Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.929
Filter
1.
Plant Mol Biol ; 114(5): 100, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39302509

ABSTRACT

Plastid-encoded RNA polymerase (PEP) is a bacterial-type multisubunit RNA polymerase responsible for the majority of transcription in chloroplasts. PEP consists of four core subunits, which are orthologs of their cyanobacterial counterparts. In Arabidopsis thaliana, PEP is expected to interact with 14 PEP-associated proteins (PAPs), which serve as peripheral subunits of the RNA polymerase. The exact contributions of PAPs to PEP function are still poorly understood. We used ptChIP-seq to show that PAP1 (also known as pTAC3), a peripheral subunit of PEP, binds to the same genomic loci as RpoB, a core subunit of PEP. The pap1 mutant shows a complete loss of RpoB binding to DNA throughout the genome, indicating that PAP1 is necessary for RpoB binding to DNA. A similar loss of RpoB binding to DNA is observed in a mutant defective in PAP7 (also known as pTAC14), another peripheral PEP subunit. We propose that PAPs are required for the recruitment of core PEP subunits to DNA.


Subject(s)
Arabidopsis Proteins , Arabidopsis , DNA-Directed RNA Polymerases , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/enzymology , Plastids/genetics , DNA, Plant/genetics , DNA, Plant/metabolism , Mutation , Gene Expression Regulation, Plant , Protein Binding , Chloroplasts/genetics , Chloroplasts/metabolism
2.
BMC Plant Biol ; 24(1): 723, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080534

ABSTRACT

BACKGROUND: 6 - 4 photoproducts are the second most common UV-induced DNA lesions after cyclobutane pyrimidine dimers. In plants, they are mainly repaired by photolyases in a process called photoreactivation. While pyrimidine dimers can be deleterious, leading to mutagenesis or even cell death, 6 - 4 photoproducts can activate specific signaling pathways. Therefore, their removal is particularly important, especially for plants exposed to high UV intensities due to their sessile nature. Although photoreactivation in nuclear DNA is well-known, its role in plant organelles remains unclear. In this paper we analyzed the activity and localization of GFP-tagged AtUVR3, the 6 - 4 photoproduct specific photolyase. RESULTS: Using transgenic Arabidopsis with different expression levels of AtUVR3, we confirmed a positive trend between these levels and the rate of 6 - 4 photoproduct removal under blue light. Measurements of 6 - 4 photoproduct levels in chloroplast and nuclear DNA of wild type, photolyase mutants, and transgenic plants overexpressing AtUVR3 showed that the photoreactivation is the main repair pathway responsible for the removal of these lesions in both organelles. The GFP-tagged AtUVR3 was predominantly located in nuclei with a small fraction present in chloroplasts and mitochondria of transgenic Arabidopsis thaliana and Nicotiana tabacum lines. In chloroplasts, this photolyase co-localized with the nucleoid marked by plastid envelope DNA binding protein. CONCLUSIONS: Photolyases are mainly localized in plant nuclei, with only a small fraction present in chloroplasts and mitochondria. Despite this unbalanced distribution, photoreactivation is the primary mechanism responsible for the removal of 6 - 4 photoproducts from nuclear and chloroplast DNA in adult leaves. The amount of the AtUVR3 photolyase is the limiting factor influencing the photoreactivation rate of 6 - 4 photoproducts. The efficient photoreactivation of 6 - 4 photoproducts in 35S: AtUVR3-GFP Arabidopsis and Nicotiana tabacum is a promising starting point to evaluate whether transgenic crops overproducing this photolyase are more tolerant to high UV irradiation and how they respond to other abiotic and biotic stresses under field conditions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Nucleus , DNA Repair , Deoxyribodipyrimidine Photo-Lyase , Plants, Genetically Modified , Arabidopsis/genetics , Arabidopsis/radiation effects , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Cell Nucleus/metabolism , Cell Nucleus/radiation effects , Deoxyribodipyrimidine Photo-Lyase/metabolism , Deoxyribodipyrimidine Photo-Lyase/genetics , Ultraviolet Rays , DNA, Plant/metabolism , DNA, Plant/genetics , Pyrimidine Dimers/metabolism , Pyrimidine Dimers/genetics , DNA, Chloroplast/genetics , DNA, Chloroplast/metabolism , Chloroplasts/metabolism , DNA Damage
3.
Nat Commun ; 15(1): 5187, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992002

