Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.127
Filter
1.
World J Urol ; 42(1): 328, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753087

ABSTRACT

BACKGROUND AND PURPOSE: Extrachromosomal circular DNAs (eccDNAs) have been recognized for their significant involvement in numerous biological processes. Nonetheless, the existence and molecular characteristics of eccDNA in the peripheral blood of patients diagnosed with clear cell renal cell carcinoma (ccRCC) have not yet been reported. Our aim was to identify potentially marked plasma eccDNAs in ccRCC patients. METHODS AND MATERIALS: The detection of plasma eccDNA in ccRCC patients and healthy controls was performed using the Tn5-tagmentation and next-generation sequencing (NGS) method. Comparisons were made between ccRCC patients and healthy controls regarding the distribution of length, gene annotation, pattern of junctional nucleotide motif, and expression pattern of plasma eccDNA. RESULTS: We found 8,568 and 8,150 plasma eccDNAs in ccRCC patients and healthy controls, respectively. There were no statistical differences in the length distribution, gene annotation, and motif signature of plasma eccDNAs between the two groups. A total of 701 differentially expressed plasma eccDNAs were identified, and 25 plasma eccDNAs with potential diagnostic value for ccRCC have been successfully screened. These up-regulated plasma eccDNAs also be indicated to originate from the genomic region of the tumor-associated genes. CONCLUSION: This work demonstrates the characterization of plasma eccDNAs in ccRCC and suggests that the up-regulated plasma eccDNAs could be considered as a promising non-invasive biomarker in ccRCC.


Subject(s)
Carcinoma, Renal Cell , DNA, Circular , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/blood , Carcinoma, Renal Cell/diagnosis , DNA, Circular/blood , DNA, Circular/genetics , Kidney Neoplasms/blood , Kidney Neoplasms/genetics , Male , Middle Aged , Female , Aged
2.
J Med Virol ; 96(5): e29669, 2024 May.
Article in English | MEDLINE | ID: mdl-38773784

ABSTRACT

Chronic hepatitis B virus (HBV) infection remains a significant global health challenge due to its link to severe conditions like HBV-related cirrhosis and hepatocellular carcinoma (HCC). Although current treatments effectively reduce viral levels, they have limited impact on certain HBV elements, namely hepatitis B surface antigen (HBsAg) and covalently closed circular DNA (cccDNA). This highlights the urgent need for innovative pharmaceutical and biological interventions that can disrupt HBsAg production originating from cccDNA. In this study, we identified a natural furanocoumarin compound, Imperatorin, which markedly inhibited the expression of HBsAg from cccDNA, by screening a library of natural compounds derived from Chinese herbal medicines using ELISA assay and qRT-PCR. The pharmacodynamics study of Imperatorin was explored on HBV infected HepG2-NTCP/PHHs and HBV-infected humanized mouse model. Proteome analysis was performed on HBV infected HepG2-NTCP cells following Imperatorin treatment. Molecular docking and bio-layer interferometry (BLI) were used for finding the target of Imperatorin. Our findings demonstrated Imperatorin remarkably reduced the level of HBsAg, HBV RNAs, HBV DNA and transcriptional activity of cccDNA both in vitro and in vivo. Additionally, Imperatorin effectively restrained the actions of HBV promoters responsible for cccDNA transcription. Mechanistic study revealed that Imperatorin directly binds to ERK and subsequently interfering with the activation of CAMP response element-binding protein (CREB), a crucial transcriptional factor for HBV and has been demonstrated to bind to the PreS2/S and X promoter regions of HBV. Importantly, the absence of ERK could nullify the antiviral impact triggered by Imperatorin. Collectively, the natural compound Imperatorin may be an effective candidate agent for inhibiting HBsAg production and cccDNA transcription by impeding the activities of HBV promoters through ERK-CREB axis.


