Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.783
Filter
1.
Elife ; 122024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856655

ABSTRACT

DNA gyrase, a ubiquitous bacterial enzyme, is a type IIA topoisomerase formed by heterotetramerisation of 2 GyrA subunits and 2 GyrB subunits, to form the active complex. DNA gyrase can loop DNA around the C-terminal domains (CTDs) of GyrA and pass one DNA duplex through a transient double-strand break (DSB) established in another duplex. This results in the conversion from a positive (+1) to a negative (-1) supercoil, thereby introducing negative supercoiling into the bacterial genome by steps of 2, an activity essential for DNA replication and transcription. The strong protein interface in the GyrA dimer must be broken to allow passage of the transported DNA segment and it is generally assumed that the interface is usually stable and only opens when DNA is transported, to prevent the introduction of deleterious DSBs in the genome. In this paper, we show that DNA gyrase can exchange its DNA-cleaving interfaces between two active heterotetramers. This so-called interface 'swapping' (IS) can occur within a few minutes in solution. We also show that bending of DNA by gyrase is essential for cleavage but not for DNA binding per se and favors IS. Interface swapping is also favored by DNA wrapping and an excess of GyrB. We suggest that proximity, promoted by GyrB oligomerization and binding and wrapping along a length of DNA, between two heterotetramers favors rapid interface swapping. This swapping does not require ATP, occurs in the presence of fluoroquinolones, and raises the possibility of non-homologous recombination solely through gyrase activity. The ability of gyrase to undergo interface swapping explains how gyrase heterodimers, containing a single active-site tyrosine, can carry out double-strand passage reactions and therefore suggests an alternative explanation to the recently proposed 'swivelling' mechanism for DNA gyrase (Gubaev et al., 2016).


Subject(s)
DNA Gyrase , DNA Gyrase/metabolism , DNA Gyrase/chemistry , DNA Gyrase/genetics , Protein Multimerization , DNA, Bacterial/metabolism , DNA, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli/enzymology , Escherichia coli/metabolism , DNA/metabolism , DNA/chemistry
2.
Biochem Biophys Res Commun ; 716: 150009, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38697010

ABSTRACT

The SOS response is a condition that occurs in bacterial cells after DNA damage. In this state, the bacterium is able to reсover the integrity of its genome. Due to the increased level of mutagenesis in cells during the repair of DNA double-strand breaks, the SOS response is also an important mechanism for bacterial adaptation to the antibiotics. One of the key proteins of the SOS response is the SMC-like protein RecN, which helps the RecA recombinase to find a homologous DNA template for repair. In this work, the localization of the recombinant RecN protein in living Escherichia coli cells was revealed using fluorescence microscopy. It has been shown that the RecN, outside the SOS response, is predominantly localized at the poles of the cell, and in dividing cells, also localized at the center. Using in vitro methods including fluorescence microscopy and optical tweezers, we show that RecN predominantly binds single-stranded DNA in an ATP-dependent manner. RecN has both intrinsic and single-stranded DNA-stimulated ATPase activity. The results of this work may be useful for better understanding of the SOS response mechanism and homologous recombination process.


Subject(s)
DNA, Bacterial , Escherichia coli , Microscopy, Fluorescence , Single Molecule Imaging , Microscopy, Fluorescence/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Single Molecule Imaging/methods , DNA, Bacterial/metabolism , DNA, Bacterial/genetics , SOS Response, Genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Protein Binding , Rec A Recombinases/metabolism , Rec A Recombinases/genetics , Optical Tweezers
3.
Commun Biol ; 7(1): 519, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698198

ABSTRACT

DNA replication is essential for the proliferation of all cells. Bacterial chromosomes are replicated bidirectionally from a single origin of replication, with replication proceeding at about 1000 bp per second. For the model organism, Escherichia coli, this translates into a replication time of about 40 min for its 4.6 Mb chromosome. Nevertheless, E. coli can propagate by overlapping replication cycles with a maximum short doubling time of 20 min. The fastest growing bacterium known, Vibrio natriegens, is able to replicate with a generation time of less than 10 min. It has a bipartite genome with chromosome sizes of 3.2 and 1.9 Mb. Is simultaneous replication from two origins a prerequisite for its rapid growth? We fused the two chromosomes of V. natriegens to create a strain carrying one chromosome with a single origin of replication. Compared to the parental, this strain showed no significant deviation in growth rate. This suggests that the split genome is not a prerequisite for rapid growth.