ABSTRACT

The histone H2A variant H2A.W occupies transposons and thus prevents access to them in Arabidopsis thaliana. H2A.W is deposited by the chromatin remodeler DDM1, which also promotes the accessibility of chromatin writers to heterochromatin by an unknown mechanism. To shed light on this question, we solve the cryo-EM structures of nucleosomes containing H2A and H2A.W, and the DDM1-H2A.W nucleosome complex. These structures show that the DNA end flexibility of the H2A nucleosome is higher than that of the H2A.W nucleosome. In the DDM1-H2A.W nucleosome complex, DDM1 binds to the N-terminal tail of H4 and the nucleosomal DNA and increases the DNA end flexibility of H2A.W nucleosomes. Based on these biochemical and structural results, we propose that DDM1 counters the low accessibility caused by nucleosomes containing H2A.W to enable the maintenance of repressive epigenetic marks on transposons and prevent their activity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Chromatin Assembly and Disassembly , Cryoelectron Microscopy , Histones , Nucleosomes , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/chemistry , Nucleosomes/metabolism , Nucleosomes/ultrastructure , Nucleosomes/chemistry , Histones/metabolism , Histones/genetics , Histones/chemistry , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription Factors/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Protein Binding , Models, Molecular , DNA, Plant/metabolism , DNA, Plant/genetics
4.
Plant Mol Biol ; 114(3): 71, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856917

ABSTRACT

Mitochondria and plastids, originated as ancestral endosymbiotic bacteria, contain their own DNA sequences. These organelle DNAs (orgDNAs) are, despite the limited genetic information they contain, an indispensable part of the genetic systems but exist as multiple copies, making up a substantial amount of total cellular DNA. Given this abundance, orgDNA is known to undergo tissue-specific degradation in plants. Previous studies have shown that the exonuclease DPD1, conserved among seed plants, degrades orgDNAs during pollen maturation and leaf senescence in Arabidopsis. However, tissue-specific orgDNA degradation was shown to differ among species. To extend our knowledge, we characterized DPD1 in rice in this study. We created a genome-edited (GE) mutant in which OsDPD1 and OsDPD1-like were inactivated. Characterization of this GE plant demonstrated that DPD1 was involved in pollen orgDNA degradation, whereas it had no significant effect on orgDNA degradation during leaf senescence. Comparison of transcriptomes from wild-type and GE plants with different phosphate supply levels indicated that orgDNA had little impact on the phosphate starvation response, but instead had a global impact in plant growth. In fact, the GE plant showed lower fitness with reduced grain filling rate and grain weight in natural light conditions. Taken together, the presented data reinforce the important physiological roles of orgDNA degradation mediated by DPD1.


Subject(s)
Oryza , Oryza/genetics , Oryza/metabolism , Oryza/enzymology , Oryza/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Exonucleases/metabolism , Exonucleases/genetics , Gene Editing , Gene Expression Regulation, Plant , DNA, Plant/genetics , DNA, Plant/metabolism , Pollen/genetics , Pollen/metabolism , Pollen/growth & development , Plant Leaves/genetics , Plant Leaves/metabolism , Genome, Plant , Mutation
5.
Plant J ; 119(3): 1418-1432, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38824612

