Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Sci Total Environ ; 931: 172900, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38697547

ABSTRACT

Human interaction with marine creatures holds both positive and negative dimensions. Coastal communities benefit from marine environments, relying on them for sustenance and livelihoods. Fishing activities support economies, and marine biodiversity contributes to overall ecosystem health. However, challenges like overfishing, habitat destruction, and pollution pose threats to both marine life and human communities. Recently, there has been widespread concern regarding the potential increase in jellyfish populations across global marine ecosystems, attributed mainly to environmental factors such as climate drivers and anthropogenic forces, or their complex interactions. Encounters with hazardous marine species, such as box jellyfish, exemplify the dangers associated with coastal activities. Unintended interactions may lead to stings, injuries, and even fatalities, necessitating proactive measures and advanced technologies. This study addresses the inadequacies of existing measures in preventing box jellyfish incidents by introducing environmental DNA (eDNA) assays for detecting the deadly Chiropsoides buitendijki and focuses on developing qPCR and dPCR-based eDNA assays. Emphasising prevention over treatment, the study establishes a proactive system to assess C. buitendijki distribution across 63 tourist beaches in the Gulf of Thailand. Comparative analysis highlights the superior performance of dPCR over qPCR and traditional surveys. The dPCR experiment yielded positive results for all eDNA samples collected at sites where C. buitendijki had previously been identified. Remarkably, the eDNA testing also detected positive results in 16 additional sample locations where no physical specimens were collected, despite reported jellyfish stings at some of these sites. These findings underscore the precision and efficacy of the proposed eDNA detection technology in the early detection and assessment of box jellyfish distribution. This advancement therefore not only aids ecological research but also serves as a valuable tool for safeguarding public health, providing an early warning system for potential jellyfish encounters. Balancing positive human-marine interactions with effective risk mitigation strategies is crucial for sustainable coexistence, the preservation of marine ecosystems, and human well-being.


Subject(s)
DNA, Environmental , Environmental Monitoring , Animals , Thailand , Environmental Monitoring/methods , DNA, Environmental/analysis , Cubozoa , Risk Management/methods , Ecosystem , Species Specificity
2.
PeerJ ; 12: e17091, 2024.
Article in English | MEDLINE | ID: mdl-38708339

ABSTRACT

Monitoring the diversity and distribution of species in an ecosystem is essential to assess the success of restoration strategies. Implementing biomonitoring methods, which provide a comprehensive assessment of species diversity and mitigate biases in data collection, holds significant importance in biodiversity research. Additionally, ensuring that these methods are cost-efficient and require minimal effort is crucial for effective environmental monitoring. In this study we compare the efficiency of species detection, the cost and the effort of two non-destructive sampling techniques: Baited Remote Underwater Video (BRUV) and environmental DNA (eDNA) metabarcoding to survey marine vertebrate species. Comparisons were conducted along the Sussex coast upon the introduction of the Nearshore Trawling Byelaw. This Byelaw aims to boost the recovery of the dense kelp beds and the associated biodiversity that existed in the 1980s. We show that overall BRUV surveys are more affordable than eDNA, however, eDNA detects almost three times as many species as BRUV. eDNA and BRUV surveys are comparable in terms of effort required for each method, unless eDNA analysis is carried out externally, in which case eDNA requires less effort for the lead researchers. Furthermore, we show that increased eDNA replication yields more informative results on community structure. We found that using both methods in conjunction provides a more complete view of biodiversity, with BRUV data supplementing eDNA monitoring by recording species missed by eDNA and by providing additional environmental and life history metrics. The results from this study will serve as a baseline of the marine vertebrate community in Sussex Bay allowing future biodiversity monitoring research projects to understand community structure as the ecosystem recovers following the removal of trawling fishing pressure. Although this study was regional, the findings presented herein have relevance to marine biodiversity and conservation monitoring programs around the globe.