Subject(s)
Chromosomes, Bacterial , DNA Replication , Vibrio , Vibrio/genetics , Chromosomes, Bacterial/genetics , Genome, Bacterial , Replication Origin , DNA, Bacterial/genetics , DNA, Bacterial/metabolism
4.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38811160

ABSTRACT

A major pathway for horizontal gene transfer is the transmission of DNA from donor to recipient cells via plasmid-encoded type IV secretion systems (T4SSs). Many conjugative plasmids encode for a single-stranded DNA-binding protein (SSB) together with their T4SS. Some of these SSBs have been suggested to aid in establishing the plasmid in the recipient cell, but for many, their function remains unclear. Here, we characterize PrgE, a proposed SSB from the Enterococcus faecalis plasmid pCF10. We show that PrgE is not essential for conjugation. Structurally, it has the characteristic OB-fold of SSBs, but it has very unusual DNA-binding properties. Our DNA-bound structure shows that PrgE binds ssDNA like beads on a string supported by its N-terminal tail. In vitro studies highlight the plasticity of PrgE oligomerization and confirm the importance of the N-terminus. Unlike other SSBs, PrgE binds both double- and single-stranded DNA equally well. This shows that PrgE has a quaternary assembly and DNA-binding properties that are very different from the prototypical bacterial SSB, but also different from eukaryotic SSBs.


Subject(s)
Bacterial Proteins , DNA, Single-Stranded , DNA-Binding Proteins , Enterococcus faecalis , Plasmids , Plasmids/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Enterococcus faecalis/genetics , Enterococcus faecalis/metabolism , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Protein Binding , Conjugation, Genetic/genetics , Type IV Secretion Systems/genetics , Type IV Secretion Systems/metabolism , Models, Molecular , Gene Transfer, Horizontal , DNA, Bacterial/genetics , DNA, Bacterial/metabolism
5.
Proc Natl Acad Sci U S A ; 121(23): e2400667121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38758693

ABSTRACT

In the mid-1950s, Arthur Kornberg elucidated the enzymatic synthesis of DNA by DNA polymerase, for which he was recognized with the 1959 Nobel Prize in Physiology or Medicine. He then identified many of the proteins that cooperate with DNA polymerase to replicate duplex DNA of small bacteriophages. However, one major unanswered problem was understanding the mechanism and control of the initiation of chromosome replication in bacteria. In a seminal paper in 1981, Fuller, Kaguni, and Kornberg reported the development of a cell-free enzyme system that could replicate DNA that was dependent on the bacterial origin of DNA replication, oriC. This advance opened the door to a flurry of discoveries and important papers that elucidated the process and control of initiation of chromosome replication in bacteria.


Subject(s)
Chromosomes, Bacterial , DNA Replication , Chromosomes, Bacterial/genetics , Chromosomes, Bacterial/metabolism , History, 20th Century , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Bacteria/genetics , Bacteria/metabolism , DNA, Bacterial/metabolism , DNA, Bacterial/genetics
6.
Curr Opin Microbiol ; 79: 102485, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723344

ABSTRACT

The ParA/MinD (A/D) family of ATPases spatially organize an array of genetic- and protein-based cellular cargos across the bacterial and archaeal domains of life. By far, the two best-studied members, and family namesake, are ParA and MinD, involved in bacterial DNA segregation and divisome positioning, respectively. ParA and MinD make protein waves on the nucleoid or membrane to segregate chromosomes and position the divisome. Less studied is the growing list of A/D ATPases widespread across bacteria and implicated in the subcellular organization of diverse protein-based complexes and organelles involved in myriad biological processes, from metabolism to pathogenesis. Here we describe mechanistic commonality, variation, and coordination among the most widespread family of positioning ATPases used in the subcellular organization of disparate cargos across bacteria and archaea.