ABSTRACT

DNA-protein crosslinks (DPCs) are highly toxic DNA lesions represented by proteins covalently bound to the DNA. Persisting DPCs interfere with fundamental genetic processes such as DNA replication and transcription. Cytidine analog zebularine (ZEB) has been shown to crosslink DNA METHYLTRANSFERASE1 (MET1). Recently, we uncovered a critical role of the SMC5/6-mediated SUMOylation in the repair of DPCs. In an ongoing genetic screen, we identified two additional candidates, HYPERSENSITIVE TO ZEBULARINE 2 and 3, that were mapped to REGULATOR OF TELOMERE ELONGATION 1 (RTEL1) and polymerase TEBICHI (TEB), respectively. By monitoring the growth of hze2 and hze3 plants in response to zebularine, we show the importance of homologous recombination (HR) factor RTEL1 and microhomology-mediated end-joining (MMEJ) polymerase TEB in the repair of MET1-DPCs. Moreover, genetic interaction and sensitivity assays showed the interdependency of SMC5/6 complex, HR, and MMEJ in the homology-directed repair of MET1-DPCs in Arabidopsis. Altogether, we provide evidence that MET1-DPC repair in plants is more complex than originally expected.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cytidine , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Cytidine/analogs & derivatives , Cytidine/metabolism , Cytidine/pharmacology , Recombinational DNA Repair , DNA Repair , DNA, Plant/genetics , DNA, Plant/metabolism , DNA Damage
6.
Proc Natl Acad Sci U S A ; 121(22): e2320468121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38768356

ABSTRACT

Spontaneous gain or loss of DNA methylation occurs in plant and animal genomes, and DNA methylation changes can lead to meiotically stable epialleles that generate heritable phenotypic diversity. However, it is unclear whether transgenerational epigenetic stability may be regulated by any cellular factors. Here, we examined spontaneously occurring variations in DNA methylation in wild-type and ros1 mutant Arabidopsis plants that were propagated for ten generations from single-seed descent. We found that the ros1 mutant, which is defective in active DNA demethylation, showed an increased transgenerational epimutation rate. The ros1 mutation led to more spontaneously gained methylation than lost methylation at individual cytosines, compared to the wild type which had similar numbers of spontaneously gained and lost methylation cytosines. Consistently, transgenerational differentially methylated regions were also biased toward hypermethylation in the ros1 mutant. Our results reveal a genetic contribution of the ROS1 DNA demethylase to transgenerational epigenetic stability and suggest that ROS1 may have an unexpected surveillance function in preventing transgenerational DNA methylation increases.


Subject(s)
Arabidopsis Proteins , Arabidopsis , DNA Demethylation , DNA Methylation , Epigenesis, Genetic , Mutation , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , DNA, Plant/genetics , DNA, Plant/metabolism , Nuclear Proteins
7.
Nucleic Acids Res ; 52(11): 6662-6673, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38621714

ABSTRACT

Eukaryotic Argonaut proteins (AGOs) assemble RNA-induced silencing complexes (RISCs) with guide RNAs that allow binding to complementary RNA sequences and subsequent silencing of target genes. The model plant Arabidopsis thaliana encodes 10 different AGOs, categorized into three distinct clades based on amino acid sequence similarity. While clade 1 and 2 RISCs are known for their roles in post-transcriptional gene silencing, and clade 3 RISCs are associated with transcriptional gene silencing in the nucleus, the specific mechanisms of how RISCs from each clade recognize their targets remain unclear. In this study, I conducted quantitative binding analyses between RISCs and target nucleic acids with mismatches at various positions, unveiling distinct target binding characteristics unique to each clade. Clade 1 and 2 RISCs require base pairing not only in the seed region but also in the 3' supplementary region for stable target RNA binding, with clade 1 exhibiting a higher stringency. Conversely, clade 3 RISCs tolerate dinucleotide mismatches beyond the seed region. Strikingly, they bind to DNA targets with an affinity equal to or surpassing that of RNA, like prokaryotic AGO complexes. These insights challenge existing views on plant RNA silencing and open avenues for exploring new functions of eukaryotic AGOs.


Subject(s)
Arabidopsis Proteins , Arabidopsis , RNA-Induced Silencing Complex , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/immunology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , RNA-Induced Silencing Complex/metabolism , RNA-Induced Silencing Complex/genetics , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , RNA, Plant/metabolism , RNA, Plant/genetics , RNA, Plant/chemistry , Protein Binding , RNA Interference , Base Pair Mismatch , DNA, Plant/metabolism , DNA, Plant/genetics
8.
Nucleic Acids Res ; 52(11): 6285-6297, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38676941