Subject(s)
DNA, Circular , Furocoumarins , Hepatitis B Surface Antigens , Hepatitis B virus , Transcription, Genetic , Furocoumarins/pharmacology , Humans , Animals , Hepatitis B virus/drug effects , Hepatitis B virus/genetics , Hepatitis B Surface Antigens/metabolism , Hepatitis B Surface Antigens/genetics , Hep G2 Cells , Mice , DNA, Circular/genetics , DNA, Circular/metabolism , Transcription, Genetic/drug effects , Antiviral Agents/pharmacology , DNA, Viral , Molecular Docking Simulation , Virus Replication/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/virology , Disease Models, Animal , Promoter Regions, Genetic
3.
Nat Commun ; 15(1): 4635, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821953

ABSTRACT

Cell-free protein expression (CFE) systems have emerged as a critical platform for synthetic biology research. The vectors for protein expression in CFE systems mainly rely on double-stranded DNA and single-stranded RNA for transcription and translation processing. Here, we introduce a programmable vector - circular single-stranded DNA (CssDNA), which is shown to be processed by DNA and RNA polymerases for gene expression in a yeast-based CFE system. CssDNA is already widely employed in DNA nanotechnology due to its addressability and programmability. To apply above methods in the context of synthetic biology, CssDNA can not only be engineered for gene regulation via the different pathways of sense CssDNA and antisense CssDNA, but also be constructed into several gene regulatory logic gates in CFE systems. Our findings advance the understanding of how CssDNA can be utilized in gene expression and gene regulation, and thus enrich the synthetic biology toolbox.


Subject(s)
Cell-Free System , DNA, Circular , DNA, Single-Stranded , Genetic Vectors , Saccharomyces cerevisiae , Synthetic Biology , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Synthetic Biology/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , DNA, Circular/genetics , DNA, Circular/metabolism , Genetic Vectors/metabolism , Genetic Vectors/genetics , Gene Expression Regulation , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/genetics
4.
J Med Virol ; 96(6): e29692, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38804172

ABSTRACT

To achieve a virological cure for hepatitis B virus (HBV), innovative strategies are required to target the covalently closed circular DNA (cccDNA) genome. Guanine-quadruplexes (G4s) are a secondary structure that can be adopted by DNA and play a significant role in regulating viral replication, transcription, and translation. Antibody-based probes and small molecules have been developed to study the role of G4s in the context of the human genome, but none have been specifically made to target G4s in viral infection. Herein, we describe the development of a humanized single-domain antibody (S10) that can target a G4 located in the PreCore (PreC) promoter of the HBV cccDNA genome. MicroScale Thermophoresis demonstrated that S10 has a strong nanomolar affinity to the PreC G4 in its quadruplex form and a structural electron density envelope of the complex was determined using Small-Angle X-ray Scattering. Lentiviral transduction of S10 into HepG2-NTCP cells shows nuclear localization, and chromatin immunoprecipitation coupled with next-generation sequencing demonstrated that S10 can bind to the HBV PreC G4 present on the cccDNA. This research validates the existence of a G4 in HBV cccDNA and demonstrates that this DNA secondary structure can be targeted with high structural and sequence specificity using S10.


Subject(s)
DNA, Circular , DNA, Viral , G-Quadruplexes , Hepatitis B virus , Single-Domain Antibodies , Humans , Hepatitis B virus/genetics , Hepatitis B virus/immunology , DNA, Circular/genetics , DNA, Viral/genetics , Hep G2 Cells , Single-Domain Antibodies/genetics , Single-Domain Antibodies/immunology , Single-Domain Antibodies/chemistry , Genome, Viral , Promoter Regions, Genetic , Virus Replication , Hepatitis B/virology
5.
Proc Natl Acad Sci U S A ; 121(19): e2318438121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38696464