Subject(s)
Biodiversity , DNA, Environmental , Environmental Monitoring , DNA, Environmental/analysis , DNA, Environmental/genetics , Animals , Environmental Monitoring/methods , Aquatic Organisms/genetics , Video Recording/methods , Ecosystem , DNA Barcoding, Taxonomic/methods
3.
PLoS One ; 19(5): e0303263, 2024.
Article in English | MEDLINE | ID: mdl-38748719

ABSTRACT

Environmental DNA (eDNA) is an increasingly useful method for detecting pelagic animals in the ocean but typically requires large water volumes to sample diverse assemblages. Ship-based pelagic sampling programs that could implement eDNA methods generally have restrictive water budgets. Studies that quantify how eDNA methods perform on low water volumes in the ocean are limited, especially in deep-sea habitats with low animal biomass and poorly described species assemblages. Using 12S rRNA and COI gene primers, we quantified assemblages comprised of micronekton, coastal forage fishes, and zooplankton from low volume eDNA seawater samples (n = 436, 380-1800 mL) collected at depths of 0-2200 m in the southern California Current. We compared diversity in eDNA samples to concurrently collected pelagic trawl samples (n = 27), detecting a higher diversity of vertebrate and invertebrate groups in the eDNA samples. Differences in assemblage composition could be explained by variability in size-selectivity among methods and DNA primer suitability across taxonomic groups. The number of reads and amplicon sequences variants (ASVs) did not vary substantially among shallow (<200 m) and deep samples (>600 m), but the proportion of invertebrate ASVs that could be assigned a species-level identification decreased with sampling depth. Using hierarchical clustering, we resolved horizontal and vertical variability in marine animal assemblages from samples characterized by a relatively low diversity of ecologically important species. Low volume eDNA samples will quantify greater taxonomic diversity as reference libraries, especially for deep-dwelling invertebrate species, continue to expand.


Subject(s)
Aquatic Organisms , Biodiversity , DNA, Environmental , Animals , DNA, Environmental/genetics , DNA, Environmental/analysis , Aquatic Organisms/genetics , Aquatic Organisms/classification , Seawater , Fishes/genetics , Fishes/classification , Zooplankton/genetics , Zooplankton/classification , Ecosystem , Invertebrates/genetics , Invertebrates/classification
4.
Environ Int ; 187: 108706, 2024 May.
Article in English | MEDLINE | ID: mdl-38696978

ABSTRACT

Environmental DNA (eDNA) technology has revolutionized biomonitoring, but challenges remain regarding water sample processing. The passive eDNA sampler (PEDS) represents a viable alternative to active, water filtration-based eDNA enrichment methods, but the effectiveness of PEDS for surveying biodiverse and complex natural water bodies is unknown. Here, we collected eDNA using filtration and glass fiber filter-based PEDS (submerged in water for 1 d) from 27 sites along the final reach of the Yangtze River and the coast of the Yellow Sea, followed by eDNA metabarcoding analysis of fish biodiversity and quantitative PCR (qPCR) for a critically endangered aquatic mammal, the Yangtze finless porpoise. We ultimately detected 98 fish species via eDNA metabarcoding. Both eDNA sampling methods captured comparable local species richness and revealed largely similar spatial variation in fish assemblages and community partitions between the river and sea sites. Notably, the Yangtze finless porpoise was detected only in the metabarcoding of eDNA collected by PEDS at five sites. Also, species-specific qPCR revealed that the PEDS captured porpoise eDNA at more sites (7 vs. 2), in greater quantities, and with a higher detection probability (0.803 vs. 0.407) than did filtration. Our results demonstrate the capacity of PEDS for surveying fish biodiversity, and support that continuous eDNA collection by PEDS can be more effective than instantaneous water sampling at capturing low abundance and ephemeral species in natural waters. Thus, the PEDS approach can facilitate more efficient and convenient eDNA-based biodiversity surveillance and rare species detection.