ABSTRACT

Epigenetic regulations, including chromatin accessibility, nucleosome positioning and DNA methylation intricately shape genome function. However, current chromatin profiling techniques relying on short-read sequencing technologies fail to characterise highly repetitive genomic regions and cannot detect multiple chromatin features simultaneously. Here, we performed Simultaneous Accessibility and DNA Methylation Sequencing (SAM-seq) of purified plant nuclei. Thanks to the use of long-read nanopore sequencing, SAM-seq enables high-resolution profiling of m6A-tagged chromatin accessibility together with endogenous cytosine methylation in plants. Analysis of naked genomic DNA revealed significant sequence preference biases of m6A-MTases, controllable through a normalisation step. By applying SAM-seq to Arabidopsis and maize nuclei we obtained fine-grained accessibility and DNA methylation landscapes genome-wide. We uncovered crosstalk between chromatin accessibility and DNA methylation within nucleosomes of genes, TEs, and centromeric repeats. SAM-seq also detects DNA footprints over cis-regulatory regions. Furthermore, using the single-molecule information provided by SAM-seq we identified extensive cellular heterogeneity at chromatin domains with antagonistic chromatin marks, suggesting that bivalency reflects cell-specific regulations. SAM-seq is a powerful approach to simultaneously study multiple epigenetic features over unique and repetitive sequences, opening new opportunities for the investigation of epigenetic mechanisms.


Subject(s)
Arabidopsis , Chromatin , DNA Methylation , Genome, Plant , Zea mays , Arabidopsis/genetics , Cell Nucleus/genetics , Chromatin/genetics , Chromatin/metabolism , DNA Methylation/genetics , DNA, Plant/genetics , DNA, Plant/metabolism , Epigenesis, Genetic , High-Throughput Nucleotide Sequencing/methods , Nanopore Sequencing/methods , Nucleosomes/genetics , Nucleosomes/metabolism , Sequence Analysis, DNA/methods , Zea mays/genetics , Zea mays/metabolism
9.
Sci China Life Sci ; 67(7): 1479-1488, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38639838

ABSTRACT

Non-B-form DNA differs from the classic B-DNA double helix structure and plays a crucial regulatory role in replication and transcription. However, the role of non-B-form DNA in centromeres, especially in polyploid wheat, remains elusive. Here, we systematically analyzed seven non-B-form DNA motif profiles (A-phased DNA repeat, direct repeat, G-quadruplex, inverted repeat, mirror repeat, short tandem repeat, and Z-DNA) in hexaploid wheat. We found that three of these non-B-form DNA motifs were enriched at centromeric regions, especially at the CENH3-binding sites, suggesting that non-B-form DNA may create a favorable loading environment for the CENH3 nucleosome. To investigate the dynamics of centromeric non-B form DNA during the alloploidization process, we analyzed DNA secondary structure using CENH3 ChIP-seq data from newly formed allotetraploid wheat and its two diploid ancestors. We found that newly formed allotetraploid wheat formed more non-B-form DNA in centromeric regions compared with their parents, suggesting that non-B-form DNA is related to the localization of the centromeric regions in newly formed wheat. Furthermore, non-B-form DNA enriched in the centromeric regions was found to preferentially form on young LTR retrotransposons, explaining CENH3's tendency to bind to younger LTR. Collectively, our study describes the landscape of non-B-form DNA in the wheat genome, and sheds light on its potential role in the evolution of polyploid centromeres.


Subject(s)
Centromere , DNA, Plant , Polyploidy , Triticum , Triticum/genetics , Triticum/metabolism , Centromere/metabolism , Centromere/genetics , DNA, Plant/genetics , DNA, Plant/metabolism , Chromosomes, Plant/genetics , Nucleic Acid Conformation
10.
Nat Plants ; 10(6): 857-873, 2024 06.
Article in English | MEDLINE | ID: mdl-38658791