ABSTRACT

Alternative lengthening of telomeres (ALT) is a telomere maintenance mechanism mediated by break-induced replication, evident in approximately 15% of human cancers. A characteristic feature of ALT cancers is the presence of C-circles, circular single-stranded telomeric DNAs composed of C-rich sequences. Despite the fact that extrachromosomal C-rich single-stranded DNAs (ssDNAs), including C-circles, are unique to ALT cells, their generation process remains undefined. Here, we introduce a method to detect single-stranded telomeric DNA, called 4SET (Strand-Specific Southern-blot for Single-stranded Extrachromosomal Telomeres) assay. Utilizing 4SET, we are able to capture C-rich single-stranded DNAs that are near 200 to 1500 nucleotides in size. Both linear C-rich ssDNAs and C-circles are abundant in the fractions of cytoplasm and nucleoplasm, which supports the idea that linear and circular C-rich ssDNAs are generated concurrently. We also found that C-rich ssDNAs originate during Okazaki fragment processing during lagging strand DNA synthesis. The generation of C-rich ssDNA requires CST-PP (CTC1/STN1/TEN1-PRIMASE-Polymerase alpha) complex-mediated priming of the C-strand DNA synthesis and subsequent excessive strand displacement of the C-rich strand mediated by the DNA Polymerase delta and the BLM helicase. Our work proposes a model for the generation of C-rich ssDNAs and C-circles during ALT-mediated telomere elongation.


Subject(s)
DNA, Single-Stranded , Telomere Homeostasis , Telomere , Telomere/genetics , Telomere/metabolism , Humans , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , DNA Replication , DNA/genetics , DNA/metabolism , DNA, Circular/genetics , DNA, Circular/metabolism , Blotting, Southern , DNA Polymerase III/metabolism , DNA Polymerase III/genetics
6.
Respir Res ; 25(1): 181, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664836

ABSTRACT

BACKGROUND: Extrachromosomal circular DNAs (eccDNAs) have been reported to play a key role in the occurrence and development of various diseases. However, the characterization and role of eccDNAs in pulmonary arterial hypertension (PAH) remain unclear. METHODS: In the discovery cohort, we first explored eccDNA expression profiles by Circle-sequencing analysis. The candidate eccDNAs were validated by routine polymerase chain reaction (PCR), TOPO-TA cloning and Sanger sequencing. In the validation cohort, 30 patients with PAH and 10 healthy controls were recruited for qPCR amplification to detect the candidate eccDNAs. Datas at the baseline were collected, including clinical background, biochemical variables, echocardiography and hemodynamic factors. Receiver operating characteristic curve was used to investigate the diagnostic effect of the eccDNA. RESULTS: We identified a total of 21,741 eccDNAs in plasma samples of 3 IPAH patients and 3 individuals in good health, and the expression frequency, GC content, length distribution, and genome distribution of the eccDNAs were thoroughly characterized and analyzed. In the validation cohort, 687 eccDNAs were differentially expressed in patients with IPAH compared with healthy controls (screening threshold: |FC|≥2 and P < 0.05). Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the specific eccDNAs in IPAH were significantly enriched in calcium channel activity, the mitogen-activated protein kinase pathway, and the wnt signaling pathway. Verification queue found that the expression of eccDNA-chr2:131208878-131,424,362 in PAH was considerably higher than that in healthy controls and exhibited a high level of accuracy in predicting PAH with a sensitivity of 86.67% and a specificity of 90%. Furthermore, correlation analysis disclosed a significant association between serum eccDNA-chr2:131208878-131,424,362 and mean pulmonary artery pressure (mPAP) (r = 0.396, P = 0.03), 6 min walking distance (6MWD) (r = -0.399, P = 0.029), N-terminal pro-B-type natriuretic peptide (NT-proBNP) (r = 0.685, P < 0.001) and cardiac index (CI) (r = - 0.419, P = 0.021). CONCLUSIONS: This is the first study to identify and characterize eccDNAs in patients with PAH. We revealed that serum eccDNA-chr2:131208878-131,424,362 is significantly overexpressed and can be used in the diagnosis of PAH, indicating its potential as a novel non-invasive biomarker.


Subject(s)
Biomarkers , DNA, Circular , Humans , Male , Female , Middle Aged , Adult , Biomarkers/blood , DNA, Circular/blood , DNA, Circular/genetics , DNA, Circular/analysis , Pulmonary Arterial Hypertension/blood , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/diagnosis , Cohort Studies , Case-Control Studies
7.
Microbiol Spectr ; 12(5): e0378823, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38567974

