Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Microb Cell Fact ; 23(1): 82, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38481270

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is one of the most commonly diagnosed cancers, posing a serious public health challenge that necessitates the development of new therapeutics, therapies, and prevention methods. Among the various therapeutic approaches, interventions involving lactic acid bacteria (LAB) as probiotics and postbiotics have emerged as promising candidates for treating and preventing CRC. While human-isolated LAB strains are considered highly favorable, those sourced from environmental reservoirs such as dairy and fermented foods are also being recognized as potential sources for future therapeutics. RESULTS: In this study, we present a novel and therapeutically promising strain, Lactococcus lactis ssp. lactis Lc4, isolated from dairy sources. Lc4 demonstrated the ability to release the cytostatic agent - arginine deiminase (ADI) - into the post-cultivation supernatant when cultured under conditions mimicking the human gut environment. Released arginine deiminase was able to significantly reduce the growth of HT-29 and HCT116 cells due to the depletion of arginine, which led to decreased levels of c-Myc, reduced phosphorylation of p70-S6 kinase, and cell cycle arrest. The ADI release and cytostatic properties were strain-dependent, as was evident from comparison to other L. lactis ssp. lactis strains. CONCLUSION: For the first time, we unveil the anti-proliferative properties of the L. lactis cell-free supernatant (CFS), which are independent of bacteriocins or other small molecules. We demonstrate that ADI, derived from a dairy-Generally Recognized As Safe (GRAS) strain of L. lactis, exhibits anti-proliferative activity on cell lines with different levels of argininosuccinate synthetase 1 (ASS1) expression. A unique feature of the Lc4 strain is also its capability to release ADI into the extracellular space. Taken together, we showcase L. lactis ADI and the Lc4 strain as promising, potential therapeutic agents with broad applicability.


Subject(s)
Cytostatic Agents , Lactococcus lactis , Humans , Cytostatic Agents/metabolism , Lactococcus lactis/metabolism , Hydrolases/metabolism , Cell Line, Tumor , Arginine
2.
An Acad Bras Cienc ; 94(suppl 4): e20211585, 2022.
Article in English | MEDLINE | ID: mdl-36515327

ABSTRACT

Different solvent extracts from Aphanothece halophytica (A. halophytica) were evaluated for their cytotoxic effects against four human cancer cell lines. The samples demonstrated different percentages of cyanobacteria species populations. The samples containing 100% A. halophytica and 90% A. halophytica showed a significant cytotoxic effect in human breast cancer cells MDA231. The cytostatic effect was demonstrated in MDA231 and human glioblastoma T98G cells regardless of the treatment, resulting in a significant cell cycle arrest in the S phase. The chemical profiles of the extracts were proven to be diverse in qualitative and quantitative compositions. This variability was dependent on the A. halophytica´s abundance in each extract. The 100% A. halophytica extract induced cytotoxic and cytostatic effects in breast cancer cells, and those could be associated with the predominance of fatty acids, hydrocarbons and phthalates, indicating that A. halophytica is an interesting source of novel compound with anticancer effect.


Subject(s)
Breast Neoplasms , Cyanobacteria , Cytostatic Agents , Humans , Female , Cytostatic Agents/pharmacology , Cytostatic Agents/metabolism , Cyanobacteria/metabolism
3.
Molecules ; 26(22)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34833934

ABSTRACT

The aim of this study was to evaluate the bioremoval of anthracycline antibiotics (daunomycin-DNR, doxorubicin-DOX, and mitoxantrone-MTX) by immobilized mycelium of B. adusta CCBAS 930. The activity of oxidoreductases: versatile peroxidases (VP), superoxide dismutase (SOD), catalase (CAT), and glucose oxidase (GOX), and the levels of phenolic compounds (PhC) and free radicals (SOR) were determined during the biotransformation of anthracyclines by B. adusta strain CCBAS 930. Moreover, the phytotoxicity (Lepidium sativum L.), biotoxicity (MARA assay), and genotoxicity of anthracyclines were evaluated after biological treatment. After 120 h, more than 90% of anthracyclines were removed by the immobilized mycelium of B. adusta CCBAS 930. The effective biotransformation of anthracyclines was correlated with detoxification and reduced genotoxicity.