Subject(s)
Biodiversity , DNA, Environmental , Environmental Monitoring , Fishes , Animals , DNA, Environmental/analysis , Environmental Monitoring/methods , Fishes/genetics , Rivers/chemistry , DNA Barcoding, Taxonomic/methods , Porpoises/genetics , China
5.
Nat Commun ; 15(1): 4372, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782932

ABSTRACT

Anthropogenically forced changes in global freshwater biodiversity demand more efficient monitoring approaches. Consequently, environmental DNA (eDNA) analysis is enabling ecosystem-scale biodiversity assessment, yet the appropriate spatio-temporal resolution of robust biodiversity assessment remains ambiguous. Here, using intensive, spatio-temporal eDNA sampling across space (five rivers in Europe and North America, with an upper range of 20-35 km between samples), time (19 timepoints between 2017 and 2018) and environmental conditions (river flow, pH, conductivity, temperature and rainfall), we characterise the resolution at which information on diversity across the animal kingdom can be gathered from rivers using eDNA. In space, beta diversity was mainly dictated by turnover, on a scale of tens of kilometres, highlighting that diversity measures are not confounded by eDNA from upstream. Fish communities showed nested assemblages along some rivers, coinciding with habitat use. Across time, seasonal life history events, including salmon and eel migration, were detected. Finally, effects of environmental conditions were taxon-specific, reflecting habitat filtering of communities rather than effects on DNA molecules. We conclude that riverine eDNA metabarcoding can measure biodiversity at spatio-temporal scales relevant to species and community ecology, demonstrating its utility in delivering insights into river community ecology during a time of environmental change.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic , DNA, Environmental , Ecosystem , Fishes , Rivers , DNA, Environmental/genetics , DNA, Environmental/analysis , DNA Barcoding, Taxonomic/methods , Animals , Fishes/genetics , Fishes/classification , Europe , North America , Spatio-Temporal Analysis , Seasons
6.
Sci Total Environ ; 934: 173242, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38763188

ABSTRACT

Estuarine ecosystems face increasing anthropogenic pressures, necessitating effective monitoring methods to mitigate their impacts on the biodiversity they harbour. The use of environmental DNA (eDNA) based detection methods is increasingly recognized as a promising tool to complement other, potentially invasive monitoring techniques. Integrating such eDNA analyses into monitoring frameworks for large ecosystems is still challenging and requires a deeper understanding of the scale and resolution at which eDNA patterns may offer insights in species presence and community composition space and time. The Scheldt estuary, characterized by its diverse habitats and complex currents, is one of the largest Western European tidal river systems. Until now, it remains challenging to obtain accurate information on fish communities living in and migrating through this ecosystem, consequently confining our knowledge to specific locations. To explore the potential of eDNA based monitoring, we simultaneously combine stow net fishing with eDNA metabarcoding, to assess spatiotemporal shifts in the Scheldt estuary's fish communities. In total, we detected 71 fish species in the estuary using eDNA metabarcoding, partly overlapping with historic fish community data gathered at the different study locations and in contrast to only 42 species using stow net fishing during the same survey period. Community compositions found by both detection methods varied among sampling locations, driven by a clear correlation to the salinity gradient. Limited effects of sampling depth and tide were observed on the eDNA metabarcoding data, allowing a significant reduction of the eDNA sampling effort for future eDNA fish monitoring campaigns in this study system. Our results further demonstrate that seasonal shifts in fish species occurrence can be detected using eDNA metabarcoding. Combining eDNA metabarcoding and stow net fishing further enhances our understanding of this vital waterway's diverse fish populations, allowing a higher resolution and more efficient monitoring strategy.