ABSTRACT

The key to a curative treatment of hepatitis B virus (HBV) infection is the eradication of the intranuclear episomal covalently closed circular DNA (cccDNA), the stable persistence reservoir of HBV. Currently, established therapies can only limit HBV replication but fail to tackle the cccDNA. Thus, novel therapeutic approaches toward curative treatment are urgently needed. Recent publications indicated a strong association between the HBV core protein SUMOylation and the association with promyelocytic leukemia nuclear bodies (PML-NBs) on relaxed circular DNA to cccDNA conversion. We propose that interference with the cellular SUMOylation system and PML-NB integrity using arsenic trioxide provides a useful tool in the treatment of HBV infection. Our study showed a significant reduction in HBV-infected cells, core protein levels, HBV mRNA, and total DNA. Additionally, a reduction, albeit to a limited extent, of HBV cccDNA could be observed. Furthermore, this interference was also applied for the treatment of an established HBV infection, characterized by a stably present nuclear pool of cccDNA. Arsenic trioxide (ATO) treatment not only changed the amount of expressed HBV core protein but also induced a distinct relocalization to an extranuclear phenotype during infection. Moreover, ATO treatment resulted in the redistribution of transfected HBV core protein away from PML-NBs, a phenotype similar to that previously observed with SUMOylation-deficient HBV core. Taken together, these findings revealed the inhibition of HBV replication by ATO treatment during several steps of the viral replication cycle, including viral entry into the nucleus as well as cccDNA formation and maintenance. We propose ATO as a novel prospective treatment option for further pre-clinical and clinical studies against HBV infection. IMPORTANCE: The main challenge for the achievement of a functional cure for hepatitis B virus (HBV) is the covalently closed circular DNA (cccDNA), the highly stable persistence reservoir of HBV, which is maintained by further rounds of infection with newly generated progeny viruses or by intracellular recycling of mature nucleocapsids. Eradication of the cccDNA is considered to be the holy grail for HBV curative treatment; however, current therapeutic approaches fail to directly tackle this HBV persistence reservoir. The molecular effect of arsenic trioxide (ATO) on HBV infection, protein expression, and cccDNA formation and maintenance, however, has not been characterized and understood until now. In this study, we reveal ATO treatment as a novel and innovative therapeutic approach against HBV infections, repressing viral gene expression and replication as well as the stable cccDNA pool at low micromolar concentrations by affecting the cellular function of promyelocytic leukemia nuclear bodies.


Subject(s)
Arsenic Trioxide , Cell Nucleus , DNA, Circular , DNA, Viral , Hepatitis B virus , Hepatitis B , Sumoylation , Virus Replication , Arsenic Trioxide/pharmacology , Hepatitis B virus/drug effects , Hepatitis B virus/genetics , Hepatitis B virus/physiology , Humans , Virus Replication/drug effects , Hepatitis B/virology , Hepatitis B/drug therapy , Hepatitis B/metabolism , Sumoylation/drug effects , DNA, Circular/genetics , DNA, Circular/metabolism , Cell Nucleus/metabolism , DNA, Viral/genetics , DNA, Viral/metabolism , Antiviral Agents/pharmacology , Viral Core Proteins/metabolism , Viral Core Proteins/genetics , Hep G2 Cells
8.
Genes (Basel) ; 15(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38674347

ABSTRACT

Inflammatory bowel disease (IBD) comprising ulcerative colitis and Crohn's disease is a chronic immune-mediated disease which affects the gastrointestinal tract with a relapsing and remitting course, causing lifelong morbidity. IBD pathogenesis is determined by multiple factors including genetics, immune and microbial factors, and environmental factors. Although therapy options are expanding, remission rates are unsatisfiable, and together with the disease course, response to therapy remains unpredictable. Therefore, the identification of biomarkers that are predictive for the disease course and response to therapy is a significant challenge. Extrachromosomal circular DNA (eccDNA) fragments exist in all tissue tested so far. These fragments, ranging in length from a few hundreds of base pairs to mega base pairs, have recently gained more interest due to technological advances. Until now, eccDNA has mainly been studied in relation to cancer due to its ability to act as an amplification site for oncogenes and drug resistance genes. However, eccDNA could also play an important role in inflammation, expressed both locally in the- involved tissue and at distant sites. Here, we review the current evidence on the molecular mechanisms of eccDNA and its role in inflammation and IBD. Additionally, the potential of eccDNA as a tissue or plasma marker for disease severity and/or response to therapy is evaluated.