Subject(s)
Adenosine Triphosphatases , Archaea , Bacteria , Bacterial Proteins , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Archaea/genetics , Archaea/enzymology , Archaea/metabolism , Bacteria/genetics , Bacteria/enzymology , Bacteria/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Archaeal Proteins/metabolism , Archaeal Proteins/genetics , Chromosome Segregation
7.
Cell Mol Life Sci ; 81(1): 245, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814467

ABSTRACT

DNA replication is a tightly coordinated event carried out by a multiprotein replication complex. An essential factor in the bacterial replication complex is the ring-shaped DNA sliding clamp, ß-clamp, ensuring processive DNA replication and DNA repair through tethering of polymerases and DNA repair proteins to DNA. ß -clamp is a hub protein with multiple interaction partners all binding through a conserved clamp binding sequence motif. Due to its central role as a DNA scaffold protein, ß-clamp is an interesting target for antimicrobial drugs, yet little effort has been put into understanding the functional interactions of ß-clamp. In this review, we scrutinize the ß-clamp structure and dynamics, examine how its interactions with a plethora of binding partners are regulated through short linear binding motifs and discuss how contexts play into selection. We describe the dynamic process of clamp loading onto DNA and cover the recent advances in drug development targeting ß-clamp. Despite decades of research in ß-clamps and recent landmark structural insight, much remains undisclosed fostering an increased focus on this very central protein.


Subject(s)
Bacterial Proteins , DNA Replication , DNA, Bacterial , Drug Discovery , DNA, Bacterial/metabolism , DNA, Bacterial/chemistry , Drug Discovery/methods , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Protein Binding , DNA Polymerase III/metabolism , DNA Polymerase III/chemistry , Models, Molecular , Bacteria/metabolism , Bacteria/genetics , DNA Repair
8.
Bioorg Chem ; 148: 107451, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759357

ABSTRACT

Aminothiazolyl coumarins as potentially new antimicrobial agents were designed and synthesized in an effort to overcome drug resistance. Biological activity assay revealed that some target compounds exhibited significantly inhibitory efficiencies toward bacteria and fungi including drug-resistant pathogens. Especially, aminothiazolyl 7-propyl coumarin 8b and 4-dichlorobenzyl derivative 11b exhibited bactericidal potential (MBC/MIC = 2) toward clinically drug-resistant Enterococcus faecalis with low cytotoxicity to human lung adenocarcinoma A549 cells, rapidly bactericidal effects and no obvious bacterial resistance development against E. faecalis. The preliminary antibacterial action mechanism studies suggested that compound 11b was able to disturb E. faecalis membrane effectively, and interact with bacterial DNA isolated from resistant E. faecalis through noncovalent bonds to cleave DNA, thus inhibiting the growth of E. faecalis strain. Further molecular modeling indicated that compounds 8b and 11b could bind with SER-1084 and ASP-1083 residues of gyrase-DNA complex through hydrogen bonds and hydrophobic interactions. Moreover, compound 11b showed low hemolysis and in vivo toxicity. These findings of aminothiazolyl coumarins as unique structural scaffolds might hold a large promise for the treatments of drug-resistant bacterial infection.


Subject(s)
Anti-Bacterial Agents , Coumarins , Enterococcus faecalis , Microbial Sensitivity Tests , Enterococcus faecalis/drug effects , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , DNA, Bacterial/metabolism , A549 Cells , Hemolysis/drug effects
9.
Toxins (Basel) ; 16(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38787060

ABSTRACT

Recent discoveries establish DNA and RNA as bona fide substrates for ADP-ribosylation. NADAR ("NAD- and ADP-ribose"-associated) enzymes reverse guanine ADP-ribosylation and serve as antitoxins in the DarT-NADAR operon. Although NADARs are widespread across prokaryotes, eukaryotes, and viruses, their specificity and broader physiological roles remain poorly understood. Using phylogenetic and biochemical analyses, we further explore de-ADP-ribosylation activity and antitoxin functions of NADAR domains. We demonstrate that different subfamilies of NADAR proteins from representative E. coli strains and an E. coli-infecting phage retain biochemical activity while displaying specificity in providing protection from toxic guanine ADP-ribosylation in cells. Furthermore, we identify a myxobacterial enzyme within the YbiA subfamily that functions as an antitoxin for its associated DarT-unrelated ART toxin, which we termed YarT, thus presenting a hitherto uncharacterised ART-YbiA toxin-antitoxin pair. Our studies contribute to the burgeoning field of DNA ADP-ribosylation, supporting its physiological relevance within and beyond bacterial toxin-antitoxin systems. Notably, the specificity and confinement of NADARs to non-mammals infer their potential as highly specific targets for antimicrobial drugs with minimal off-target effects.