ABSTRACT

Maintenance of genome integrity is an essential process in all organisms. Mechanisms avoiding the formation of DNA lesions or mutations are well described in animals because of their relevance to human health and cancer. In plants, they are of growing interest because DNA damage accumulation is increasingly recognized as one of the consequences of stress. Although the cellular response to DNA damage is mostly studied in response to genotoxic treatments, the main source of DNA lesions is cellular activity itself. This can occur through the production of reactive oxygen species as well as DNA processing mechanisms such as DNA replication or transcription and chromatin dynamics. In addition, how lesions are formed and repaired is greatly influenced by chromatin features and dynamics and by DNA and RNA metabolism. Notably, actively transcribed regions or replicating DNA, because they are less condensed and are sites of DNA processing, are more exposed to DNA damage. However, at the same time, a wealth of cellular mechanisms cooperate to favour DNA repair at these genomic loci. These intricate relationships that shape the distribution of mutations along the genome have been studied extensively in animals but much less in plants. In this Review, we summarize how chromatin dynamics influence lesion formation and DNA repair in plants, providing a comprehensive view of current knowledge and highlighting open questions with regard to what is known in other organisms.


Subject(s)
Chromatin , DNA Repair , Genome, Plant , Chromatin/metabolism , Chromatin/genetics , DNA Damage , RNA, Plant/metabolism , RNA, Plant/genetics , Plants/genetics , Plants/metabolism , Genomic Instability , DNA, Plant/metabolism , DNA, Plant/genetics
11.
Plant Sci ; 342: 112055, 2024 May.
Article in English | MEDLINE | ID: mdl-38432357

ABSTRACT

DNA N6-methyladenine (6 mA) has recently been discovered as a novel DNA modification in animals and plants. In mammals, AlkB homolog 1 (ALKBH1) has been identified as a DNA 6 mA demethylase. ALKBH1 tightly controls the DNA 6 mA methylation level of mammalian genomes and plays important role in regulating gene expression. DNA 6 mA methylation has also been reported to exist in plant genomes, however, the plant DNA 6 mA demethylases and their function remain largely unknown. Here we identify homologs of ALKBH1 as DNA 6 mA demethylases in Arabidopsis. We discover that there are four homologs of ALKBH1, AtALKBH1A, AtALKBH1B, AtALKBH1C and AtALKBH1D, in Arabidopsis. In vitro enzymatic activity studies reveal that AtALKBH1A and 1D can efficiently erase DNA 6 mA methylation. Loss of function of AtALKBH1A and AtALKBH1D causes elevated DNA 6 mA methylation levels in vivo. atalkbh1a/1d mutant displays delayed seed gemination. Based on our RNA-seq data, we find some regulators of seed gemination are dysregulated in atalkbh1a/1d, and the dysregulation is correlated with changes of DNA 6 mA methylation levels. This study identifies plant DNA 6 mA demethylases and reports the function of DNA 6 mA methylation in regulating seed germination.


Subject(s)
Arabidopsis , Animals , Arabidopsis/genetics , Arabidopsis/metabolism , Adenine/metabolism , DNA Methylation/genetics , Genome, Plant , DNA, Plant/metabolism , Mammals/metabolism
12.
Plant Cell ; 36(6): 2253-2271, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38416876

ABSTRACT

Brassinosteroids (BRs) are widely used as plant growth regulators in modern agriculture. Understanding how BRs regulate nutrient signaling is crucial for reducing fertilizer usage. Here we elucidate that the central BR signaling inhibitor GSK3/SHAGGY-LIKE KINASE2 (GSK2) interacts directly with and phosphorylates PHOSPHATE STARVATION RESPONSE2 (OsPHR2), the key regulator of phosphate (Pi) signaling, to suppress its transcription factor activity in rice (Oryza sativa). We identify a critical phosphorylation site at serine residue S269 of OsPHR2 and demonstrate that phosphorylation by GSK2 or phosphor-mimic mutation of S269 substantially impairs the DNA-binding activity of OsPHR2, and thus diminishes expression of OsPHR2-induced genes and reduces Pi levels. Like BRs, Pi starvation noticeably induces GSK2 instability. We further show that this site-specific phosphorylation event is conserved in Arabidopsis (Arabidopsis thaliana), but varies among the PHR-family members, being present only in most land plants. These results unveil a distinctive post-transcriptional regulatory mechanism in Pi signaling by which BRs promote Pi acquisition, with a potential contribution to the environmental adaptability of plants during their evolution.