Subject(s)
Biomarkers , DNA, Circular , Inflammatory Bowel Diseases , Humans , DNA, Circular/genetics , Inflammatory Bowel Diseases/genetics , Animals
9.
Protist ; 175(3): 126033, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574508

ABSTRACT

Extrachromosomal circular DNA (eccDNA) enhances genomic plasticity, augmenting its coding and regulatory potential. Advances in high-throughput sequencing have enabled the investigation of these structural variants. Although eccDNAs have been investigated in numerous taxa, they remained understudied in euglenids. Therefore, we examined eccDNAs predicted from Illumina sequencing data of Euglena gracilis Z SAG 1224-5/25, grown under optimal photoperiod and exposed to UV irradiation. We identified approximately 1000 unique eccDNA candidates, about 20% of which were shared across conditions. We also observed a significant enrichment of mitochondrially encoded eccDNA in the UV-irradiated sample. Furthermore, we found that the heterogeneity of eccDNA was reduced in UV-exposed samples compared to cells that were grown in optimal conditions. Hence, eccDNA appears to play a role in the response to oxidative stress in Euglena, as it does in other studied organisms. In addition to contributing to the understanding of Euglena genomes, our results contribute to the validation of bioinformatics pipelines on a large, non-model genome.


Subject(s)
DNA, Circular , Euglena gracilis , Euglena gracilis/genetics , DNA, Circular/genetics , DNA, Protozoan/genetics , Ultraviolet Rays , Stress, Physiological
11.
Clin Exp Med ; 24(1): 83, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662139

ABSTRACT

Extrachromosomal circular DNA (eccDNA) is a circular form of DNA that exists outside of the chromosome. Although it has only been a few decades since its discovery, in recent years, it has been found to have a close relationship with cancer, which has attracted widespread attention from researchers. Thus far, under the persistent research of researchers from all over the world, eccDNA has been found to play an important role in a variety of tumors, including breast cancer, lung cancer, ovarian cancer, etc. Herein, we review the sources of eccDNA, classifications, and the mechanisms responsible for their biogenesis. In addition, we introduce the relationship between eccDNA and various cancers and the role of eccDNA in the generation and evolution of cancer. Finally, we summarize the research significance and importance of eccDNA in cancer, and highlight new prospects for the application of eccDNA in the future detection and treatment of cancer.


Subject(s)
Carcinogenesis , DNA, Circular , Drug Resistance, Neoplasm , Neoplasms , Humans , DNA, Circular/genetics , Drug Resistance, Neoplasm/genetics , Neoplasms/genetics , Neoplasms/drug therapy , Carcinogenesis/genetics
12.
Biomed Pharmacother ; 174: 116588, 2024 May.
Article in English | MEDLINE | ID: mdl-38613997

ABSTRACT

Extrachromosomal DNA (ecDNA) is a self-replicating circular DNA originating from the chromosomal genome and exists outside the chromosome. It contains specific gene sequences and non-coding regions that regulate transcription. Recent studies have demonstrated that ecDNA is present in various malignant tumors. Malignant tumor development and poor prognosis may depend on ecDNA's distinctive ring structure, which assists in amplifying oncogenes. During cell division, an uneven distribution of ecDNA significantly enhances tumor cells' heterogeneity, allowing tumor cells to adapt to changes in the tumor microenvironment and making them more resistant to treatments. The application of ecDNA as a cancer biomarker and therapeutic target holds great potential. This article examines the latest advancements in this area and discusses the potential clinical applications of ecDNA.


Subject(s)
DNA, Circular , Neoplasms , Humans , Neoplasms/genetics , DNA, Circular/genetics , Animals , DNA, Neoplasm/genetics , Biomarkers, Tumor/genetics , Tumor Microenvironment/genetics
13.
Viruses ; 16(4)2024 04 15.
Article in English | MEDLINE | ID: mdl-38675950

ABSTRACT

Hepatitis B virus (HBV) is the etiologic agent of chronic hepatitis B, which puts at least 300 million patients at risk of developing fibrosis, cirrhosis, and hepatocellular carcinoma. HBV is a partially double-stranded DNA virus of the Hepadnaviridae family. While HBV was discovered more than 50 years ago, many aspects of its replicative cycle remain incompletely understood. Central to HBV persistence is the formation of covalently closed circular DNA (cccDNA) from the incoming relaxed circular DNA (rcDNA) genome. cccDNA persists as a chromatinized minichromosome and is the major template for HBV gene transcription. Here, we review how cccDNA and the viral minichromosome are formed and how viral gene transcription is regulated and highlight open questions in this area of research.