Subject(s)
DNA Barcoding, Taxonomic , DNA, Environmental , Environmental Monitoring , Estuaries , Fishes , Animals , Fishes/genetics , DNA, Environmental/analysis , DNA Barcoding, Taxonomic/methods , Environmental Monitoring/methods , Biodiversity , Ecosystem , Rivers
7.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230123, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38705177

ABSTRACT

Arthropods contribute importantly to ecosystem functioning but remain understudied. This undermines the validity of conservation decisions. Modern methods are now making arthropods easier to study, since arthropods can be mass-trapped, mass-identified, and semi-mass-quantified into 'many-row (observation), many-column (species)' datasets, with homogeneous error, high resolution, and copious environmental-covariate information. These 'novel community datasets' let us efficiently generate information on arthropod species distributions, conservation values, uncertainty, and the magnitude and direction of human impacts. We use a DNA-based method (barcode mapping) to produce an arthropod-community dataset from 121 Malaise-trap samples, and combine it with 29 remote-imagery layers using a deep neural net in a joint species distribution model. With this approach, we generate distribution maps for 76 arthropod species across a 225 km2 temperate-zone forested landscape. We combine the maps to visualize the fine-scale spatial distributions of species richness, community composition, and site irreplaceability. Old-growth forests show distinct community composition and higher species richness, and stream courses have the highest site-irreplaceability values. With this 'sideways biodiversity modelling' method, we demonstrate the feasibility of biodiversity mapping at sufficient spatial resolution to inform local management choices, while also being efficient enough to scale up to thousands of square kilometres. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Subject(s)
Arthropods , Biodiversity , DNA, Environmental , Remote Sensing Technology , Arthropods/classification , Animals , DNA, Environmental/analysis , Remote Sensing Technology/methods , Forests , Animal Distribution , DNA Barcoding, Taxonomic/methods
8.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230121, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38705183

ABSTRACT

Aquatic macroinvertebrates, including many aquatic insect orders, are a diverse and ecologically relevant organismal group yet they are strongly affected by anthropogenic activities. As many of these taxa are highly sensitive to environmental change, they offer a particularly good early warning system for human-induced change, thus leading to their intense monitoring. In aquatic ecosystems there is a plethora of biotic monitoring or biomonitoring approaches, with more than 300 assessment methods reported for freshwater taxa alone. Ultimately, monitoring of aquatic macroinvertebrates is used to calculate ecological indices describing the state of aquatic systems. Many of the methods and indices used are not only hard to compare, but especially difficult to scale in time and space. Novel DNA-based approaches to measure the state and change of aquatic environments now offer unprecedented opportunities, also for possible integration towards commonly applicable indices. Here, we first give a perspective on DNA-based approaches in the monitoring of aquatic organisms, with a focus on aquatic insects, and how to move beyond traditional point-based biotic indices. Second, we demonstrate a proof-of-concept for spatially upscaling ecological indices based on environmental DNA, demonstrating how integration of these novel molecular approaches with hydrological models allows an accurate evaluation at the catchment scale. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Subject(s)
Aquatic Organisms , DNA, Environmental , Insecta , Animals , Aquatic Organisms/genetics , Biodiversity , Biological Monitoring/methods , DNA, Environmental/analysis , Ecosystem , Environmental Monitoring/methods , Insecta/genetics
9.
Int J Mol Sci ; 25(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38732163

ABSTRACT

The Chinese giant salamander (Andrias davidianus), listed as an endangered species under "secondary protection" in China, faces significant threats due to ecological deterioration and the expansion of human activity. Extensive field investigations are crucial to ascertain the current status in the wild and to implement effective habitat protection measures to safeguard this species and support its population development. Traditional survey methods often fall short due to the elusive nature of the A. davidianus, presenting challenges that are time-consuming and generally ineffective. To overcome these obstacles, this study developed a real-time monitoring method that uses environmental DNA (eDNA) coupled with recombinase polymerase amplification and lateral flow strip (RPA-LFD). We designed five sets of species-specific primers and probes based on mitochondrial genome sequence alignments of A. davidianus and its close relatives. Our results indicated that four of these primer/probe sets accurately identified A. davidianus, distinguishing it from other tested caudata species using both extracted DNA samples and water samples from a tank housing an individual. This method enables the specific detection of A. davidianus genomic DNA at concentrations as low as 0.1 ng/mL within 50 min, without requiring extensive laboratory equipment. Applied in a field survey across four sites in Huangshan City, Anhui Province, where A. davidianus is known to be distributed, the method successfully detected the species at three of the four sites. The development of these primer/probe sets offers a practical tool for field surveying and monitoring, facilitating efforts in population recovery and resource conservation for A. davidianus.