Subject(s)
Brassinosteroids , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Arabidopsis/metabolism , Arabidopsis/genetics , Brassinosteroids/metabolism , DNA, Plant/metabolism , DNA, Plant/genetics , Gene Expression Regulation, Plant/drug effects , Oryza/metabolism , Oryza/genetics , Phosphates/metabolism , Phosphorylation , Plant Proteins/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Signal Transduction , Plant Growth Regulators/pharmacology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
13.
Nat Plants ; 10(3): 374-380, 2024 03.
Article in English | MEDLINE | ID: mdl-38413824

ABSTRACT

Eukaryotic gene regulation occurs at the chromatin level, which requires changing the chromatin structure by a group of ATP-dependent DNA translocases-namely, the chromatin remodellers1. In plants, chromatin remodellers function in various biological processes and possess both conserved and plant-specific components2-5. DECREASE IN DNA METHYLATION 1 (DDM1) is a plant chromatin remodeller that plays a key role in the maintenance DNA methylation6-11. Here we determined the structures of Arabidopsis DDM1 in complex with nucleosome in ADP-BeFx-bound, ADP-bound and nucleotide-free conformations. We show that DDM1 specifically recognizes the H4 tail and nucleosomal DNA. The conformational differences between ADP-BeFx-bound, ADP-bound and nucleotide-free DDM1 suggest a chromatin remodelling cycle coupled to ATP binding, hydrolysis and ADP release. This, in turn, triggers conformational changes in the DDM1-bound nucleosomal DNA, which alters the nucleosome structure and promotes DNA sliding. Together, our data reveal the molecular basis of chromatin remodelling by DDM1.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Nucleosomes/metabolism , DNA Methylation , Transcription Factors/metabolism , DNA-Binding Proteins/metabolism , DNA, Plant/metabolism , Chromatin Assembly and Disassembly , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chromatin/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Adenosine Triphosphate/metabolism
14.
Plant Physiol ; 194(4): 2039-2048, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38366882

ABSTRACT

DNA methylation plays an important role in many biological processes. The mechanisms underlying the establishment and maintenance of DNA methylation are well understood thanks to decades of research using DNA methylation mutants, primarily in Arabidopsis (Arabidopsis thaliana) accession Col-0. Recent genome-wide association studies (GWASs) using the methylomes of natural accessions have uncovered a complex and distinct genetic basis of variation in DNA methylation at the population level. Sequencing following bisulfite treatment has served as an excellent method for quantifying DNA methylation. Unlike studies focusing on specific accessions with reference genomes, population-scale methylome research often requires an additional round of sequencing beyond obtaining genome assemblies or genetic variations from whole-genome sequencing data, which can be cost prohibitive. Here, we provide an overview of recently developed bisulfite-free methods for quantifying methylation and cost-effective approaches for the simultaneous detection of genetic and epigenetic information. We also discuss the plasticity of DNA methylation in a specific Arabidopsis accession, the contribution of DNA methylation to plant adaptation, and the genetic determinants of variation in DNA methylation in natural populations. The recently developed technology and knowledge will greatly benefit future studies in population epigenomes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , DNA Methylation/genetics , DNA, Plant/genetics , DNA, Plant/metabolism , Epigenesis, Genetic , Genome, Plant/genetics , Genome-Wide Association Study
15.
Trends Biochem Sci ; 49(3): 247-256, 2024 03.
Article in English | MEDLINE | ID: mdl-38072749

ABSTRACT

In plants, two atypical DNA-dependent RNA polymerases, RNA polymerase IV (Pol IV) and Pol V, and an RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) together produce noncoding RNAs (ncRNAs) to guide the plant-specific RNA-directed DNA methylation (RdDM). Although both Pol IV and Pol V have evolved from the canonical Pol II, they have adapted to different roles in RdDM. The mechanisms of their adaptation are key to understanding plant DNA methylation and the divergent evolution of polymerases. In this review, we summarize insights that have emerged from recent structural studies of Pol IV, Pol V, and RDR2 and discuss their structural features critical for efficient ncRNA production in RdDM.