Subject(s)
Anthracyclines/metabolism , Coriolaceae/metabolism , Cytostatic Agents/metabolism , Mycelium/metabolism , Biotransformation/physiology , Free Radicals/metabolism , Lepidium sativum/metabolism , Oxidoreductases/metabolism , Phenols/metabolism
4.
Sci Rep ; 10(1): 16906, 2020 10 09.
Article in English | MEDLINE | ID: mdl-33037285

ABSTRACT

ERBB2 is a ligand-less tyrosine kinase receptor expressed at very low levels in normal tissues; when overexpressed, it is involved in malignant transformation and tumorigenesis in several carcinomas. In cancer cells, ERBB2 represents the preferred partner of other members of the ERBB receptor family, leading to stronger oncogenic signals, by promoting both ERK and AKT activation. The identification of the specific signaling downstream of ERBB2 has been impaired by the lack of a ligand and of an efficient way to selectively activate the receptor. In this paper, we found that antibodies (Abs) targeting different epitopes on the ERBB2 extracellular domain foster the activation of ERBB2 homodimers, and surprisingly induce a unique cytostatic signaling cascade promoting an ERK-dependent ERBB2 Thr701 phosphorylation, leading to AKT de-phosphorylation, via PP2A Ser/Thr phosphatases. Furthermore, the immunophilin Cyclophilin A plays a crucial role in this pathway, acting as a negative modulator of AKT de-phosphorylation, possibly by competing with Ser/Thr phosphatases for binding to AKT. Altogether, our data show that Ab recognizing ERBB2 extracellular domain function as receptor agonists, promoting ERBB2 homodimer activation, leading to an anti-proliferative signaling. Thus, the ultimate outcome of ERBB2 activity might depend on the dimerization status: pro-oncogenic in the hetero-, and anti-oncogenic in the homo-dimeric form.


Subject(s)
Cytostatic Agents/metabolism , Phosphorylation/physiology , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, ErbB-2/immunology , Signal Transduction/physiology , Cell Line, Tumor , Cell Proliferation/physiology , Cell Transformation, Neoplastic/metabolism , Dimerization , Extracellular Signal-Regulated MAP Kinases , Humans , Proto-Oncogene Proteins c-akt/metabolism
5.
J Biosci Bioeng ; 127(2): 231-240, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30177486

ABSTRACT

Exopolysaccharides (EPSs) are high-molecular-weight carbohydrates with a wide range of biophysiological activities, such as antioxidant activity, immunostimulatory activity, antitumor activity, hepatoprotective activity, and antifatigue effects. In the present work, two water-soluble EPSs, namely, A14EPS-1 and A14EPS-2, were isolated and purified from the fungal endophytic strain A14 using ethanol precipitation, DEAE-cellulose ion exchange chromatography and Sepharose G-150 gel filtration chromatography. A14EPS-1 (∼2.4 × 104 Da, the major fraction) was mainly composed of mannose, rhamnose, glucose, galactose, xylose and arabinose with a molar ratio of 0.31:0.55:10.00:0.34:0.03:0.06. The major monosaccharide of A14EPS-1 was pyranose, which was connected by α-glycosidic linkages. And the side chains of A14EPS-1 may be composed of rhamnose, arabinose, glucose and galactose; moreover, the backbone of A14EPS-1 may be composed of rhamnose, xylose, arabinose and glucose. A14EPS-2 (∼0.5 × 104 Da) was mainly composed of mannose, rhamnose, glucose, galactose, xylose and arabinose in a ratio of 0.16:0.88:10.00:0.39:0.06:0.06. Pyranose was observed in both the α- and ß-configurations in A14EPS-2, and the α configuration was dominant. In addition, the results of the bioactivity assays indicated that both A14EPS-1 and A14EPS-2 had moderate antioxidant activity in vitro, and A14EPS-2 showed a moderate antiproliferation effect on human hepatocellular carcinoma HepG2 cells.


Subject(s)
Antioxidants/pharmacology , Cytostatic Agents/pharmacology , Fritillaria/microbiology , Fusarium/isolation & purification , Fusarium/metabolism , Polysaccharides/pharmacology , Antioxidants/metabolism , Carbohydrates/pharmacology , Cell Proliferation/drug effects , Chromatography, Gel , Chromatography, High Pressure Liquid , Cytostatic Agents/metabolism , Drug Screening Assays, Antitumor , Fusarium/chemistry , Glycosides/metabolism , Glycosides/pharmacology , Hep G2 Cells , Humans , Polysaccharides/chemistry , Polysaccharides/metabolism
6.
Int J Nanomedicine ; 13: 7971-7985, 2018.
Article in English | MEDLINE | ID: mdl-30538471