Subject(s)
Urodela , Animals , Urodela/genetics , China , Endangered Species , DNA, Environmental/genetics , DNA, Environmental/analysis , DNA, Mitochondrial/genetics , Genome, Mitochondrial
10.
Sci Rep ; 14(1): 10154, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698067

ABSTRACT

In the face of global ecosystem changes driven by anthropogenic activities, effective biomonitoring strategies are crucial for mitigating impacts on vulnerable aquatic habitats. Time series analysis underscores a great significance in understanding the dynamic nature of marine ecosystems, especially amidst climate change disrupting established seasonal patterns. Focusing on Norway's Oslo fjord, our research utilises eDNA-based monitoring for temporal analysis of aquatic biodiversity during a one year period, with bi-monthly sampling along a transect. To increase the robustness of the study, a taxonomic assignment comparing BLAST+ and SINTAX approaches was done. Utilising MiFish and Elas02 primer sets, our study detected 63 unique fish species, including several commercially important species. Our findings reveal a substantial increase in read abundance during specific migratory cycles, highlighting the efficacy of eDNA metabarcoding for fish composition characterization. Seasonal dynamics for certain species exhibit clear patterns, emphasising the method's utility in unravelling ecological complexities. eDNA metabarcoding emerges as a cost-effective tool with considerable potential for fish community monitoring for conservation purposes in dynamic marine environments like the Oslo fjord, contributing valuable insights for informed management strategies.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic , Estuaries , Fishes , Seasons , Animals , Fishes/genetics , Fishes/classification , Norway , DNA Barcoding, Taxonomic/methods , Ecosystem , Environmental Monitoring/methods , DNA, Environmental/genetics , DNA, Environmental/analysis
11.
Sci Rep ; 14(1): 10188, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702492

ABSTRACT

Global wild-capture fisheries are a large and diverse sector requiring various tools for fisheries-dependant data collection and effective Monitoring, Control and Surveillance (MCS). Here we present a novel protocol to collect eDNA from brine tanks onboard commercial longline vessels to reconstruct catch composition. We collected samples from nine vessels operating out of the Eastern Tuna Billfish Fishery, Australia, validating eDNA results with reliable catch data consisting of seven target and bycatch species. Environmental DNA was highly effective for detecting species retained on vessels without contamination or false positives. For four vessels, logbook data and eDNA were consistent with detections of all species. The remaining vessels detected all species except for rare catches of short-billed spearfish (Tetrapturus angustirostris). Similarities between rank abundance distributions of catch and eDNA reads were observed with logbook data mirrored when eDNA sequences were organised into rank order abundance. The method was effective at identifying highly abundant taxa retained in brine tanks- tuna (Thunnus spp.), swordfish (Xiphias gladius), marlin (Kajijia audax), and Atlantic Pomfret (Brama brama). Further research is required to validate how eDNA and other molecular monitoring tools can be scaled and applied to provide solutions for monitoring challenges in the fisheries sector.


Subject(s)
DNA, Environmental , Fisheries , Animals , DNA, Environmental/genetics , DNA, Environmental/analysis , Australia , Tuna/genetics , Fishes/genetics , Ships
12.
Chemosphere ; 359: 142264, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714248

ABSTRACT

Extracellular DNA refers to DNA fragments existing outside the cell, originating from various cell release mechanisms, including active secretion, cell lysis, and phage-mediated processes. Extracellular DNA serves as a vital environmental biomarker, playing crucial ecological and environmental roles in water bodies. This review is summarized the mechanisms of extracellular DNA release, including pathways involving cell lysis, extracellular vesicles, and type IV secretion systems. Then, the extraction and detection methods of extracellular DNA from water, soil, and biofilm are described and analyzed. Finally, we emphasize the role of extracellular DNA in microbial community systems, including its significant contributions to biofilm formation, biodiversity through horizontal gene transfer, and electron transfer processes. This review offers a comprehensive insight into the sources, distribution, functions, and impacts of extracellular DNA within aquatic environments, aiming to foster further exploration and understanding of extracellular DNA dynamics in aquatic environments as well as other environments.