Subject(s)
ADP-Ribosylation , Escherichia coli , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Bacterial Toxins/metabolism , Adenosine Diphosphate Ribose/metabolism , Phylogeny , Toxin-Antitoxin Systems/genetics , DNA, Bacterial/metabolism , DNA, Bacterial/genetics , DNA/metabolism
10.
Nucleic Acids Res ; 52(9): 5195-5208, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38567730

ABSTRACT

Bacterial defence systems are tightly regulated to avoid autoimmunity. In Type I restriction-modification (R-M) systems, a specific mechanism called restriction alleviation (RA) controls the activity of the restriction module. In the case of the Escherichia coli Type I R-M system EcoKI, RA proceeds through ClpXP-mediated proteolysis of restriction complexes bound to non-methylated sites that appear after replication or reparation of host DNA. Here, we show that RA is also induced in the presence of plasmids carrying EcoKI recognition sites, a phenomenon we refer to as plasmid-induced RA. Further, we show that the anti-restriction behavior of plasmid-borne non-conjugative transposons such as Tn5053, previously attributed to their ardD loci, is due to plasmid-induced RA. Plasmids carrying both EcoKI and Chi sites induce RA in RecA- and RecBCD-dependent manner. However, inactivation of both RecA and RecBCD restores RA, indicating that there exists an alternative, RecA-independent, homologous recombination pathway that is blocked in the presence of RecBCD. Indeed, plasmid-induced RA in a RecBCD-deficient background does not depend on the presence of Chi sites. We propose that processing of random dsDNA breaks in plasmid DNA via homologous recombination generates non-methylated EcoKI sites, which attract EcoKI restriction complexes channeling them for ClpXP-mediated proteolysis.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Plasmids , Rec A Recombinases , Plasmids/genetics , Escherichia coli/genetics , Rec A Recombinases/metabolism , Rec A Recombinases/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Recombination, Genetic , Deoxyribonucleases, Type I Site-Specific/metabolism , Deoxyribonucleases, Type I Site-Specific/genetics , Endopeptidase Clp/metabolism , Endopeptidase Clp/genetics , Exodeoxyribonuclease V/metabolism , Exodeoxyribonuclease V/genetics , DNA, Bacterial/metabolism , DNA Transposable Elements/genetics , DNA Restriction Enzymes , DNA-Binding Proteins
11.
Nat Commun ; 15(1): 3460, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658616

ABSTRACT

DNA replication in bacteria takes place on highly compacted chromosomes, where segregation, transcription, and repair must occur simultaneously. Within this dynamic environment, colocalization of sister replisomes has been observed in many bacterial species, driving the hypothesis that a physical linker may tether them together. However, replisome splitting has also been reported in many of the same species, leaving the principles behind replisome organization a long-standing puzzle. Here, by tracking the replisome ß-clamp subunit in live Caulobacter crescentus, we find that rapid DNA segregation can give rise to a second focus which resembles a replisome, but does not replicate DNA. Sister replisomes can remain colocalized, or split apart to travel along DNA separately upon disruption of chromosome inter-arm alignment. Furthermore, chromosome arm-specific replication-transcription conflicts differentially modify replication speed on the two arms, facilitate the decoupling of the two replisomes. With these observations, we conclude that the dynamic chromosome organization flexibly shapes the organization of sister replisomes, and we outline principles which can help to reconcile previously conflicting models of replisome architecture.


Subject(s)
Bacterial Proteins , Caulobacter crescentus , Chromosomes, Bacterial , DNA Replication , Caulobacter crescentus/metabolism , Caulobacter crescentus/genetics , Chromosomes, Bacterial/metabolism , Chromosomes, Bacterial/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , DNA, Bacterial/metabolism , DNA, Bacterial/genetics , Chromosome Segregation
12.
Proc Natl Acad Sci U S A ; 121(18): e2319205121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38652748