ABSTRACT

INTRODUCTION: Macrocrystalline oxides of alkaline earth metals (Mg and Ca) or light metals (Al and Ti) can respond to standard warfare agents such as sulfur mustard, soman, or agent VX. In this paper, we compared the decontamination ability of sodium hydroxide (NaOH) and sodium hypochlorite (NaClO) for nitrogen mustards (cyclophosphamide [CP] and ifosfamide [IFOS]) with a new procedure using a destructive sorbent based on nanocrystalline and nanodispersive titanium dioxide (TiO2) as a new efficient and cheap material for complete decontamination of surfaces. METHODS: Titanium (IV) dioxide nanoparticles were prepared by the homogeneous hydrolysis of titanium(IV) oxysulfate (TiOSO4) with urea. The as-prepared TiO2 nanoparticles were used for the fast and safe decontamination of cytostatics from the nitrogen mustard family (CP and IFOS) in water. The adsorption-degradation process of cytostatics in the presence of TiO2 was compared with decontamination agents (0.01 M solution of sodium hydroxide and 5% solution of sodium hypochlorite). The mechanism of the decontamination process and the degradation efficiency were determined by high-performance liquid chromatography with mass spectrometry. RESULTS: It was demonstrated that a 0.01 M solution of sodium hydroxide (NaOH) decomposes CP to 3-((amino(bis(2-chloroethyl)amino)phosphoryl)oxy)propanoic acid and sodium hypochlorite formed two reaction products, namely, IFOS and 4-hydroxy-cyclophosphamide. IFOS is cytotoxic, and 4-hydroxy-cyclophosphamide is a known metabolite of CP after its partial metabolism by CYP/CYP450. IFOS degrades in the pres¬ence of NaOH to toxic IFOS mustard. Titanium(IV) dioxide nanoparticles adsorbed on its surface CP after 5 minutes and on IFOS after 10 minutes. The adsorption-degradation process of CP in water and in the presence of TiO2 led to 4-hydroxy-cyclophosphamide and IFOS, respectively, which decayed to oxidation product 4-hydroxy-ifosfamide. CONCLUSION: Nanodispersive TiO2 is an effective degradation agent for decontamination of surfaces from cytostatics in medical facilities.


Subject(s)
Antineoplastic Agents, Alkylating/chemistry , Cyclophosphamide/chemistry , Cytostatic Agents/chemistry , Decontamination/methods , Ifosfamide/chemistry , Nanoparticles/chemistry , Titanium/chemistry , Antineoplastic Agents, Alkylating/metabolism , Cyclophosphamide/metabolism , Cytostatic Agents/metabolism , Humans , Ifosfamide/metabolism
7.
Recent Pat Anticancer Drug Discov ; 13(3): 378-385, 2018.
Article in English | MEDLINE | ID: mdl-29769012

ABSTRACT

BACKGROUND: Hydroxyurea (HU) is used to treat cancer. HU has a short half-life due to its small molecular weight and high polarity, therefore a high dosage of the drug should be used which introduces side effects and more rapid development of resistance. OBJECTIVE: The objective of the current study is to design new lipophilic analogues of hydroxyurea with higher stability and better cell penetration. The designed compounds were synthesized and then evaluated in terms of their cytostatic activities against two human cell lines. METHODS: The synthesis of designed ligands was achieved via two-step procedure. Detail of the synthesis and chemical characterization of the analogs are described. The cytotoxic activity of the designed ligands was evaluated in vitro against two different cancer cell lines at 24 and 48h using MTT test. RESULTS: Based on the IC50 values, all the designed and prepared compounds were more potent than hydroxyurea at 24 and 48h on both cell lines that the cytostatic activity at 48h was more than 24h. Drug-receptor interactions study indicated compound 7 as the most potent ligand, tightly bonded to surrounding amino acids in the active site of receptor via two strong hydrogen bonds and some hydrophobic interactions. CONCLUSION: Compound 7 with the suitable volume, log p and shape is the most active ligand against both cell lines. It is concluded or suggested that the size, shape and hydrophobic character of substituents strongly affect the pharmacodynamics and pharmacokinetics of these type of ligands.


Subject(s)
Computer Simulation , Cytostatic Agents/chemical synthesis , Hydroxyurea/chemical synthesis , Lipids/chemical synthesis , Cytostatic Agents/metabolism , HeLa Cells , Humans , Hydroxyurea/metabolism , Lipid Metabolism/physiology , Molecular Docking Simulation/methods
8.
Sci Rep ; 8(1): 3371, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29463873

ABSTRACT

For mutagenicity testing, primary lymphocytes or mammalian cell lines are employed. However, the true target for carcinogenic action of mutagenic chemicals may be stem cells. Since hematopoietic cancers induced by chemical agents originate at the hematopoietic stem cell (HSC) stage and since one of the side effects of chemotherapeutic cancer treatment is the induction of secondary tumors, often leukemias, HSC may be a suitable cell system. We compared the sensitivity of HSC with the genotoxicity testing cell line TK6 for chromosomal mutations. HSC were less sensitive than TK6 cells for the genotoxic effects of the model genotoxins and chemotherapeutic agents doxorubicin, vinblastine, methyl methanesulfonate (MMS) and equally sensitive for mitomycin C (MMC). However, loss of viability after mitomycin C treatment was higher in HSC than in TK6 cells. Among the factors that may influence sensitivity for genomic damage, the generation or response to reactive oxygen species (ROS) and the effectiveness of DNA damage response can be discussed. Here we show that HSC can be used in a standard micronucleus test protocol for chromosomal mutations and that their sensitivity was not higher than that of a classical testing cell line.