Subject(s)
Wastewater , DNA, Environmental/analysis , Biofilms , Biodiversity , Environmental Monitoring/methods , Gene Transfer, Horizontal , Waste Disposal, Fluid/methods
13.
BMC Ecol Evol ; 24(1): 73, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822255

ABSTRACT

Monitoring mollusk biodiversity is a great challenge due to their large diversity and broad distribution. Environmental DNA (eDNA) technology is increasingly applied for biodiversity monitoring, but relevant studies on marine mollusks are still limited. Although previous studies have developed several pairs of primers for mollusk eDNA analyses, most of them targeted only a small group of mollusks. In this study, seven primers were designed for the mollusk community and validated and compared with eight pairs of published primers to select the best candidates. After in silico test, MollCOI154 and MollCOI255 primers showed non-specific amplification, and same results were also obtained in published primers (COI204, Sepi, and veneroida). Moll12S100, Moll12S195 and Moll16S primers failed to amplify across all genomic DNA from selected mollusk. Except Moll16S, all developed and two published (unionoida and veneroida) primers were successfully amplified on four eDNA samples from Yangtze River estuary. After annotation of the amplified sequences, MollCOI253 showed higher annotation of the amplification results than the other primers. In conclusion, MollCOI253 had better performance in terms of amplification success and specificity, and can provide technical support for eDNA-based research, which will be beneficial for molluscan biodiversity investigation and conservation.


Subject(s)
DNA Barcoding, Taxonomic , DNA Primers , DNA, Environmental , Mollusca , Mollusca/genetics , Animals , DNA Barcoding, Taxonomic/methods , DNA, Environmental/analysis , DNA, Environmental/genetics , DNA Primers/genetics , Biodiversity
14.
J Environ Manage ; 358: 120949, 2024 May.
Article in English | MEDLINE | ID: mdl-38657416

ABSTRACT

Biodiversity conservation and management in urban aquatic ecosystems is crucial to human welfare, and environmental DNA (eDNA)-based methods have become popular in biodiversity assessment. Here we report a highly overlooked source of significant false positives for eDNA-based biodiversity assessment in urban aquatic ecosystems supplied with treated wastewater - eDNA pollution originating from treated wastewater represents a noteworthy source of false positives. To investigate whether eDNA pollution is specific to a certain treatment or prevalent across methods employed by wastewater treatment plants, we conducted tests on effluent treated using three different secondary processes, both before and after upgrades to tertiary treatment. We metabarcoded eDNA collected from effluent immediately after full treatment and detected diverse native and non-native, commercial and ornamental fishes (48 taxa) across all treatment processes before and after upgrades. Thus, eDNA pollution occurred irrespective of the treatment processes applied. Release of eDNA pollution into natural aquatic ecosystems could translate into false positives for eDNA-based analysis. We discuss and propose technical solutions to minimize these false positives in environmental nucleic acid-based biodiversity assessments and conservation programs.