ABSTRACT

The ParABS system is crucial for the faithful segregation and inheritance of many bacterial chromosomes and low-copy-number plasmids. However, despite extensive research, the spatiotemporal dynamics of the ATPase ParA and its connection to the dynamics and positioning of the ParB-coated cargo have remained unclear. In this study, we utilize high-throughput imaging, quantitative data analysis, and computational modeling to explore the in vivo dynamics of ParA and its interaction with ParB-coated plasmids and the nucleoid. As previously observed, we find that F-plasmid ParA undergoes collective migrations ("flips") between cell halves multiple times per cell cycle. We reveal that a constricting nucleoid is required for these migrations and that they are triggered by a plasmid crossing into the cell half with greater ParA. Using simulations, we show that these dynamics can be explained by the combination of nucleoid constriction and cooperative ParA binding to the DNA, in line with the behavior of other ParA proteins. We further show that these ParA flips act to equally partition plasmids between the two lobes of the constricted nucleoid and are therefore important for plasmid stability, especially in fast growth conditions for which the nucleoid constricts early in the cell cycle. Overall, our work identifies a second mode of action of the ParABS system and deepens our understanding of how this important segregation system functions.


Subject(s)
Escherichia coli , Plasmids , Plasmids/metabolism , Plasmids/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Chromosomes, Bacterial/metabolism , Chromosomes, Bacterial/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Chromosome Segregation , DNA Primase/metabolism , DNA Primase/genetics , DNA, Bacterial/genetics , DNA, Bacterial/metabolism
13.
Nat Microbiol ; 9(5): 1368-1381, 2024 May.
Article in English | MEDLINE | ID: mdl-38622379

ABSTRACT

Two prokaryotic defence systems, prokaryotic Argonautes (pAgos) and CRISPR-Cas, detect and cleave invader nucleic acids using complementary guides and the nuclease activities of pAgo or Cas proteins. However, not all pAgos are active nucleases. A large clade of short pAgos bind nucleic acid guides but lack nuclease activity, suggesting a different mechanism of action. Here we investigate short pAgos associated with a putative effector nuclease, NbaAgo from Novosphingopyxis baekryungensis and CmeAgo from Cupriavidus metallidurans. We show that these pAgos form a heterodimeric complex with co-encoded effector nucleases (short prokaryotic Argonaute, DNase and RNase associated (SPARDA)). RNA-guided target DNA recognition unleashes the nuclease activity of SPARDA leading to indiscriminate collateral cleavage of DNA and RNA. Activation of SPARDA by plasmids or phages results in degradation of cellular DNA and cell death or dormancy, conferring target-specific population protection and expanding the range of known prokaryotic immune systems.


Subject(s)
Argonaute Proteins , Bacterial Proteins , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , CRISPR-Cas Systems , Deoxyribonucleases/metabolism , Deoxyribonucleases/genetics , Deoxyribonucleases/chemistry , Plasmids/genetics , Plasmids/metabolism , Bacteriophages/genetics , Bacteriophages/metabolism , DNA, Bacterial/metabolism , DNA, Bacterial/genetics , DNA/metabolism , DNA/genetics
14.
Nucleic Acids Res ; 52(8): 4456-4465, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38572752

ABSTRACT

The DNA-binding protein from starved cells (Dps) plays a crucial role in maintaining bacterial cell viability during periods of stress. Dps is a nucleoid-associated protein that interacts with DNA to create biomolecular condensates in live bacteria. Purified Dps protein can also rapidly form large complexes when combined with DNA in vitro. However, the mechanism that allows these complexes to nucleate on DNA remains unclear. Here, we examine how DNA topology influences the formation of Dps-DNA complexes. We find that DNA supercoils offer the most preferred template for the nucleation of condensed Dps structures. More generally, bridging contacts between different regions of DNA can facilitate the nucleation of condensed Dps structures. In contrast, Dps shows little affinity for stretched linear DNA before it is relaxed. Once DNA is condensed, Dps forms a stable complex that can form inter-strand contacts with nearby DNA, even without free Dps present in solution. Taken together, our results establish the important role played by bridging contacts between DNA strands in nucleating and stabilizing Dps complexes.