Subject(s)
Cell Nucleus/drug effects , Cytostatic Agents/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Lymphocytes/cytology , Lymphocytes/drug effects , Mutagens/metabolism , Cell Survival/drug effects , Chromosomes/drug effects , Humans , Mutation , Sensitivity and Specificity
9.
Biochem Biophys Res Commun ; 495(2): 1766-1768, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29233694

ABSTRACT

Colorectal carcinogenesis (CRC) is the most important health concerns throughout the World as the tumour cells rapidly spread and abruptly grow in colon and rectum to further organs. Several etiological factors are associated with colorectal carcinogenesis. During invasion and proliferation of tumour cells, various mechanistic molecular pathways are involved in the cells. Nitric Oxide pathway (NO) is one of the important cellular mechanisms associated with tumour cells initiation, invasion and progression. Epidemiological evidences suggest that NO has potential role in development of cancer. The multidisciplinary action of NO on the initiation of cancer depends on several factors including cell type, metastasis stage, and organs involved. This review emphasizes the biological significance of NO in each step of cancer metastasis, its controversial effects for carcinogenesis including initiation, invasion and progression.


Subject(s)
Colorectal Neoplasms/etiology , Colorectal Neoplasms/metabolism , Nitric Oxide/metabolism , Biomarkers, Tumor/metabolism , Carcinogenesis , Colorectal Neoplasms/prevention & control , Cytostatic Agents/metabolism , Disease Progression , Humans , Neoplasm Invasiveness , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
10.
J Biotechnol ; 221: 13-24, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26806490

ABSTRACT

Improving in vivo half-life and in vitro stability of protein-based therapeutics is a current challenge for the biopharmaceutical industry. In particular, recombinant human interferon alpha-2b (rhIFN-α2b), which belongs to a group of cytokines extensively used for the treatment of viral diseases and cancers, shows a poor stability in solution and an extremely short plasma half-life which determines a strict therapeutic regimen comprising high and repeated doses. In this work, we have used a strategy based on the fusion of the carboxyl-terminal peptide (CTP) of human chorionic gonadotropin (hCG) ß-subunit, bearing four O-linked oligosaccharide recognition sites, to each or both N- and C-terminal ends of rhIFN-α2b. Molecules containing from 5 (CTP-IFN and IFN-CTP) to 9 (CTP-IFN-CTP) O-glycosylation sites were efficiently expressed and secreted to CHO cells supernatants, and exhibited antiviral and antiproliferative bioactivities in vitro. Significant improvements in pharmacokinetics in rats were achieved through this approach, since the doubly CTP-modified IFN variant showed a 10-fold longer elimination half-life and a 19-fold decreased plasma apparent clearance compared to the wild-type cytokine. Moreover, CTP-IFN-CTP demonstrated a significant increase in in vitro thermal resistance and a higher stability against plasma protease inactivation, both features attributed to the stabilizing effects of the O-glycans provided by the CTP moiety. These results constitute the first report that postulates CTP as a tag for improving both the in vitro and in vivo stability of rhIFN-α2b which, in turn, would positively influence its in vivo bioactivity.


Subject(s)
Chorionic Gonadotropin, beta Subunit, Human/chemistry , Interferon-alpha/genetics , Peptide Fragments/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacokinetics , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacokinetics , CHO Cells , Cattle , Cell Line , Chorionic Gonadotropin, beta Subunit, Human/genetics , Cricetulus , Cytostatic Agents/metabolism , Cytostatic Agents/pharmacokinetics , Drug Stability , HEK293 Cells , Humans , Interferon-alpha/metabolism , Peptide Fragments/metabolism , Rats
11.
Electrophoresis ; 34(6): 801-8, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23400813

ABSTRACT

Cisplatin, carboplatin, and oxaliplatin represent three generations of platinum based drugs applied successfully for cancer treatment. As a consequence of the employment of platinum based cytostatics in the cancer treatment, it became necessary to study the mechanism of their action. Current accepted opinion is the formation of Pt-DNA adducts, but the mechanism of their formation is still unclear. Nanomaterials, as a progressively developing branch, can offer a tool for studying the interactions of these drugs with DNA. In this study, fluorescent CdTe quantum dots (QDs, λem = 525 nm) were employed to investigate the interactions of platinum cytostatics (cisplatin, carboplatin, and oxaliplatin) with DNA fragment (500 bp, c = 25 µg/mL). Primarily, the fluorescent behavior of QDs in the presence of platinum cytostatics was monitored and major differences in the interaction of QDs with tested drugs were observed. It was found that the presence of carboplatin (c = 0.25 mg/mL) had no significant influence on QDs fluorescence; however cisplatin and oxaliplatin quenched the fluorescence significantly (average decrease of 20%) at the same concentration. Subsequently, the amount of platinum incorporated in DNA was determined by QDs fluorescence quenching. Best results were reached using oxaliplatin (9.4% quenching). Linear trend (R(2) = 0.9811) was observed for DNA platinated by three different concentrations of oxaliplatin (0.250, 0.125, and 0.063 mg/mL). Correlation with differential pulse voltammetric measurements provided linear trend (R(2) = 0.9511). As a conclusion, especially in the case of oxaliplatin-DNA adducts, the quenching was the most significant compared to cisplatin and nonquenching carboplatin.