Subject(s)
Arabidopsis Proteins , Arabidopsis , DNA Methylation , DNA, Plant/metabolism , Arabidopsis/metabolism , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , RNA, Untranslated/genetics , Plants/genetics , RNA, Plant/genetics , RNA, Plant/metabolism , Arabidopsis Proteins/metabolism , RNA, Small Interfering/metabolism
16.
J Biol Chem ; 299(12): 105433, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37926286

ABSTRACT

DNA methylation provides an important epigenetic mechanism that critically regulates gene expression, genome imprinting, and retrotransposon silencing. In plants, DNA methylation is prevalent not only in a CG dinucleotide context but also in non-CG contexts, namely CHG and CHH (H = C, T, or A) methylation. It has been established that plant non-CG DNA methylation is highly context dependent, with the +1- and +2-flanking sequences enriched with A/T nucleotides. How DNA sequence, conformation, and dynamics influence non-CG methylation remains elusive. Here, we report structural and biochemical characterizations of the intrinsic substrate preference of DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), a plant DNA methyltransferase responsible for establishing all cytosine methylation and maintaining CHH methylation. Among nine CHH motifs, the DRM2 methyltransferase (MTase) domain shows marked substrate preference toward CWW (W = A or T) motifs, correlating well with their relative abundance in planta. Furthermore, we report the crystal structure of DRM2 MTase in complex with a DNA duplex containing a flexible TpA base step at the +1/+2-flanking sites of the target nucleotide. Comparative structural analysis of the DRM2-DNA complexes provides a mechanism by which flanking nucleotide composition impacts DRM2-mediated DNA methylation. Furthermore, the flexibility of the TpA step gives rise to two alternative DNA conformations, resulting in different interactions with DRM2 and consequently temperature-dependent shift of the substrate preference of DRM2. Together, this study provides insights into how the interplay between the conformational dynamics of DNA and temperature as an environmental factor contributes to the context-dependent CHH methylation by DRM2.


Subject(s)
Arabidopsis , Arabidopsis/metabolism , DNA/metabolism , DNA Methylation , DNA, Plant/metabolism , Gene Expression Regulation, Plant , Methyltransferases/genetics , Methyltransferases/metabolism , Nucleic Acid Conformation , Nucleotides/metabolism
17.
Int J Mol Sci ; 24(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37834194

ABSTRACT

Base excision DNA repair (BER) is a key pathway safeguarding the genome of all living organisms from damage caused by both intrinsic and environmental factors. Most present knowledge about BER comes from studies of human cells, E. coli, and yeast. Plants may be under an even heavier DNA damage threat from abiotic stress, reactive oxygen species leaking from the photosynthetic system, and reactive secondary metabolites. In general, BER in plant species is similar to that in humans and model organisms, but several important details are specific to plants. Here, we review the current state of knowledge about BER in plants, with special attention paid to its unique features, such as the existence of active epigenetic demethylation based on the BER machinery, the unexplained diversity of alkylation damage repair enzymes, and the differences in the processing of abasic sites that appear either spontaneously or are generated as BER intermediates. Understanding the biochemistry of plant DNA repair, especially in species other than the Arabidopsis model, is important for future efforts to develop new crop varieties.


Subject(s)
Arabidopsis , Humans , Arabidopsis/metabolism , Escherichia coli/metabolism , DNA Repair , DNA Damage , DNA, Plant/genetics , DNA, Plant/metabolism
18.
Science ; 379(6638): 1209-1213, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36893216

ABSTRACT

In addition to the conserved RNA polymerases I to III (Pols I to III) in eukaryotes, two atypical polymerases, Pols IV and V, specifically produce noncoding RNA in the RNA-directed DNA methylation pathway in plants. Here, we report on the structures of cauliflower Pol V in the free and elongation conformations. A conserved tyrosine residue of NRPE2 stacks with a double-stranded DNA branch of the transcription bubble to potentially attenuate elongation by inducing transcription stalling. The nontemplate DNA strand is captured by NRPE2 to enhance backtracking, thereby increasing 3'-5' cleavage, which likely underpins Pol V's high fidelity. The structures also illuminate the mechanism of Pol V transcription stalling and enhanced backtracking, which may be important for Pol V's retention on chromatin to serve its function in tethering downstream factors for RNA-directed DNA methylation.