Subject(s)
DNA, Bacterial , DNA-Binding Proteins , Escherichia coli Proteins , Escherichia coli , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , DNA, Bacterial/metabolism , DNA, Bacterial/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/chemistry , DNA, Superhelical/chemistry , DNA, Superhelical/metabolism , Protein Binding , Nucleic Acid Conformation , DNA/chemistry , DNA/metabolism
16.
J Biol Chem ; 300(5): 107275, 2024 May.
Article in English | MEDLINE | ID: mdl-38588814

ABSTRACT

DNA replication in Escherichia coli starts with loading of the replicative helicase, DnaB, onto DNA. This reaction requires the DnaC loader protein, which forms a 6:6 complex with DnaB and opens a channel in the DnaB hexamer through which single-stranded DNA is thought to pass. During replication, replisomes frequently encounter DNA damage and nucleoprotein complexes that can lead to replication fork collapse. Such events require DnaB re-loading onto DNA to allow replication to continue. Replication restart proteins mediate this process by recruiting DnaB6/DnaC6 to abandoned DNA replication forks. Several dnaC mutations that bypass the requirement for replication restart proteins or that block replication restart have been identified in E. coli. To better understand how these DnaC variants function, we have purified and characterized the protein products of several such alleles. Unlike wild-type DnaC, three of the variants (DnaC 809, DnaC 809,820, and DnaC 811) can load DnaB onto replication forks bound by single-stranded DNA-binding protein. DnaC 809 can also load DnaB onto double-stranded DNA. These results suggest that structural changes in the variant DnaB6/DnaC6 complexes expand the range of DNA substrates that can be used for DnaB loading, obviating the need for the existing replication restart pathways. The protein product of dnaC1331, which phenocopies deletion of the priB replication restart gene, blocks loading through the major restart pathway in vitro. Overall, the results of our study highlight the utility of bacterial DnaC variants as tools for probing the regulatory mechanisms that govern replicative helicase loading.


Subject(s)
DNA Replication , DnaB Helicases , Escherichia coli Proteins , Escherichia coli , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , Escherichia coli/metabolism , Escherichia coli/genetics , DnaB Helicases/metabolism , DnaB Helicases/genetics , DnaB Helicases/chemistry , DNA, Bacterial/metabolism , DNA, Bacterial/genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Mutation
17.
PLoS Biol ; 22(3): e3002540, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38466718

ABSTRACT

DNA methylation plays central roles in diverse cellular processes, ranging from error-correction during replication to regulation of bacterial defense mechanisms. Nevertheless, certain aberrant methylation modifications can have lethal consequences. The mechanisms by which bacteria detect and respond to such damage remain incompletely understood. Here, we discover a highly conserved but previously uncharacterized transcription factor (Cada2), which orchestrates a methylation-dependent adaptive response in Caulobacter. This response operates independently of the SOS response, governs the expression of genes crucial for direct repair, and is essential for surviving methylation-induced damage. Our molecular investigation of Cada2 reveals a cysteine methylation-dependent posttranslational modification (PTM) and mode of action distinct from its Escherichia coli counterpart, a trait conserved across all bacteria harboring a Cada2-like homolog instead. Extending across the bacterial kingdom, our findings support the notion of divergence and coevolution of adaptive response transcription factors and their corresponding sequence-specific DNA motifs. Despite this diversity, the ubiquitous prevalence of adaptive response regulators underscores the significance of a transcriptional switch, mediated by methylation PTM, in driving a specific and essential bacterial DNA damage response.


Subject(s)
Bacteria , DNA Methylation , Prevalence , Bacteria/genetics , DNA Methylation/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , DNA Repair , Protein Processing, Post-Translational , DNA Damage/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA, Bacterial/metabolism
18.
Nat Commun ; 15(1): 2737, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548820

ABSTRACT

Bacterial chromosomes are folded into tightly regulated three-dimensional structures to ensure proper transcription, replication, and segregation of the genetic information. Direct visualization of chromosomal shape within bacterial cells is hampered by cell-wall confinement and the optical diffraction limit. Here, we combine cell-shape manipulation strategies, high-resolution fluorescence microscopy techniques, and genetic engineering to visualize the shape of unconfined bacterial chromosome in real-time in live Bacillus subtilis cells that are expanded in volume. We show that the chromosomes predominantly exhibit crescent shapes with a non-uniform DNA density that is increased near the origin of replication (oriC). Additionally, we localized ParB and BsSMC proteins - the key drivers of chromosomal organization - along the contour of the crescent chromosome, showing the highest density near oriC. Opening of the BsSMC ring complex disrupted the crescent chromosome shape and instead yielded a torus shape. These findings help to understand the threedimensional organization of the chromosome and the main protein complexes that underlie its structure.


Subject(s)
Bacillus subtilis , Chromosome Segregation , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Chromosome Segregation/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Origin Recognition Complex/metabolism , DNA Replication/genetics , Chromosomes, Bacterial/genetics , Chromosomes, Bacterial/metabolism , DNA, Bacterial/metabolism , Replication Origin
19.
Biochem Soc Trans ; 52(2): 887-897, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38533838

ABSTRACT

Transcription termination has evolved to proceed through diverse mechanisms. For several classes of terminators, multiple models have been debatably proposed. Recent single-molecule studies on bacterial terminators have resolved several long-standing controversies. First, termination mode or outcome is twofold rather than single. RNA is released alone before DNA or together with DNA from RNA polymerase (RNAP), i.e. with RNA release for termination, RNAP retains on or dissociates off DNA, respectively. The concomitant release, described in textbooks, results in one-step decomposition of transcription complexes, and this 'decomposing termination' prevails at ρ factor-dependent terminators. Contrastingly, the sequential release was recently discovered abundantly from RNA hairpin-dependent intrinsic terminations. RNA-only release allows RNAP to diffuse on DNA in both directions and recycle for reinitiation. This 'recycling termination' enables one-dimensional reinitiation, which would be more expeditious than three-dimensional reinitiation by RNAP dissociated at decomposing termination. Second, while both recycling and decomposing terminations occur at a hairpin-dependent terminator, four termination mechanisms compatibly operate at a ρ-dependent terminator with ρ in alternative modes and even intrinsically without ρ. RNA-bound catch-up ρ mediates recycling termination first and decomposing termination later, while RNAP-prebound stand-by ρ invokes only decomposing termination slowly. Without ρ, decomposing termination occurs slightly and sluggishly. These four mechanisms operate on distinct timescales, providing orderly fail-safes. The stand-by mechanism is benefited by terminational pause prolongation and modulated by accompanying riboswitches more greatly than the catch-up mechanisms. Conclusively, any mechanism alone is insufficient to perfect termination, and multiple mechanisms operate compatibly to achieve maximum possible efficiency under separate controls.


Subject(s)
DNA-Directed RNA Polymerases , Transcription Termination, Genetic , DNA-Directed RNA Polymerases/metabolism , Transcription, Genetic , RNA, Bacterial/metabolism , RNA, Bacterial/genetics , Bacteria/genetics , Bacteria/metabolism , Terminator Regions, Genetic , Gene Expression Regulation, Bacterial , Eukaryotic Cells/metabolism , DNA, Bacterial/metabolism , Eukaryota/genetics , Eukaryota/metabolism
20.
Nat Commun ; 15(1): 2787, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555352

ABSTRACT

In all living cells, genomic DNA is compacted through interactions with dedicated proteins and/or the formation of plectonemic coils. In bacteria, DNA compaction is achieved dynamically, coordinated with dense and constantly changing transcriptional activity. H-NS, a major bacterial nucleoid structuring protein, is of special interest due to its interplay with RNA polymerase. H-NS:DNA nucleoprotein filaments inhibit transcription initiation by RNA polymerase. However, the discovery that genes silenced by H-NS can be activated by transcription originating from neighboring regions has suggested that elongating RNA polymerases can disassemble H-NS:DNA filaments. In this study, we present evidence that transcription-induced counter-silencing does not require transcription to reach the silenced gene; rather, it exerts its effect at a distance. Counter-silencing is suppressed by introducing a DNA gyrase binding site within the intervening segment, suggesting that the long-range effect results from transcription-driven positive DNA supercoils diffusing toward the silenced gene. We propose a model wherein H-NS:DNA complexes form in vivo on negatively supercoiled DNA, with H-NS bridging the two arms of the plectoneme. Rotational diffusion of positive supercoils generated by neighboring transcription will cause the H-NS-bound negatively-supercoiled plectoneme to "unroll" disrupting the H-NS bridges and releasing H-NS.


Subject(s)
Chromatin , DNA-Binding Proteins , Chromatin/metabolism , DNA-Binding Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteria/genetics , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , DNA/metabolism , Gene Silencing , Gene Expression Regulation, Bacterial , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...