Subject(s)
Carboplatin/analysis , Cytostatic Agents/analysis , Cytostatic Agents/metabolism , DNA Adducts/analysis , Electrophoresis, Capillary/methods , Glutathione/chemistry , Organoplatinum Compounds/analysis , Quantum Dots , Carboplatin/metabolism , Cisplatin/analysis , Cisplatin/metabolism , DNA Adducts/chemistry , Electrochemistry/methods , Electrophoresis, Agar Gel/methods , Fluorescence , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/metabolism , Oxaliplatin
12.
Antimicrob Agents Chemother ; 57(1): 365-74, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23114754

ABSTRACT

The 9-epimers of quinine (QN) and quinidine (QD) are known to exhibit poor cytostatic potency against P. falciparum (Karle JM, Karle IL, Gerena L, Milhous WK, Antimicrob. Agents Chemother. 36:1538-1544, 1992). We synthesized 9-epi-QN (eQN) and 9-epi-QD (eQD) via Mitsunobu esterification-saponification and evaluated both cytostatic and cytocidal antimalarial activities. Relative to the cytostatic activity of QN and QD, we observed a large decrease in cytostatic activity (higher 50% inhibitory concentration [IC(50)s]) against QN-sensitive strain HB3, QN-resistant strain Dd2, and QN-hypersensitive strain K76I, consistent with previous work. However, we observed relatively small changes in cytocidal activity (the 50% lethal dose), similar to observations with chloroquine (CQ) analogues with a wide range of IC(50)s (see the accompanying paper [A. P. Gorka, J. N. Alumasa, K. S. Sherlach, L. M. Jacobs, K. B. Nickley, J. P. Brower, A. C. de Dios, and P. D. Roepe, Antimicrob. Agents Chemother. 57:356-364, 2013]). Compared to QN and QD, the 9-epimers had significantly reduced hemozoin inhibition efficiency and did not affect pH-dependent aggregation of ferriprotoporphyrin IX (FPIX) heme. Magnetic susceptibility measurements showed that the 9-epimers perturb FPIX monomer-dimer equilibrium in favor of monomer, and UV-visible (VIS) titrations showed that eQN and eQD bind monomer with similar affinity relative to QN and QD. However, unique ring proton shifts in the presence of zinc(II) protoporphyrin IX (ZnPIX) indicate that binding of the 9-epimers to monomeric heme is via a distinct geometry. We isolated eQN- and eQD-FPIX complexes formed under aqueous conditions and analyzed them by mass, fluorescence, and UV-VIS spectroscopies. The 9-epimers produced low-fluorescent adducts with a 2:1 stoichiometry (drug to FPIX) which did not survive electrospray ionization, in contrast to QN and QD complexes. The data offer important insight into the relevance of heme interactions as a drug target for cytostatic versus cytocidal dosages of quinoline antimalarial drugs and further elucidate a surprising structural diversity of quinoline antimalarial drug-heme complexes.


Subject(s)
Antimalarials/pharmacology , Cytostatic Agents/pharmacology , Cytotoxins/pharmacology , Erythrocytes/drug effects , Heme/chemistry , Hemeproteins/chemistry , Plasmodium falciparum/drug effects , Quinidine/pharmacology , Quinine/pharmacology , Antimalarials/metabolism , Cells, Cultured , Crystallization , Cytostatic Agents/metabolism , Cytotoxins/metabolism , Erythrocytes/parasitology , Hemeproteins/antagonists & inhibitors , Humans , Hydrogen-Ion Concentration , Inhibitory Concentration 50 , Kinetics , Mass Spectrometry , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Quinidine/analogs & derivatives , Quinidine/metabolism , Quinine/analogs & derivatives , Quinine/metabolism , Spectrometry, Fluorescence
13.
Antimicrob Agents Chemother ; 57(1): 356-64, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23114783