Subject(s)
DNA, Circular , DNA, Viral , Hepatitis B virus , Virus Replication , Hepatitis B virus/genetics , Hepatitis B virus/physiology , DNA, Circular/genetics , Humans , DNA, Viral/genetics , Viral Transcription/genetics , Gene Expression Regulation, Viral , Transcription, Genetic , Genome, Viral , Hepatitis B, Chronic/virology , Hepatitis B/virology , DNA Replication
14.
Viruses ; 16(4)2024 04 16.
Article in English | MEDLINE | ID: mdl-38675956

ABSTRACT

Chronic hepatitis B (CHB) virus infection is a major public health burden and the leading cause of hepatocellular carcinoma. Despite the efficacy of current treatments, hepatitis B virus (HBV) cannot be fully eradicated due to the persistence of its minichromosome, or covalently closed circular DNA (cccDNA). The HBV community is investing large human and financial resources to develop new therapeutic strategies that either silence or ideally degrade cccDNA, to cure HBV completely or functionally. cccDNA transcription is considered to be the key step for HBV replication. Transcription not only influences the levels of viral RNA produced, but also directly impacts their quality, generating multiple variants. Growing evidence advocates for the role of the co-transcriptional regulation of HBV RNAs during CHB and viral replication, paving the way for the development of novel therapies targeting these processes. This review focuses on the mechanisms controlling the different co-transcriptional processes that HBV RNAs undergo, and their contribution to both viral replication and HBV-induced liver pathogenesis.


Subject(s)
Gene Expression Regulation, Viral , Hepatitis B virus , RNA, Viral , Virus Replication , Hepatitis B virus/genetics , Hepatitis B virus/physiology , Humans , RNA, Viral/genetics , Hepatitis B, Chronic/virology , DNA, Circular/genetics , DNA, Circular/metabolism , Transcription, Genetic , Animals , DNA, Viral/genetics
15.
Biomolecules ; 14(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38672504

ABSTRACT

Extrachromosomal circular DNA (eccDNA), a double-stranded circular DNA molecule found in multiple organisms, has garnered an increasing amount of attention in recent years due to its close association with the initiation, malignant progression, and heterogeneous evolution of cancer. The presence of eccDNA in serum assists in non-invasive tumor diagnosis as a biomarker that can be assessed via liquid biopsies. Furthermore, the specific expression patterns of eccDNA provide new insights into personalized cancer therapy. EccDNA plays a pivotal role in tumorigenesis, development, diagnosis, and treatment. In this review, we comprehensively outline the research trajectory of eccDNA, discuss its role as a diagnostic and prognostic biomarker, and elucidate its regulatory mechanisms in cancer. In particular, we emphasize the potential application value of eccDNA in cancer diagnosis and treatment and anticipate the development of novel tumor diagnosis strategies based on serum eccDNA in the future.


Subject(s)
Biomarkers, Tumor , DNA, Circular , Neoplasms , Humans , DNA, Circular/blood , DNA, Circular/genetics , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Neoplasms/blood , Neoplasms/genetics , Neoplasms/diagnosis , Prognosis , Liquid Biopsy/methods
16.
Arch Virol ; 169(5): 88, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565755

ABSTRACT

Transcription of the covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV) is subject to dual regulation by host factors and viral proteins. MicroRNAs (miRNAs) can regulate the expression of target genes at the post-transcriptional level. Systematic investigation of miRNA expression in HBV infection and the interaction between HBV and miRNAs may deepen our understanding of the transcription mechanisms of HBV cccDNA, thereby providing opportunities for intervention. miRNA sequencing and real-time quantitative PCR (qRT-PCR) were used to analyze miRNA expression after HBV infection of cultured cells. Clinical samples were analyzed for miRNAs and HBV transcription-related indicators, using qRT-PCR, enzyme-linked immunoassay (ELISA), and Western blot. miRNA mimics or inhibitors were used to study their effects on the HBV life cycle. The target genes of miR-3188 and their roles in HBV cccDNA transcription were also identified. The expression of 10 miRNAs, including miR-3188, which was significantly decreased after HBV infection, was measured in clinical samples from patients with chronic HBV infection. Overexpression of miR-3188 inhibited HBV transcription, whereas inhibition of miR-3188 expression promoted HBV transcription. Further investigation confirmed that miR-3188 inhibited HBV transcription by targeting Bcl-2. miR-3188 is a key miRNA that regulates HBV transcription by targeting the host protein Bcl-2. This observation provides insights into the regulation of cccDNA transcription and suggests new targets for anti-HBV treatment.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , MicroRNAs , Humans , DNA, Circular/genetics , DNA, Viral/genetics , DNA, Viral/metabolism , Hepatitis B/genetics , Hepatitis B virus/genetics , Hepatitis B, Chronic/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Viral Transcription , Virus Replication/genetics
17.
Virology ; 595: 110065, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38569227

ABSTRACT

Nucleot(s)ide analogues, the current antiviral treatments against chronic hepatitis B (CHB) infection, are non-curative due to their inability to eliminate covalently closed circular DNA (cccDNA) from the infected hepatocytes. Preclinical studies have shown that coumarin derivatives can effectively reduce the HBV DNA replication. We evaluated the antiviral efficacy of thirty new coumarin derivatives in cell culture models for studying HBV. Furanocoumarins Fc-20 and Fc-31 suppressed the levels of pre-genomic RNA as well as cccDNA, and reduced the secretion of virions, HBsAg and HBeAg. The antiviral efficacies of Fc-20 and Fc31 improved further when used in combination with the hepatitis B antiviral drug Entecavir. There was a marked reduction in the intracellular HBx level in the presence of these furanocoumarins due to proteasomal degradation resulting in the down-regulation of HBx-dependent viral genes. Importantly, both Fc-20 and Fc-31 were non-cytotoxic to cells even at high concentrations. Further, our molecular docking studies confirmed a moderate to high affinity interaction between furanocoumarins and viral HBx via residues Ala3, Arg26 and Lys140. These data suggest that furanocoumarins could be developed as a new therapeutic for CHB infection.


Subject(s)
Antiviral Agents , DNA, Circular , Furocoumarins , Hepatitis B virus , Proteasome Endopeptidase Complex , Trans-Activators , Viral Regulatory and Accessory Proteins , Virus Replication , Hepatitis B virus/drug effects , Hepatitis B virus/genetics , Hepatitis B virus/physiology , Hepatitis B virus/metabolism , Virus Replication/drug effects , Humans , Trans-Activators/metabolism , Trans-Activators/genetics , DNA, Circular/metabolism , DNA, Circular/genetics , Viral Regulatory and Accessory Proteins/metabolism , Viral Regulatory and Accessory Proteins/genetics , Furocoumarins/pharmacology , Antiviral Agents/pharmacology , Proteasome Endopeptidase Complex/metabolism , DNA, Viral/metabolism , DNA, Viral/genetics , Down-Regulation/drug effects , Transcription, Genetic/drug effects , Proteolysis/drug effects , Gene Expression Regulation, Viral/drug effects , Hep G2 Cells
18.
Sci Rep ; 14(1): 9466, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658614

ABSTRACT

Long extrachromosomal circular DNA (leccDNA) regulates several biological processes such as genomic instability, gene amplification, and oncogenesis. The identification of leccDNA holds significant importance to investigate its potential associations with cancer, autoimmune, cardiovascular, and neurological diseases. In addition, understanding these associations can provide valuable insights about disease mechanisms and potential therapeutic approaches. Conventionally, wet lab-based methods are utilized to identify leccDNA, which are hindered by the need for prior knowledge, and resource-intensive processes, potentially limiting their broader applicability. To empower the process of leccDNA identification across multiple species, the paper in hand presents the very first computational predictor. The proposed iLEC-DNA predictor makes use of SVM classifier along with sequence-derived nucleotide distribution patterns and physicochemical properties-based features. In addition, the study introduces a set of 12 benchmark leccDNA datasets related to three species, namely Homo sapiens (HM), Arabidopsis Thaliana (AT), and Saccharomyces cerevisiae (SC/YS). It performs large-scale experimentation across 12 benchmark datasets under different experimental settings using the proposed predictor, more than 140 baseline predictors, and 858 encoder ensembles. The proposed predictor outperforms baseline predictors and encoder ensembles across diverse leccDNA datasets by producing average performance values of 81.09%, 62.2% and 81.08% in terms of ACC, MCC and AUC-ROC across all the datasets. The source code of the proposed and baseline predictors is available at https://github.com/FAhtisham/Extrachrosmosomal-DNA-Prediction . To facilitate the scientific community, a web application for leccDNA identification is available at https://sds_genetic_analysis.opendfki.de/iLEC_DNA/.


Subject(s)
DNA, Circular , Saccharomyces cerevisiae , DNA, Circular/genetics , Humans , Saccharomyces cerevisiae/genetics , Arabidopsis/genetics , Computational Biology/methods , Nucleotides/genetics , Support Vector Machine
19.
BMC Genomics ; 25(1): 404, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658857

ABSTRACT

Transposable elements (TEs) are a major force in the evolution of plant genomes. Differences in the transposition activities and landscapes of TEs can vary substantially, even in closely related species. Interspecific hybridization, a widely employed technique in tomato breeding, results in the creation of novel combinations of TEs from distinct species. The implications of this process for TE transposition activity have not been studied in modern cultivars. In this study, we used nanopore sequencing of extrachromosomal circular DNA (eccDNA) and identified two highly active Ty1/Copia LTR retrotransposon families of tomato (Solanum lycopersicum), called Salsa and Ketchup. Elements of these families produce thousands of eccDNAs under controlled conditions and epigenetic stress. EccDNA sequence analysis revealed that the major parts of eccDNA produced by Ketchup and Salsa exhibited low similarity to the S. lycopersicum genomic sequence. To trace the origin of these TEs, whole-genome nanopore sequencing and de novo genome assembly were performed. We found that these TEs occurred in a tomato breeding line via interspecific introgression from S. peruvianum. Our findings collectively show that interspecific introgressions can contribute to both genetic and phenotypic diversity not only by introducing novel genetic variants, but also by importing active transposable elements from other species.


Subject(s)
DNA, Circular , Genome, Plant , Retroelements , Solanum lycopersicum , Terminal Repeat Sequences , Solanum lycopersicum/genetics , DNA, Circular/genetics , Plant Breeding , Nanopore Sequencing/methods , Genetic Introgression , Sequence Analysis, DNA/methods , DNA, Plant/genetics
20.
Sci Data ; 11(1): 318, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538648

ABSTRACT

Extrachromosomal circular DNA (eccDNA) refers to a distinct class of circular DNA molecules that exist independently from linear chromosomal DNA. Extensive evidence has firmly established the significant involvement of eccDNA in cancer initiation, progression, and evolutionary processes. However, the relationship between eccDNA and brain aging remains elusive. Here, we employed extrachromosomal circular DNA sequencing (Circle-seq) to generate a comprehensive dataset of eccDNA from six brain structures of both young and naturally-aged mice, including the olfactory bulb, medial prefrontal cortex, nucleus accumbens, caudate putamen, hippocampus, and cerebellum. Furthermore, through database annotation, we characterized the properties of mouse brain eccDNA, thereby gaining insights into the potential functions of eccDNA in the mouse brain. In conclusion, our study addresses a previously unexplored area by providing a comprehensive molecular characterization of eccDNA in brain tissues. The data presented in the study can be used as a fundamental resource to associate the molecular phenotypes of eccDNA with brain aging and gain deep insights into the biological role of eccDNA in mammalian brain aging.


Subject(s)
Brain , DNA, Circular , Animals , Mice , DNA, Circular/genetics , Aging/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...