Subject(s)
Biodiversity , DNA, Environmental , DNA, Environmental/analysis , Wastewater , Environmental Monitoring/methods , Animals , Ecosystem
16.
Methods Mol Biol ; 2744: 171-180, 2024.
Article in English | MEDLINE | ID: mdl-38683318

ABSTRACT

Environmental DNA (eDNA) workflows contain many familiar molecular-lab techniques, but also employ several unique methodologies. When working with eDNA, it is essential to avoid contamination from the point of collection through preservation and select a meaningful negative control. As eDNA can be obtained from a variety of samples and habitats (e.g., soil, water, air, or tissue), protocols will vary depending on usage. Samples may require additional steps to dilute, block, or remove inhibitors or physically break up samples or filters. Thereafter, standard DNA isolation techniques (kit-based or phenol:chloroform:isoamyl [PCI]) are employed. Once DNA is extracted, it is typically quantified using a fluorometer. Yields vary greatly, but are important to know prior to amplification of the gene(s) of interest. Long-term storage of both the sampled material and the extracted DNA is encouraged, as it provides a backup for spilled/contaminated samples, lost data, reanalysis, and future studies using newer technology. Storage in a freezer is often ideal; however, some storage buffers (e.g., Longmires) require that filters or swabs are kept at room temperature to prevent precipitation of buffer-related solutes. These baseline methods for eDNA isolation, validation, and preservation are detailed in this protocol chapter. In addition, we outline a cost-effective, homebrew extraction protocol optimized to extract eDNA.


Subject(s)
DNA, Environmental , DNA, Environmental/isolation & purification , DNA, Environmental/analysis , DNA, Environmental/genetics , Preservation, Biological/methods , Specimen Handling/methods
17.
Sci Total Environ ; 929: 172414, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38631624

ABSTRACT

The integration of recombinase polymerase amplification (RPA) with CRISPR/Cas technology has revolutionized molecular diagnostics and pathogen detection due to its unparalleled sensitivity and trans-cleavage ability. However, its potential in the ecological and environmental monitoring scenarios for aquatic ecosystems remains largely unexplored, particularly in accurate qualitative/quantitative detection, and its actual performance in handling complex real environmental samples. Using zooplankton as a model, we have successfully optimized the RPA-CRISPR/Cas12a fluorescence detection platform (RPA-Cas-FQ), providing several crucial "technical tips". Our findings indicate the sensitivity of CRISPR/Cas12a alone is 5 × 109 copies/reaction, which can be dramatically increased to 5 copies/reaction when combined with RPA. The optimized RPA-Cas-FQ enables reliable qualitative and semi-quantitative detection within 50 min, and exhibits a good linear relationship between fluorescence intensity and DNA concentration (R2 = 0.956-0.974***). Additionally, we developed a rapid and straightforward identification procedure for single zooplankton by incorporating heat-lysis and DNA-barcode techniques. We evaluated the platform's effectiveness using real environmental DNA (eDNA) samples from the Three Gorges Reservoir, confirming its practicality. The eDNA-RPA-Cas-FQ demonstrated strong consistency (Kappa = 0.43***) with eDNA-Metabarcoding in detecting species presence/absence in the reservoir. Furthermore, the two semi-quantitative eDNA technologies showed a strong positive correlation (R2 = 0.58-0.87***). This platform also has the potential to monitor environmental pollutants by selecting appropriate indicator species. The novel insights and methodologies presented in this study represent a significant advancement in meeting the complex needs of aquatic ecosystem protection and monitoring.


Subject(s)
Environmental Monitoring , Zooplankton , Environmental Monitoring/methods , Animals , CRISPR-Cas Systems , DNA, Environmental/analysis , Nucleic Acid Amplification Techniques/methods , Recombinases/metabolism
18.
Bioelectrochemistry ; 158: 108697, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38554560

ABSTRACT

Heat stress and coral diseases are the predominant factors causing the degradation of coral reef ecosystems. Over recent years, Vibrio coralliilyticus was identified as a temperature-dependent pathogen causing tissue lysis in Pocillopora damicornis and one of the primary pathogens causing bleaching and mortality in other corals. Yet current detection techniques for V. coralliilyticus rely primarily on qPCR and ddPCR, which cannot meet the requirements for non-invasive and real-time detection. Herein, we developed an effective electrochemical biosensor modified by an Au-MoS2/rGO (AMG) nanocomposites and a specific capture probe to dynamically detect V. coralliilyticus environment DNA (eDNA) in aquarium experiments, with a lower limit of detection (0.28 fM) for synthetic DNA and a lower limit of quantification (9.8 fg/µL, ∼0.86 copies/µL) for genomic DNA. Its reliability and accuracy were verified by comparison with the ddPCR method (P > 0.05). Notably, coral tissue started to lyse at only 29 °C when the concentration of V. coralliilyticus increased abruptly to 880 copies/µL, indicating the biosensor could reflect the types of pathogen and health risks of corals under heat stress. Overall, the novel and reliable electrochemical biosensing technology provides an efficient strategy for the on-site monitoring and early warning of coral health in the context of global warming.


Subject(s)
Anthozoa , Biosensing Techniques , Vibrio , Biosensing Techniques/methods , Animals , Vibrio/genetics , Vibrio/isolation & purification , Anthozoa/microbiology , DNA, Bacterial/genetics , DNA, Bacterial/analysis , Limit of Detection , Electrochemical Techniques/methods , Nanocomposites/chemistry , Gold/chemistry , DNA, Environmental/genetics , DNA, Environmental/analysis
19.
Mar Biotechnol (NY) ; 26(2): 215-222, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38341825

ABSTRACT

The starfish Asterias amurensis, a well-known predator of molluscan species in intertidal ecosystems, has caused substantial ecological and economic losses in North China such as offshore Qingdao. Effective monitoring and prevention measures are urged to minimize its negative impacts. Compared with traditional biomonitoring methods, environmental DNA technology has emerged as a powerful and cost-efficient tool for inferring species' presence and abundance. In this study, we developed a pair of species-specific primers (i.e., Ast-F and Ast-R) for the A. amurensis mitochondrial COI gene and tested its utility in amplifying and quantifying the DNA fragments from environmental samples under both laboratory and field conditions. The results of controlled water tank experiments demonstrated that the amount of eDNA released by A. amurensis was positively related to its biomass; after the removal of the starfish, the eDNA degraded significantly in 24 h and remained detectable for 8 days. The number of eDNA copies enriched tended to increase with smaller pore size of filter membrane and larger volume of filtered water. For field tests, we confirmed the validation of our approach in six locations in Qingdao by filtering 1000 ml water per sample with a 0.45-µm pore size filtration. All the amplification products generated a single and bright band via gel electrophoresis, and the quantitative PCR results unveiled significant differences in eDNA copies. This study provided an eDNA-based approach for investigating the distribution and biomass of A. amurensis, which may help to formulate early warning and management strategies in coastal Qingdao and other regions.


Subject(s)
Asterias , DNA Primers , DNA, Environmental , Species Specificity , Animals , DNA, Environmental/genetics , DNA, Environmental/analysis , Asterias/genetics , DNA Primers/genetics , China , Environmental Monitoring/methods , Electron Transport Complex IV/genetics , Polymerase Chain Reaction/methods , Starfish/genetics , DNA, Mitochondrial/genetics
20.
Electrophoresis ; 45(9-10): 916-932, 2024 May.
Article in English | MEDLINE | ID: mdl-38419135

ABSTRACT

Biological material is routinely collected at crime scenes and from exhibits and is a key type of evidence during criminal investigations. Improvements in DNA technologies allow collection and profiling of trace samples, comprised of few cells, significantly expanding the types of exhibits targeted for DNA analysis to include touched surfaces. However, success rates from trace and touch DNA samples tend to be poorer compared to other biological materials such as blood. Simultaneously, there have been recent advances in the utility of environmental DNA collection (eDNA) in identification and tracking of different biological organisms and species from bacteria to naked mole rats in different environments, including, soil, ice, snow, air and aquatic. This paper examines the emerging methods and research into eDNA collection, with a special emphasis on the potential forensic applications of human DNA collection from air including challenges and further studies required to progress implementation.


Subject(s)
DNA, Environmental , Humans , Animals , DNA, Environmental/analysis , Forensic Genetics/methods , Specimen Handling/methods , Air/analysis , Forensic Sciences/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...