Subject(s)
Brassica , DNA Methylation , DNA-Directed RNA Polymerases , Plant Proteins , RNA, Plant , RNA, Untranslated , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/metabolism , RNA, Plant/metabolism , Brassica/enzymology , Plant Proteins/metabolism , RNA, Untranslated/metabolism , DNA, Plant/metabolism , Protein Conformation , Catalytic Domain
19.
Nat Plants ; 9(2): 271-279, 2023 02.
Article in English | MEDLINE | ID: mdl-36624257

ABSTRACT

Active DNA demethylation plays a crucial role in eukaryotic gene imprinting and antagonizing DNA methylation. The plant-specific REPRESSOR OF SILENCING 1/DEMETER (ROS1/DME) family of enzymes directly excise 5-methyl-cytosine (5mC), representing an efficient DNA demethylation pathway distinct from that of animals. Here, we report the cryo-electron microscopy structures of an Arabidopsis ROS1 catalytic fragment in complex with substrate DNA, mismatch DNA and reaction intermediate, respectively. The substrate 5mC is flipped-out from the DNA duplex and subsequently recognized by the ROS1 base-binding pocket through hydrophobic and hydrogen-bonding interactions towards the 5-methyl group and Watson-Crick edge respectively, while the different protonation states of the bases determine the substrate preference for 5mC over T:G mismatch. Together with the structure of the reaction intermediate complex, our structural and biochemical studies revealed the molecular basis for substrate specificity, as well as the reaction mechanism underlying 5mC demethylation by the ROS1/DME family of plant-specific DNA demethylases.


Subject(s)
Arabidopsis Proteins , Arabidopsis , DNA Glycosylases , Animals , Arabidopsis Proteins/metabolism , DNA, Plant/metabolism , Protein-Tyrosine Kinases/metabolism , DNA Glycosylases/chemistry , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , DNA Demethylation , Cryoelectron Microscopy , Proto-Oncogene Proteins/metabolism , Arabidopsis/genetics , Plants/genetics , Nuclear Proteins/metabolism
20.
Plant Physiol ; 191(1): 335-351, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36200851

ABSTRACT

RNA-directed DNA methylation (RdDM) is an epigenetic process that directs silencing to specific genomic regions and loci. The biological functions of RdDM are not well studied in horticultural plants. Here, we isolated the ethyl methane-sulfonate-induced mutant reduced organ size (ros) producing small leaves, flowers, and fruits in woodland strawberry (Fragaria vesca) due to reduced cell numbers compared with that in the wild-type (WT). The candidate mutation causes a premature stop codon in FvH4_6g28780, which shares high similarity to Arabidopsis (Arabidopsis thaliana) Factor of DNA Methylation1 (FDM1) encoding an RdDM pathway component and was named FveFDM1. Consistently, the fvefdm1CR mutants generated by CRISPR/Cas9 also produced smaller organs. Overexpressing FveFDM1 in an Arabidopsis fdm1-1 fdm2-1 double mutant restored DNA methylation at the RdDM target loci. FveFDM1 acts in a protein complex with its homolog Involved in De Novo 2 (FveIDN2). Furthermore, whole-genome bisulfite sequencing revealed that DNA methylation, especially in the CHH context, was remarkably reduced throughout the genome in fvefdm1. Common and specific differentially expressed genes were identified in different tissues of fvefdm1 compared to in WT tissues. DNA methylation and expression levels of several gibberellic acid (GA) biosynthesis and cell cycle genes were validated. Moreover, the contents of GA and auxin were substantially reduced in the young leaves of fvefdm1 compared to in the WT. However, exogenous application of GA and auxin could not recover the organ size of fvefdm1. In addition, expression levels of FveFDM1, FveIDN2, Nuclear RNA Polymerase D1 (FveNRPD1), Domains Rearranged Methylase 2 (FveDRM2), and cell cycle genes were greatly induced by GA treatment. Overall, our work demonstrated the critical roles of FveFDM1 in plant growth and development via RdDM-mediated DNA methylation in horticultural crops.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Fragaria , DNA Methylation/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Fragaria/genetics , Fragaria/metabolism , Arabidopsis Proteins/metabolism , Organ Size/genetics , Gene Expression Regulation, Plant , RNA, Small Interfering/genetics , DNA, Plant/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL