showed that all concentrations of the five cytostatics affect the transcription levels of both toxicity biomarker genes. Additionally, the thyroid hormone-related genes had different expression levels than the control, with the most significant changes observed in those larvae exposed to cyclophosphamide and ifosfamide. While a previous study found no effects on fish morphology, this study suggests that the five cytostatics modify subtle molecular responses of P. promelas, highlighting the importance of assessing multibiological level endpoints throughout the lifecycle of animals to understand the full portrait of potential effects of cytostatics and other contaminants.


Subject(s)
Cyprinidae , Cytostatic Agents , Animals , Larva , Ifosfamide , Toxicogenetics , Cyprinidae/genetics , Cyclophosphamide , Thyroid Hormones
4.
Talanta ; 274: 125920, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38574532

ABSTRACT

Herby, the interaction of metallothioneins with commonly used Pt-based anticancer drugs - cisplatin, carboplatin, and oxaliplatin - was investigated using the combined power of elemental (i.e. LA-ICP-MS, CE-ICP-MS) and molecular (i.e. MALDI-TOF-MS) analytical techniques providing not only required information about the interaction, but also the benefit of low sample consumption. The amount of Cd and Pt incorporated within the protein was determined for protein monomers and dimer/oligomers formed by non-oxidative dimerization. Moreover, fluorescence spectrometry using Zn2+-selective fluorescent indicator - FluoZin3 - was employed to monitor the ability of Pt drugs to release natively occurring Zn from the protein molecule. The investigation was carried out using two protein isoforms (i.e. MT2, MT3), and significant differences in behaviour of these two isoforms were observed. The main attention was paid to elucidating whether the protein dimerization/oligomerization may be the reason for the potential failure of the anticancer therapy based on these drugs. Based on the results, it was demonstrated that the interaction of MT2 (both monomers and dimers) interacted with Pt drugs significantly less compared to MT3 (both monomers and dimers). Also, a significant difference between monomeric and dimeric forms (both MT2 and MT3) was not observed. This may suggest that dimer formation is not the key factor leading to the inactivation of Pt drugs.


Subject(s)
Metallothionein , Spectrometry, Fluorescence , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Metallothionein/metabolism , Metallothionein/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Spectrometry, Fluorescence/methods , Carboplatin/pharmacology , Oxaliplatin/pharmacology , Cisplatin/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/chemistry , Platinum/chemistry , Metallothionein 3 , Cytostatic Agents/pharmacology , Cytostatic Agents/chemistry , Mass Spectrometry/methods , Humans
5.
Int J Mol Sci ; 25(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674139

ABSTRACT

The role of metalloproteinases (MMPs) in hematological malignancies, like acute myeloid leukemia (AML), myelodysplastic neoplasms (MDS), and multiple myeloma (MM), is well-documented, and these pathologies remain with poor outcomes despite treatment advancements. In this study, we investigated the effects of batimastat (BB-94), an MMP inhibitor (MMPi), in single-administration and daily administration schemes in AML, MDS, and MM cell lines. We used four hematologic neoplasia cell lines: the HL-60 and NB-4 cells as AML models, the F36-P cells as an MDS model, and the H929 cells as a model of MM. We also tested batimastat toxicity in a normal human lymphocyte cell line (IMC cells). BB-94 decreases cell viability and density in a dose-, time-, administration-scheme-, and cell-line-dependent manner, with the AML cells displaying higher responses. The efficacy in inducing apoptosis and cell cycle arrests is dependent on the cell line (higher effects in AML cells), especially with lower daily doses, which may mitigate treatment toxicity. Furthermore, BB-94 activated apoptosis via caspases and ERK1/2 pathways. These findings highlight batimastat's therapeutic potential in hematological malignancies, with daily dosing emerging as a strategy to minimize adverse effects.


Subject(s)
Apoptosis , Hematologic Neoplasms , Phenylalanine/analogs & derivatives , Thiophenes , Humans , Apoptosis/drug effects , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Cytostatic Agents/pharmacology , Cell Proliferation/drug effects , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , HL-60 Cells , Matrix Metalloproteinase Inhibitors/pharmacology , Cell Cycle Checkpoints/drug effects , MAP Kinase Signaling System/drug effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology
6.
Carbohydr Polym ; 336: 122129, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38670770

ABSTRACT

Hyaluronan, a linear glycosaminoglycan comprising D-N-acetylglucosamine and D-glucuronic acid, is the main component of the extracellular matrix. Its influence on cell proliferation, migration, inflammation, signalling, and other functions, depends heavily on its molecular weight and chemical modification. Unsaturated HA oligosaccharides are available in defined length and purity. Their potential therapeutic utility can be further improved by chemical modification, e. g., reduction. No synthesis of such modified oligosaccharides, either stepwise or by hyaluronan cleavage, has been reported yet. Here we show a three-step synthesis (esterification, depolymerization and reduction) of unsaturated even numbered hyaluronan oligosaccharides with carboxylates and the reducing terminus reduced to an alcohol. Particular oligosaccharides were synthesised. The modified oligosaccharides are not cleaved by mammalian or bacterial hyaluronidase and do not affect the growth of mouse and human fibroblasts. Further, MTT and NRU viability tests showed that they inhibit the growth of human colon carcinoma cells HT-29 by 20-50 % in concentrations 500-1000 µg/mL. Interestingly, this effect takes place regardless of CD44 receptor expression and was not observed with unmodified HA oligosaccharides. These compounds could serve as enzymatically stable building blocks for biologically active substances.


Subject(s)
Cell Proliferation , Cytostatic Agents , Hyaluronic Acid , Hyaluronoglucosaminidase , Oligosaccharides , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Humans , Oligosaccharides/chemistry , Oligosaccharides/pharmacology , Animals , Mice , Cell Proliferation/drug effects , Hyaluronoglucosaminidase/metabolism , Hyaluronoglucosaminidase/antagonists & inhibitors , Cytostatic Agents/pharmacology , Cytostatic Agents/chemistry , Cytostatic Agents/chemical synthesis , HT29 Cells , Hyaluronan Receptors/metabolism , Fibroblasts/drug effects
7.
Microb Cell Fact ; 23(1): 82, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38481270

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is one of the most commonly diagnosed cancers, posing a serious public health challenge that necessitates the development of new therapeutics, therapies, and prevention methods. Among the various therapeutic approaches, interventions involving lactic acid bacteria (LAB) as probiotics and postbiotics have emerged as promising candidates for treating and preventing CRC. While human-isolated LAB strains are considered highly favorable, those sourced from environmental reservoirs such as dairy and fermented foods are also being recognized as potential sources for future therapeutics. RESULTS: In this study, we present a novel and therapeutically promising strain, Lactococcus lactis ssp. lactis Lc4, isolated from dairy sources. Lc4 demonstrated the ability to release the cytostatic agent - arginine deiminase (ADI) - into the post-cultivation supernatant when cultured under conditions mimicking the human gut environment. Released arginine deiminase was able to significantly reduce the growth of HT-29 and HCT116 cells due to the depletion of arginine, which led to decreased levels of c-Myc, reduced phosphorylation of p70-S6 kinase, and cell cycle arrest. The ADI release and cytostatic properties were strain-dependent, as was evident from comparison to other L. lactis ssp. lactis strains. CONCLUSION: For the first time, we unveil the anti-proliferative properties of the L. lactis cell-free supernatant (CFS), which are independent of bacteriocins or other small molecules. We demonstrate that ADI, derived from a dairy-Generally Recognized As Safe (GRAS) strain of L. lactis, exhibits anti-proliferative activity on cell lines with different levels of argininosuccinate synthetase 1 (ASS1) expression. A unique feature of the Lc4 strain is also its capability to release ADI into the extracellular space. Taken together, we showcase L. lactis ADI and the Lc4 strain as promising, potential therapeutic agents with broad applicability.


Subject(s)
Cytostatic Agents , Lactococcus lactis , Humans , Cytostatic Agents/metabolism , Lactococcus lactis/metabolism , Hydrolases/metabolism , Cell Line, Tumor , Arginine
8.
Int J Mol Sci ; 25(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38473963

ABSTRACT

The protein p32 (C1QBP) is a multifunctional and multicompartmental homotrimer that is overexpressed in many cancer types, including colon cancer. High expression levels of C1QBP are negatively correlated with the survival of patients. Previously, we demonstrated that C1QBP is an essential promoter of migration, chemoresistance, clonogenic, and tumorigenic capacity in colon cancer cells. However, the mechanisms underlying these functions and the effects of specific C1QBP protein inhibitors remain unexplored. Here, we show that the specific pharmacological inhibition of C1QBP with the small molecule M36 significantly decreased the viability rate, clonogenic capacity, and proliferation rate of different colon cancer cell lines in a dose-dependent manner. The effects of the inhibitor of C1QBP were cytostatic and non-cytotoxic, inducing a decreased activation rate of critical pro-malignant and mitogenic cellular pathways such as Akt-mTOR and MAPK in RKO colon cancer cells. Additionally, treatment with M36 significantly affected the mitochondrial integrity and dynamics of malignant cells, indicating that p32/C1QBP plays an essential role in maintaining mitochondrial homeostasis. Altogether, our results reinforce that C1QBP is an important oncogene target and that M36 may be a promising therapeutic drug for the treatment of colon cancer.


Subject(s)
Colonic Neoplasms , Cytostatic Agents , Humans , Cytostatic Agents/pharmacology , Mitogens/pharmacology , Signal Transduction , Mitochondrial Proteins/metabolism , Cell Proliferation , Carrier Proteins/metabolism
9.
Molecules ; 29(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38543034

ABSTRACT

The emergence and spread of drug-resistant Plasmodium falciparum parasites shed a serious concern on the worldwide control of malaria, the most important tropical disease in terms of mortality and morbidity. This situation has led us to consider the use of peptide-alkoxyamine derivatives as new antiplasmodial prodrugs that could potentially be efficient in the fight against resistant malaria parasites. Indeed, the peptide tag of the prodrug has been designed to be hydrolysed by parasite digestive proteases to afford highly labile alkoxyamines drugs, which spontaneously and instantaneously homolyse into two free radicals, one of which is expected to be active against P. falciparum. Since the parasite enzymes should trigger the production of the active drug in the parasite's food vacuoles, our approach is summarized as "to dig its grave with its fork". However, despite promising sub-micromolar IC50 values in the classical chemosensitivity assay, more in-depth tests evidenced that the anti-parasite activity of these compounds could be due to their cytostatic activity rather than a truly anti-parasitic profile, demonstrating that the antiplasmodial activity cannot be based only on measuring antiproliferative activity. It is therefore imperative to distinguish, with appropriate tests, a genuinely parasiticidal activity from a cytostatic activity.


Subject(s)
Antimalarials , Cytostatic Agents , Malaria, Falciparum , Malaria , Humans , Antimalarials/chemistry , Cytostatic Agents/therapeutic use , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Plasmodium falciparum , Peptides/pharmacology , Peptides/therapeutic use
10.
Methods Cell Biol ; 181: 197-212, 2024.
Article in English | MEDLINE | ID: mdl-38302240

ABSTRACT

Cyclin-dependent kinase 4 (CDK4) and CDK6 inhibitors (i.e., palbociclib, abemaciclib, and ribociclib) are well known for their capacity to mediate cytostatic effects by promoting cell cycle arrest in the G1 phase, thus inhibiting cancer cell proliferation. Cytostatic effects induced by CDK4/6 inhibitors can be transient or lead to a permanent state of cell cycle arrest, commonly defined as cellular senescence. Induction of senescence is often associated to metabolic modifications and to the acquisition of a senescence-associated secretory phenotype (SASP) by cancer cells, which in turn can promote or limit antitumor immunity (and thus the efficacy of CDK4/6 inhibitors) depending on SASP components. Thus, although accumulating evidence suggests that anti-cancer effects of CDK4/6 inhibitors also depend on the promotion of antitumor immune responses, assessing cell cycle arrest and progression in cells treated with palbociclib remains a key approach for investigating the efficacy of CDK4/6 inhibitors. Here, we describe a method to assess cell cycle distribution simultaneously with active DNA replication by flow cytometry in cultured hormone receptor-positive breast cancer MCF7 cells.


Subject(s)
Breast Neoplasms , Cytostatic Agents , Humans , Female , Cytostatic Agents/pharmacology , Flow Cytometry , Protein Kinase Inhibitors/pharmacology , Cyclin-Dependent Kinase 6/metabolism , Cyclin-Dependent Kinase 6/pharmacology , Cell Cycle Checkpoints , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 4/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Cycle
11.
Int J Exp Pathol ; 105(2): 64-74, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38328944

ABSTRACT

Transforming growth factor (TGF)-ß and toll-like receptors (TLRs) have been shown to independently modulate the proliferation of hepatocellular carcinoma (HCC). Since a direct cross-talk between these two signalling pathways in HCC has not been clearly described before, we aimed here to explore the possibility of such interaction. A human HCC tissue array (n = 20 vs. four control samples), human HCC samples (n = 10) and steatohepatitis-driven murine HCC samples (control, NASH and HCC; n = 6/group) were immunostained for TGFßR1, pSMAD2, TRAF6, IRAK1 and PCNA. The results were confirmed by immunoblotting. Effects of constant activation of the SMAD pathway by constitutive expression of ALK5 or knockdown of mediators of TLR signalling, IRAK1 and MyD88, on HCC proliferation, were investigated in the HCC cell line (HUH-7) after treatment with TGFß1 cytokine or TGFßR1 kinase inhibitor (LY2157299) using PCNA and MTS assay. TGFßR1 expression is decreased in human and murine HCC and associated with downregulated pSMAD2, but increased IRAK1, TRAF6 and PCNA staining. TGFßR1 kinase inhibition abolished the cytostatic effects of TGFß1 and led to the induction of IRAK1, pIRAK1 and elevated mRNA levels of TLR-9. Overexpression of ALK5 and knockdown of MyD88 or IRAK1 augmented the cytostatic effects of TGFß1 on HUH-7. In another epithelial HCC cell line, that is, HepG2, TGFßR1 kinase inhibitor similarly elevated cellular proliferation. There is a balance between the canonical SMAD-driven tumour-suppressing arm and the non-canonical tumour-promoting arm of TGFß signalling. Disruption of this balance, by inhibition of the canonical pathway, induces HCC proliferation through TLR signalling.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Cytostatic Agents , Liver Neoplasms , Animals , Humans , Mice , Carcinoma, Hepatocellular/pathology , Cell Proliferation , Liver Neoplasms/pathology , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Proliferating Cell Nuclear Antigen/metabolism , TNF Receptor-Associated Factor 6/metabolism , Toll-Like Receptors/metabolism , Transforming Growth Factor beta/metabolism
12.
J Nat Prod ; 87(3): 567-575, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38349959

ABSTRACT

Many machine learning techniques are used as drug discovery tools with the intent to speed characterization by determining relationships between compound structure and biological function. However, particularly in anticancer drug discovery, these models often make only binary decisions about the biological activity for a narrow scope of drug targets. We present a feed-forward neural network, PECAN (Prediction Engine for the Cytostatic Activity of Natural product-like compounds), that simultaneously classifies the potential antiproliferative activity of compounds against 59 cancer cell lines. It predicts the activity to be one of six categories, indicating not only if activity is present but the degree of activity. Using an independent subset of NCI data as a test set, we show that PECAN can reach 60.1% accuracy in a six-way classification and present further evidence that it classifies based on useful structural features of compounds using a "within-one" measure that reaches 93.0% accuracy.


Subject(s)
Biological Products , Carya , Cytostatic Agents , Deep Learning , Neoplasms , Humans , Cytostatic Agents/pharmacology , Biological Products/pharmacology
13.
Food Res Int ; 176: 113798, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38163709

ABSTRACT

Camellia oleifera cake is a by-product, which is rich in functional chemical components. However, it is typically used as animal feed with no commercial value. The purpose of this study was to isolate and identify compounds from Camellia oleifera cake using a combination of foam fractionation and high-speed countercurrent chromatography (HSCCC) and to investigate their biological activities. Foam fractionation with enhanced drainage through a hollow regular decahedron (HRD) was first established for simultaneously enriching flavonoid glycosides and saponins for further separation of target compounds. Under suitable operating conditions, the introduction of HRD resulted in a threefold increase in enrichment ratio with no negative effect on recovery. A novel elution-extrusion countercurrent chromatography (EECCC) coupled with the consecutive injection mode was established for the successful simultaneous isolation of flavonoid glycosides and saponins. As a result, 38.7 mg of kaemferol-3-O-[2-O-D-glucopyranosyl-6-O-α-L-rhamnopyranosyl]-ß-D-glucopyranoside (purity of 98.17%, FI), 70.8 mg of kaemferol-3-O-[2-O-ß-D-xylopyranosyl-6-O-α-L-rhamnopyranosyl]-ß-D-glucopyranoside (purity of 97.52%, FII), and 560 mg of an oleanane-type saponin (purity of 92.32%, FIII) were separated from the sample (900 mg). The present study clearly showed that FI and II were natural antioxidants (IC50 < 35 µg/mL) without hemolytic effect. FIII displayed the effect of inhibiting Hela cell proliferation (IC50 < 30 µg/mL). Further erythrocyte experiments showed that this correlated with the extremely strong hemolytic effect of FIII. Overall, this study offers a potential strategy for efficient and green isolation of natural products, and is beneficial to further expanding the application of by-products (Camellia oleifera cake) in food, cosmetics, and pharmacy.


Subject(s)
Camellia , Cytostatic Agents , Saponins , Humans , Animals , Countercurrent Distribution/methods , Antioxidants/pharmacology , Cytostatic Agents/analysis , Camellia/chemistry , HeLa Cells , Glycosides/chemistry , Saponins/analysis , Flavonoids/analysis
14.
Cell Commun Signal ; 22(1): 30, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38212807

ABSTRACT

Glioblastoma is the most common and aggressive primary brain tumour in adults. The development of anti-brain cancer agents are challenged by the blood-brain barrier and the resistance conferred by the local tumour microenvironment. Heptamethine cyanine dyes (HMCDs) are a class of near-infrared fluorescence compounds that have recently emerged as promising agents for drug delivery. We conjugated palbociclib, a cyclin-dependent kinase (CDK) 4/6 inhibitor, to an HMCD, MHI-148, and conducted drug activity analysis on primary patient-derived glioblastoma cell lines. In addition to the expected cytostatic activity, our in vitro studies revealed that palbociclib-MHI-148 conjugate resulted in an almost 100-fold increase in cytotoxicity compared to palbociclib alone. This shift of palbociclib from cytostatic to cytotoxic when conjugated to MHI-148 was due to increased DNA damage, as indicated by an increase in γH2AX foci, followed by an increased expression of key extrinsic apoptosis genes, including TP53, TNFR1, TRAIL, FADD and caspase 8. In addition, we observed a time-dependent increase in the cell surface expression of TNFR1, consistent with an observed increase in the secretion TNFα, followed by TNFR1 endocytosis at 48 h. The treatment of patient GBM cells with the palbociclib-MHI-148 conjugate prevented TNFα-induced NFκB translocation, suggesting conjugate-induced TNFR1 signalling favoured the TNFR1-mediated apoptotic response rather than the pro-inflammatory response pathway. Notably, pharmacological inhibition of endocytosis of TNFR1, and siRNA-knockdown of TNFR1 reversed the palbociclib-MHI-148-induced cell death. These results show a novel susceptibility of glioblastoma cells to TNFR1-dependent apoptosis, dependent on inhibition of canonical NFκB signalling using our previously reported palbociclib-HMCD conjugate. Video Abstract.


Subject(s)
Antineoplastic Agents , Carbocyanines , Cytostatic Agents , Glioblastoma , Indoles , Piperazines , Pyridines , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Cell Line, Tumor , Cytostatic Agents/pharmacology , Cytostatic Agents/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/metabolism , Receptors, Tumor Necrosis Factor/physiology , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Microenvironment , Tumor Necrosis Factor-alpha/metabolism
15.
Nutrients ; 16(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38257176

ABSTRACT

BACKGROUND: Cancer and side effects from cytostatic treatment commonly affect nutritional status manifested as a decrease in muscle mass. We aimed to investigate the impact of nutrition and lifestyle-related factors on muscle mass in patients with hematological cancer. METHODS: Dietary intake, food preferences, quality of life (QoL), and physical activity level (PAL) were monitored during 1-2 cytostatic treatment series. Body composition was estimated using bioelectrical impedance analysis (BIA). RESULTS: 61 patients were included. Weight loss and loss of muscle mass were detected in 64% and 59% of the patients, respectively. Muscle mass was significantly positively correlated to increasing PAL (p = 0.003), while negatively correlated to increasing age (p = 0.03), physical QoL (p = 0.007), functional QoL (p = 0.05), self-perceived health (p = 0.004), and self-perceived QoL (p = 0.007). Weight was significantly positively correlated to increased intake of soft drinks (p = 0.02) as well as the favoring of bitter grain and cereal products (p = 0.03), while negatively correlated to increasing age (p = 0.03) and increasing meat intake (p = 0.009) Conclusions: Several nutritional and lifestyle-related factors affected change in body composition. The clinical significance of these changes should be investigated in controlled, interventional studies.


Subject(s)
Cytostatic Agents , Hematologic Neoplasms , Humans , Quality of Life , Nutritional Status , Muscular Atrophy , Life Style , Hematologic Neoplasms/complications , Edible Grain
16.
Radiologie (Heidelb) ; 64(1): 69-80, 2024 Jan.
Article in German | MEDLINE | ID: mdl-38189933

ABSTRACT

Immunotherapeutic agents and in particular immune checkpoint inhibitors (ICI) have opened up extensive new therapeutic possibilities in oncology over the last decade. For numerous entities these substances have improved the clinical outcome, sometimes as monotherapy but also in combination with cytostatic or targeted treatment. In routine clinical practice the type of radiological response often differs from what is seen under cytostatic treatment: a mixed response of individual lesions is more frequently observed and occasionally also a response after an initial progress (so-called pseudoprogression). Furthermore, there is a diverse spectrum of toxicity in the form of immune-related adverse events (irAE), which is observed in large temporal variability to the application. Therefore, early detection and rapid side effect management are essential.


Subject(s)
Cytostatic Agents , Neoplasms , Humans , Cytostatic Agents/therapeutic use , Neoplasms/therapy , Neoplasms/drug therapy , Immunologic Factors/therapeutic use , Medical Oncology , Immunotherapy/adverse effects , Immunotherapy/methods
17.
Cancer Res ; 84(8): 1333-1351, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38277141

ABSTRACT

Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors are approved for breast cancer treatment and show activity against other malignancies, including KRAS-mutant non-small cell lung cancer (NSCLC). However, the clinical efficacy of CDK4/6 inhibitors is limited due to frequent drug resistance and their largely cytostatic effects. Through a genome-wide cDNA screen, we identified that bromodomain-containing protein 4 (BRD4) overexpression conferred resistance to the CDK4/6 inhibitor palbociclib in KRAS-mutant NSCLC cells. Inhibition of BRD4, either by RNA interference or small-molecule inhibitors, synergized with palbociclib to induce senescence in NSCLC cells and tumors, and the combination prolonged survival in a KRAS-mutant NSCLC mouse model. Mechanistically, BRD4-inhibition enhanced cell-cycle arrest and reactive oxygen species (ROS) accumulation, both of which are necessary for senescence induction; this in turn elevated GPX4, a peroxidase that suppresses ROS-triggered ferroptosis. Consequently, GPX4 inhibitor treatment selectively induced ferroptotic cell death in the senescent cancer cells, resulting in tumor regression. Cotargeting CDK4/6 and BRD4 also promoted senescence and ferroptosis vulnerability in pancreatic and breast cancer cells. Together, these findings reveal therapeutic vulnerabilities and effective combinations to enhance the clinical utility of CDK4/6 inhibitors. SIGNIFICANCE: The combination of cytostatic CDK4/6 and BRD4 inhibitors induces senescent cancer cells that are primed for activation of ferroptotic cell death by targeting GPX4, providing an effective strategy for treating cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cytostatic Agents , Ferroptosis , Lung Neoplasms , Animals , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Cyclin-Dependent Kinase 4 , Nuclear Proteins/metabolism , Cytostatic Agents/therapeutic use , Proto-Oncogene Proteins p21(ras)/metabolism , Reactive Oxygen Species/metabolism , Lung Neoplasms/genetics , Cell Line, Tumor , Transcription Factors/metabolism , Cyclin-Dependent Kinase 6 , Protein Kinase Inhibitors/pharmacology
20.
Molecules ; 28(22)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38005248

ABSTRACT

Cytostatic and pro-apoptotic effects of selenium steroid derivatives against HeLa cells were determined. The highest cytostatic activity was shown by derivative 4 (GI50 25.0 µM, almost complete growth inhibition after three days of culture, and over 97% of apoptotic and dead cells at 200 µM). The results of our study (cell number measurements, apoptosis profile, relative expression of apoptosis-related APAF1, BID, and mevalonate pathway-involved HMGCR, SQLE, CYP51A1, and PDHB genes, and computational chemistry data) support the hypothesis that tested selenosteroids induce the extrinsic pathway of apoptosis by affecting the cell membrane as cholesterol antimetabolites. An additional mechanism of action is possible through a direct action of derivative 4 to inhibit PDHB expression in a way similar to steroid hormones.


Subject(s)
Cytostatic Agents , Humans , HeLa Cells , Cytostatic Agents/pharmacology , Apoptosis , Cholesterol/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...