ABSTRACT

We report an improved, nonhazardous, high-throughput assay for in vitro quantification of antimalarial drug inhibition of ß-hematin (hemozoin) crystallization performed under conditions that are more physiological relative to previous assays. The assay uses the differential detergent solubility of crystalline and noncrystalline forms of heme and is optimized via the use of lipid catalyst. Using this assay, we quantify the effect of pH on the crystal growth-inhibitory activities of current quinoline antimalarials, evaluate the catalytic efficiencies of different lipids, and test for a possible correlation between hemozoin inhibition by drugs versus their antiplasmodial activity. Consistent with several previous reports, we found a good correlation between hemozoin inhibition potency versus cytostatic antiplasmodial potency (50% inhibitory concentration) for a series of chloroquine (CQ) analogues. However, we found no correlation between hemozoin inhibition potency and cytocidal antiplasmodial potency (50% lethal dose) for the same drugs, suggesting that cellular targets for these two layers of 4-aminoquinoline drug activity differ. This important concept is also explored further for QN and its stereoisomers in the accompanying paper (A. P. Gorka, K. S. Sherlach, A. C. de Dios, and P. D. Roepe, Antimicrob. Agents Chemother. 57:365-374, 2013).


Subject(s)
Antimalarials/pharmacology , Chloroquine/pharmacology , Cytostatic Agents/pharmacology , Cytotoxins/pharmacology , Erythrocytes/drug effects , Heme/chemistry , Hemeproteins/chemistry , Plasmodium falciparum/drug effects , Antimalarials/metabolism , Cells, Cultured , Chloroquine/analogs & derivatives , Chloroquine/metabolism , Crystallization , Cytostatic Agents/metabolism , Cytotoxins/metabolism , Erythrocytes/parasitology , Hemeproteins/antagonists & inhibitors , Humans , Inhibitory Concentration 50 , Kinetics , Phospholipids/chemistry , Phospholipids/pharmacology , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism
15.
Mol Pharm ; 8(5): 1698-708, 2011 Oct 03.
Article in English | MEDLINE | ID: mdl-21851097

ABSTRACT

Resistance against anticancer drugs remains a serious obstacle in cancer treatment. Here we used novel strategies to target microsomal glutathione transferase 1 (MGST1) and glutathione transferase pi (GSTP) that are often overexpressed in tumors and confer resistance against a number of cytostatic drugs, including cisplatin and doxorubicin (DOX). By synthetically combining cisplatin with a GST inhibitor, ethacrynic acid, to form ethacraplatin, it was previously shown that cytosolic GST inhibition was improved and that cells became more sensitive to cisplatin. Here we show that ethacraplatin is easily taken up by the cells and can reverse cisplatin resistance in MGST1 overexpressing MCF7 cells. A second and novel strategy to overcome GST mediated resistance involves using GST releasable cytostatic drugs. Here we synthesized two derivatives of DOX, 2,4-dinitrobenzenesulfonyl doxorubicin (DNS-DOX) and 4-mononitrobenzenesulfonyl doxorubicin (MNS-DOX) and showed that they are substrates for MGST1 and GSTP (releasing DOX). MGST1 overexpressing cells are resistant to DOX. The resistance is partially reversed by DNS-DOX. Interestingly, the less reactive MNS-DOX was more cytotoxic to cells overexpressing MGST1 than control cells. It would appear that, by controlling the reactivity of the prodrug, and thereby the DOX release rate, selective toxicity to MGST1 overexpressing cells can be achieved. In the case of V79 cells, DOX resistance proportional to GSTP expression levels was noted. In this case, not only was drug resistance eliminated by DNS-DOX but a striking GSTP-dependent increase in toxicity was observed in the clonogenic assay. In summary, MGST1 and GSTP resistance to cytostatic drugs can be overcome and cytotoxicity can be enhanced in GST overexpressing cells.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Drug Design , Drug Resistance, Neoplasm , Glutathione S-Transferase pi/metabolism , Glutathione Transferase/metabolism , Neoplasm Proteins/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Breast Neoplasms/enzymology , Breast Neoplasms/metabolism , Cell Line , Cell Line, Tumor , Cisplatin/analogs & derivatives , Cisplatin/metabolism , Cisplatin/pharmacology , Cricetinae , Cricetulus , Cytostatic Agents/chemistry , Cytostatic Agents/metabolism , Cytostatic Agents/pharmacology , Doxorubicin/analogs & derivatives , Doxorubicin/metabolism , Doxorubicin/pharmacology , Ethacrynic Acid/analogs & derivatives , Ethacrynic Acid/chemistry , Ethacrynic Acid/metabolism , Ethacrynic Acid/pharmacology , Female , Glutathione S-Transferase pi/genetics , Glutathione Transferase/genetics , Humans , Neoplasm Proteins/genetics , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/metabolism , Organoplatinum Compounds/pharmacology , Prodrugs/chemistry , Prodrugs/metabolism , Prodrugs/pharmacology , Rats , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity
16.
J Am Chem Soc ; 133(18): 6874-7, 2011 May 11.
Article in English | MEDLINE | ID: mdl-21486063

ABSTRACT

Carbon nanotubes (CNTs) have emerged as a new alternative and efficient tool for transporting molecules with biotechnological and biomedical applications, because of their remarkable physicochemical properties. Encapsulation of functional molecules into the hollow chambers of CNTs can not only stabilize encapsulated molecules but also generate new nanodevices. In this work, we have demonstrated that CNTs can function as controllable carriers to transport small-molecule compounds (SMCs) loaded inside their hollow tunnels onto targeted cells. Using indole as model compound, CNTs can protect indole molecules during transportation. Labeling indole-loaded CNTs (indole@CNTs) with EphB4-binding peptides generates cell-homing indole@CNTs (CIDs). CIDs can selectively target EphB4-expressing cells and release indole onto cell surfaces by near-infrared (NIR) irradiation. Released indole molecules exhibit significant cell-killing effects without causing local overheating. This establishes CNTs as excellent near-infrared controllable delivery vehicles for SMCs as selective cell-killing agents.


Subject(s)
Cytostatic Agents/administration & dosage , Drug Carriers/administration & dosage , Nanotubes, Carbon , Cytostatic Agents/chemistry , Cytostatic Agents/metabolism , Drug Carriers/chemistry , Drug Carriers/metabolism , HeLa Cells , Humans , Indoles/administration & dosage , Indoles/metabolism , Peptides/administration & dosage , Peptides/chemistry , Peptides/metabolism , Receptor, EphB4/administration & dosage , Receptor, EphB4/chemistry , Receptor, EphB4/metabolism , Spectroscopy, Fourier Transform Infrared , Spectroscopy, Near-Infrared , Spectrum Analysis, Raman
17.
Aging (Albany NY) ; 2(8): 461-70, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20693605

ABSTRACT

We recently found that lithocholic acid (LCA), a bile acid, extends yeast longevity. Unlike mammals, yeast do not synthesize bile acids. We therefore propose that bile acids released into the environment by mammals may act as interspecies chemical signals providing longevity benefits to yeast and, perhaps, other species within an ecosystem.


Subject(s)
Ecosystem , Lithocholic Acid , Longevity , Mammals , Animals , Caloric Restriction , Cyclic AMP-Dependent Protein Kinases/metabolism , Cytostatic Agents/metabolism , Longevity/physiology , Mammals/physiology , Mitochondria/physiology , Signal Transduction/physiology , Sirolimus/metabolism , TOR Serine-Threonine Kinases/metabolism , Xenobiotics/metabolism , Yeasts/physiology
18.
J Control Release ; 140(1): 18-26, 2009 Nov 16.
Article in English | MEDLINE | ID: mdl-19632282

ABSTRACT

Synthesis, physicochemical and biological properties and preliminary anticancer activity of new star-shaped polymer-doxorubicin (DOX) conjugates targeted with anti-CD20 monoclonal antibody were investigated. Mild reduction of antibody (Ab) with dithiothreitol (DTT) resulted in introduction of thiol groups into Ab. Polymer precursors used for the synthesis of the conjugates were based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers with a functional group at the polymer chain end. The copolymers were linked to the thiol groups of the reduced Ab via one-point attachment forming a star-shaped structure with central antibody surrounded by hydrophilic polymer chains. Neither reduction nor polymer modification of Ab influenced binding activity of the Ab to its specific cancer cell membrane antigen as it was confirmed in vitro by standard flow cytometry. The anticancer drug DOX was attached to the HPMA copolymer chain in an Ab-polymer system via a pH-labile hydrazone linkage or via an oligopeptide sequence degradable by lysosomal enzymes. Such Ab-polymer-DOX conjugates were fairly stable in aqueous solution at pH 7.4 and the drug was readily released in mildly acid environment at pH 5-5.5 by hydrolysis of hydrazone bond or more slowly by enzymolysis with lysosomal enzymes. The cytostatic activity of the anti-CD20 monoclonal Ab-targeted conjugates tested on several CD20-positive or negative human and mouse cancer cell lines confirmed considerable targeting capacity of the monoclonal Ab after its binding to the polymer carrier. New method of synthesis of star antibody-targeted polymer-drug conjugates with pH-controlled drug release described in this paper opens new perspectives for development of new therapeutics intended for cancer therapy.


Subject(s)
Cytostatic Agents/metabolism , Drug Carriers/chemical synthesis , Drug Delivery Systems , Methacrylates/chemistry , Polymers/chemistry , Acrylamides/chemistry , Animals , Antibiotics, Antineoplastic/chemistry , Antibodies, Monoclonal/immunology , Burkitt Lymphoma/drug therapy , Burkitt Lymphoma/metabolism , Cell Line, Tumor , Doxorubicin/chemistry , Drug Carriers/chemistry , Drug Evaluation, Preclinical , Humans , Hydrogen-Ion Concentration , Lymphoma, T-Cell/drug therapy , Lymphoma, T-Cell/metabolism , Male , Mice , Models, Chemical , Molecular Weight , Solubility , Water/chemistry
19.
J Immunotoxicol ; 6(3): 174-83, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19552622

ABSTRACT

Here, we report the results of proteomic analysis of the mouse thymoma EL4 cell line exposed to bis(tri-n-butylin)oxide (TBTO), an immunotoxic organotin compound. The objective of the work was to examine whether TBTO affects the expression of proteins in this cell line and to compare the differentially expressed proteins with the corresponding mRNA expression data. The identified proteins were quantified using a label-free quantitative method based on counting the observed peptides as an index of protein abundance. The calculation of the ratio of peptides obtained from exposed and control samples allowed us to evaluate the effect of TBTO on protein expression and to compare these results to those obtained in gene expression profiling studies. Correlation of some of the differentially expressed proteins and their corresponding mRNAs was observed. The analysis of the protein ratios revealed that 12 proteins were significantly affected. These proteins included cytoskeleton proteins myosin-9, spectrin beta 2 and plectin 8. The first two proteins were down-regulated 3-fold, whereas the third was up-regulated 2-fold. Ras-related Rab1, a GTP binding protein and T-complex protein-1 subunit alpha, a chaperonin, were decreased 2- and 3.6-fold, respectively. The ribosomal S10 and eukaryotic translation factor (eIf4G1), which are involved in protein synthesis, were down-regulated 2.6- and 3.7-fold, respectively. Also, proteins involved in splicing of pre-mRNA and in transcription, splicing factor arginine/serine-rich 2 and chromodomain-helicase-DNA binding protein 4 (Chd4), were decreased 2.6- and 4.5 times, respectively. Nuclear RNA helicase II was reduced 2.8-fold. Finally, prothymosin-alpha (ProTalpha), an essential protein for cell proliferation, and a protein similar to ProTalpha, (with a molecular weight and a pI (3.54) comparable to that of ProTalpha) were also down-regulated 6-and 8-fold, respectively. We propose that the observed down-regulation of the expression level of ProTalpha in the TBTO-exposed cells could account for the previously reported anti-proliferative effect of TBTO.


Subject(s)
Cytostatic Agents/metabolism , Proteomics , Thymoma/metabolism , Toxicogenetics , Trialkyltin Compounds/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Chaperonin Containing TCP-1/genetics , Chaperonin Containing TCP-1/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , Eukaryotic Initiation Factor-4G , Gene Expression Profiling , Mice , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Peptide Fragments/genetics , Peptide Fragments/metabolism , Peptide Initiation Factors/genetics , Peptide Initiation Factors/metabolism , Protein Precursors/genetics , Protein Precursors/metabolism , RNA Helicases/genetics , RNA Helicases/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Serine-Arginine Splicing Factors , Thymoma/genetics , Thymoma/pathology , Thymosin/analogs & derivatives , Thymosin/genetics , Thymosin/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab1 GTP-Binding Proteins/genetics , rab1 GTP-Binding Proteins/metabolism
20.
Biomaterials ; 30(19): 3318-23, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19304319

ABSTRACT

Protein transduction domains (PTDs), such as HIV-derived Tat, have been successfully used as functional biomaterials for intracellular delivery of anti-cancer macromolecular drugs (protein, peptides, and oligonucleotides). Although there were therefore great expectations regarding the therapeutic potential of PTDs for the development of anti-cancer therapeutics, their clinical application so far has been extremely limited because of the relatively high concentrations required to mediate any effects on cancer cells in vitro or in vivo. In this context, improving the transduction efficiency of PTDs using phage display-based molecular evolution techniques may be useful for creating artificial PTDs with high efficiency and safety. Here, we report an evaluation of transduction efficiency and toxicity of such artificial PTDs (designated mT02 and mT03) compared with Tat. The internalization of mT02 was the most rapid and efficient by a mechanism different from the usual macropinocytosis. Furthermore, we found that artificial PTDs fused with survivin antagonistic peptide potentiate tumor cell-cytostatic activity. Thus, the results of this work provide new insights for designing new-generation peptide therapeutics for a wide variety of cancers as well as those expressing survivin.


Subject(s)
Peptides/metabolism , Protein Structure, Tertiary , Protein Transport/physiology , Transduction, Genetic/methods , Amino Acid Sequence , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Cell Line , Cytochalasin D/metabolism , Cytostatic Agents/metabolism , Drug Carriers/chemistry , Drug Carriers/metabolism , Drug Delivery Systems/methods , Humans , Molecular Sequence Data , Peptide Fragments/genetics , Peptide Fragments/metabolism , Peptides/genetics , Peptides/therapeutic use , Pinocytosis/physiology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/therapeutic use , beta-Cyclodextrins/metabolism , tat Gene Products, Human Immunodeficiency Virus/genetics , tat Gene Products, Human Immunodeficiency Virus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...