Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 361
Filter
1.
Nat Commun ; 15(1): 3880, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719804

ABSTRACT

Correlative evidence has suggested that the methyl-CpG-binding protein MeCP2 contributes to the formation of heterochromatin condensates via liquid-liquid phase separation. This interpretation has been reinforced by the observation that heterochromatin, DNA methylation and MeCP2 co-localise within prominent foci in mouse cells. The findings presented here revise this view. MeCP2 localisation is independent of heterochromatin as MeCP2 foci persist even when heterochromatin organisation is disrupted. Additionally, MeCP2 foci fail to show hallmarks of phase separation in live cells. Importantly, we find that mouse cellular models are highly atypical as MeCP2 distribution is diffuse in most mammalian species, including humans. Notably, MeCP2 foci are absent in Mus spretus which is a mouse subspecies lacking methylated satellite DNA repeats. We conclude that MeCP2 has no intrinsic tendency to form condensates and its localisation is independent of heterochromatin. Instead, the distribution of MeCP2 in the nucleus is primarily determined by global DNA methylation patterns.


Subject(s)
DNA Methylation , Heterochromatin , Methyl-CpG-Binding Protein 2 , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Heterochromatin/metabolism , Animals , Mice , Humans , Cell Nucleus/metabolism , Protein Binding , DNA/metabolism , DNA, Satellite/metabolism , DNA, Satellite/genetics , Phase Separation
2.
J Integr Plant Biol ; 66(2): 196-207, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38158885

ABSTRACT

Rice (Oryza sativa) is a significant crop worldwide with a genome shaped by various evolutionary factors. Rice centromeres are crucial for chromosome segregation, and contain some unreported genes. Due to the diverse and complex centromere region, a comprehensive understanding of rice centromere structure and function at the population level is needed. We constructed a high-quality centromere map based on the rice super pan-genome consisting of a 251-accession panel comprising both cultivated and wild species of Asian and African rice. We showed that rice centromeres have diverse satellite repeat CentO, which vary across chromosomes and subpopulations, reflecting their distinct evolutionary patterns. We also revealed that long terminal repeats (LTRs), especially young Gypsy-type LTRs, are abundant in the peripheral CentO-enriched regions and drive rice centromere expansion and evolution. Furthermore, high-quality genome assembly and complete telomere-to-telomere (T2T) reference genome enable us to obtain more centromeric genome information despite mapping and cloning of centromere genes being challenging. We investigated the association between structural variations and gene expression in the rice centromere. A centromere gene, OsMAB, which positively regulates rice tiller number, was further confirmed by expression quantitative trait loci, haplotype analysis and clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 methods. By revealing the new insights into the evolutionary patterns and biological roles of rice centromeres, our finding will facilitate future research on centromere biology and crop improvement.


Subject(s)
DNA, Satellite , Oryza , DNA, Satellite/metabolism , Oryza/genetics , Oryza/metabolism , Base Sequence , Centromere/genetics , Genome, Plant/genetics
3.
Semin Cell Dev Biol ; 128: 61-68, 2022 08.
Article in English | MEDLINE | ID: mdl-35484025

ABSTRACT

The need of large-scale chromatin organization in the nucleus has become more and more appreciated. The higher order nuclear organization ultimately regulate a plethora of biological processes including transcription, DNA replication, and DNA repair. In this context, it is of critical importance to understand the mechanisms that allow higher order nuclear organization. Scaffold Attachment Factor A (SAF-A/hnRNPU), which was originally identified as the component of nuclear matrix, has emerged as an important regulator of higher order nuclear organization. It is shown that SAF-A/hnRNPU binds to tandem repeats (TRs) and scaffold/matrix attachment regions (S/MAR) in a sequence-non-specific, but structure-specific manner (e.g. DNA curvature). Recent studies showed that SAF-A interacts with chromatin-associated RNAs (caRNAs) to regulate interphase chromatin structures in a transcription-dependent manner. It is proposed that SAF-A/hnRNPU and caRNAs form a dynamic, transcriptionally responsive chromatin mesh that organizes chromatin in a large scale. The common structural features of S/MAR and pericentromeric (periCEN) TR promotes SAF-A-mediated association with each other. Collectively a model is presented wherein SAF-A/hnRNPU and periCEN TR are the key players in large-scale nuclear organization that supports general transcription.


Subject(s)
Biological Phenomena , DNA, Satellite , Chromatin/genetics , Chromatin/metabolism , DNA, Satellite/analysis , DNA, Satellite/metabolism , Matrix Attachment Regions/genetics , Nuclear Matrix/chemistry , Nuclear Matrix/metabolism , RNA/metabolism
4.
Cells ; 10(12)2021 12 01.
Article in English | MEDLINE | ID: mdl-34943883

ABSTRACT

Although the pericentromeric regions of chromosomes that are enriched in tandemly repeated satellite DNA represent a significant part of eukaryotic genomes, they remain understudied, which is mainly due to interdisciplinary knowledge gaps. Recent studies suggest their important role in genome regulation, karyotype stability, and evolution. Thus, the idea of satellite DNA as a junk part of the genome has been refuted. The integration of data regarding molecular composition, chromosome behaviour, and the details of the in situ organization of pericentromeric regions is of great interest. The objective of this work was a cytogenetic analysis of the interactions between pericentromeric regions from non-homologous chromosomes in mouse spermatocytes using immuno-FISH. We analysed two events: the associations between centromeric regions of the X chromosome and autosomes and the associations between the centromeric regions of the autosomal bivalents that form chromocenters. We concluded that the X chromosome forms temporary synaptic associations with different autosomes in early meiotic prophase I, which can normally be found until the pachytene-diplotene, without signs of pachytene arrest. These associations are formed between the satellite-DNA-rich centromeric regions of the X chromosome and different autosomes but do not involve the satellite-DNA-poor centromeric region of the Y chromosome. We suggest the hypothetical model of X chromosome competitive replacement from such associations during synaptic correction. We showed that the centromeric region of the X chromosome in association remains free of γH2Ax-dependent chromatin inactivation, while the Y chromosome is completely inactivated. This finding highlights the predominant role of associations between satellite DNA-rich regions of different chromosomes, including the X chromosome. We suppose that X-autosomal transient associations are a manifestation of an additional synaptic disorder checkpoint. These associations are normally corrected before the late diplotene stage. We revealed that the intense spreading conditions that were applied to the spermatocyte I nuclei did not lead to the destruction of stretched chromatin fibers of elongated chromocenters enriched in satellite DNA. The tight associations that we revealed between the pericentromeric regions of different autosomal bivalents and the X chromosome may represent the basis for a mechanism for maintaining the repeats stability in the autosomes and in the X chromosome. The consequences of our findings are discussed.


Subject(s)
Centromere/metabolism , Chromosomes, Mammalian/metabolism , DNA/metabolism , Animals , DNA, Satellite/metabolism , Histones/metabolism , Meiosis , Mice, Inbred BALB C , Mice, Inbred CBA , X Chromosome
5.
Cell ; 184(23): 5775-5790.e30, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34739832

ABSTRACT

RNA, DNA, and protein molecules are highly organized within three-dimensional (3D) structures in the nucleus. Although RNA has been proposed to play a role in nuclear organization, exploring this has been challenging because existing methods cannot measure higher-order RNA and DNA contacts within 3D structures. To address this, we developed RNA & DNA SPRITE (RD-SPRITE) to comprehensively map the spatial organization of RNA and DNA. These maps reveal higher-order RNA-chromatin structures associated with three major classes of nuclear function: RNA processing, heterochromatin assembly, and gene regulation. These data demonstrate that hundreds of ncRNAs form high-concentration territories throughout the nucleus, that specific RNAs are required to recruit various regulators into these territories, and that these RNAs can shape long-range DNA contacts, heterochromatin assembly, and gene expression. These results demonstrate a mechanism where RNAs form high-concentration territories, bind to diffusible regulators, and guide them into compartments to regulate essential nuclear functions.


Subject(s)
Cell Nucleus/metabolism , RNA/metabolism , Animals , Cell Nucleus/drug effects , Chromobox Protein Homolog 5/metabolism , Chromosomes/metabolism , DNA/metabolism , DNA, Satellite/metabolism , DNA-Binding Proteins/metabolism , Dactinomycin/pharmacology , Female , Genome , HEK293 Cells , Heterochromatin/metabolism , Humans , Mice , Models, Biological , Multigene Family , RNA Polymerase II/metabolism , RNA Processing, Post-Transcriptional/drug effects , RNA Processing, Post-Transcriptional/genetics , RNA Splicing/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Ribosomal/genetics , RNA-Binding Proteins/metabolism , Transcription, Genetic/drug effects
6.
Elife ; 102021 07 13.
Article in English | MEDLINE | ID: mdl-34259629

ABSTRACT

Large blocks of tandemly repeated DNAs-satellite DNAs (satDNAs)-play important roles in heterochromatin formation and chromosome segregation. We know little about how satDNAs are regulated; however, their misregulation is associated with genomic instability and human diseases. We use the Drosophila melanogaster germline as a model to study the regulation of satDNA transcription and chromatin. Here we show that complex satDNAs (>100-bp repeat units) are transcribed into long noncoding RNAs and processed into piRNAs (PIWI interacting RNAs). This satDNA piRNA production depends on the Rhino-Deadlock-Cutoff complex and the transcription factor Moonshiner-a previously described non-canonical pathway that licenses heterochromatin-dependent transcription of dual-strand piRNA clusters. We show that this pathway is important for establishing heterochromatin at satDNAs. Therefore, satDNAs are regulated by piRNAs originating from their own genomic loci. This novel mechanism of satDNA regulation provides insight into the role of piRNA pathways in heterochromatin formation and genome stability.


Subject(s)
DNA, Satellite/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Germ Cells/metabolism , Heterochromatin/metabolism , Animals , Cell Nucleus/metabolism , Chromatin/metabolism , DNA, Satellite/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Female , Gene Expression Regulation , Heterochromatin/genetics , Ovary , RNA, Small Interfering/metabolism
7.
PLoS Genet ; 17(7): e1009662, 2021 07.
Article in English | MEDLINE | ID: mdl-34228705

ABSTRACT

Segregation Distorter (SD) is a male meiotic drive system in Drosophila melanogaster. Males heterozygous for a selfish SD chromosome rarely transmit the homologous SD+ chromosome. It is well established that distortion results from an interaction between Sd, the primary distorting locus on the SD chromosome and its target, a satellite DNA called Rsp, on the SD+ chromosome. However, the molecular and cellular mechanisms leading to post-meiotic SD+ sperm elimination remain unclear. Here we show that SD/SD+ males of different genotypes but with similarly strong degrees of distortion have distinct spermiogenic phenotypes. In some genotypes, SD+ spermatids fail to fully incorporate protamines after the removal of histones, and degenerate during the individualization stage of spermiogenesis. In contrast, in other SD/SD+ genotypes, protamine incorporation appears less disturbed, yet spermatid nuclei are abnormally compacted, and mature sperm nuclei are eventually released in the seminal vesicle. Our analyses of different SD+ chromosomes suggest that the severity of the spermiogenic defects associates with the copy number of the Rsp satellite. We propose that when Rsp copy number is very high (> 2000), spermatid nuclear compaction defects reach a threshold that triggers a checkpoint controlling sperm chromatin quality to eliminate abnormal spermatids during individualization.


Subject(s)
DNA, Satellite/genetics , Drosophila Proteins/genetics , GTPase-Activating Proteins/genetics , Spermatogenesis/genetics , Animals , Cell Nucleus/metabolism , Chromatin/genetics , Chromosome Mapping , Chromosome Segregation , Chromosomes/genetics , DNA, Satellite/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , GTPase-Activating Proteins/metabolism , Genotype , Male , Meiosis , Mutation , Phenotype , Spermatids/metabolism , Spermatozoa/metabolism
8.
J Virol ; 95(17): e0047521, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34132576

ABSTRACT

Plant virus satellites are maintained by their associated helper viruses, and satellites influence viral pathogenesis. Diseases caused by geminivirus-betasatellite complexes can become epidemics and therefore have become a threat to economically important crops across the world. Here, we identified a novel molecular function of the betasatellite-encoded pathogenicity determinant ßC1. The tomato leaf curl Patna betasatellite (ToLCPaB)-encoded ßC1 protein was found to exhibit novel ATPase activity in the presence of the divalent metal ion cofactor MgCl2. Moreover, ATPase activity was confirmed to be ubiquitously displayed by ßC1 proteins encoded by diverse betasatellites. Mutational and sequence analysis showed that conserved lysine/arginine residues at positions 49/50 and 91 of ßC1 proteins are essential for their ATPase activity. Biochemical studies revealed that the DNA-binding activity of the ßC1 protein was interfered with by the binding of ATP to the protein. Mutating arginine 91 of ßC1 to alanine reduced its DNA-binding activity. The results of docking studies provided evidence for an overlap of the ATP-binding and DNA-binding regions of ßC1 and for the importance of arginine 91 for both ATP-binding and DNA-binding activities. A mutant betasatellite with a specifically ßC1-ATPase dominant negative mutation was found to induce symptoms on Nicotiana benthamiana plants similar to those induced by wild-type betasatellite infection. The ATPase function of ßC1 was found to be negatively associated with geminivirus-betasatellite DNA accumulation, despite the positive influence of this ATPase function on the accumulation of replication-associated protein (Rep) and ßC1 transcripts. IMPORTANCE Most satellites influence the pathogenesis of their helper viruses. Here, we characterized the novel molecular function of ßC1, a nonstructural pathogenicity determinant protein encoded by a betasatellite. We demonstrated the display of ATPase activity by this ßC1 protein. Additionally, we confirmed the ubiquitous display of ATPase activity by ßC1 proteins encoded by diverse betasatellites. The lysine/arginine residues conserved at positions 49 and 91 of ßC1 were found to be crucial for its ATPase function. DNA-binding activity of ßC1 was found to be reduced in the presence of ATP. Inhibition of ATPase activity of ßC1 in the presence of an excess concentration of cold ATP, GTP, CTP, or UTP suggested that the purified ßC1 can also hydrolyze other cellular nucleoside triphosphates (NTPs) besides ATP in vitro. These results established the importance of the ATPase and DNA-binding activities of the ßC1 protein in regulating geminivirus-betasatellite DNA accumulation in the infected plant cell.


Subject(s)
Adenosine Triphosphate/metabolism , DNA, Satellite/metabolism , Geminiviridae/pathogenicity , Plant Diseases/virology , Plant Proteins/metabolism , Solanum lycopersicum/virology , Viral Proteins/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , DNA, Satellite/genetics , Gene Expression Regulation, Plant , Host-Pathogen Interactions , Hydrolysis , Mutation , Plant Leaves/virology , Plant Proteins/genetics , Nicotiana/virology , Viral Proteins/genetics
9.
Stem Cell Reports ; 15(6): 1317-1332, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33296675

ABSTRACT

Methyl-CpG binding protein 2 (MeCP2) has historically been linked to heterochromatin organization, and in mouse cells it accumulates at pericentric heterochromatin (PCH), closely following major satellite (MajSat) DNA distribution. However, little is known about the specific function of MeCP2 in these regions. We describe the first evidence of a role in neurons for MeCP2 and MajSat forward (MajSat-fw) RNA in reciprocal targeting to PCH through their physical interaction. Moreover, MeCP2 contributes to maintenance of PCH by promoting deposition of H3K9me3 and H4K20me3. We highlight that the MeCP2B isoform is required for correct higher-order PCH organization, and underline involvement of the methyl-binding and transcriptional repression domains. The T158 residue, which is commonly mutated in Rett patients, is directly involved in this process. Our findings support the hypothesis that MeCP2 and the MajSat-fw transcript are mutually dependent for PCH organization, and contribute to clarify MeCP2 function in the regulation of chromatin architecture.


Subject(s)
DNA, Satellite/metabolism , Heterochromatin/metabolism , Histones/metabolism , Methyl-CpG-Binding Protein 2/metabolism , Mouse Embryonic Stem Cells/metabolism , Animals , DNA, Satellite/genetics , Heterochromatin/genetics , Histones/genetics , Methyl-CpG-Binding Protein 2/genetics , Mice
10.
Int J Mol Sci ; 21(8)2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32316575

ABSTRACT

Heat shock activates the transcription of arrays of Satellite III (SatIII) DNA repeats in the pericentromeric heterochromatic domains of specific human chromosomes, the longest of which is on chromosome 9. Long non-coding SatIII RNAs remain associated with transcription sites where they form nuclear stress bodies or nSBs. The biology of SatIII RNAs is still poorly understood. Here, we show that SatIII RNAs and nSBs are detectable up to four days after thermal stress and are linked to defects in chromosome behavior during mitosis. Heat shock perturbs the execution of mitosis. Cells reaching mitosis during the first 3 h of recovery accumulate in pro-metaphase. During the ensuing 48 h, this block is no longer detectable; however, a significant fraction of mitoses shows chromosome segregation defects. Notably, most of lagging chromosomes and chromosomal bridges are bound to nSBs and contain arrays of SatIII DNA. Disappearance of mitotic defects at the end of day 2 coincides with the processing of long non-coding SatIII RNAs into a ladder of small RNAs associated with chromatin and ranging in size from 25 to 75 nt. The production of these molecules does not rely on DICER and Argonaute 2 components of the RNA interference apparatus. Thus, massive transcription of SatIII DNA may contribute to chromosomal instability.


Subject(s)
Chromosomes, Human/metabolism , DNA, Satellite/metabolism , Heat Shock Transcription Factors/genetics , RNA, Long Noncoding/metabolism , Chromosome Segregation , HeLa Cells , Humans , Mitosis , RNA, Small Untranslated/metabolism , Transcription Initiation Site
11.
Nucleic Acids Res ; 48(7): 3761-3775, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32123902

ABSTRACT

We have previously shown that the highly prevalent acute myeloid leukemia (AML) mutation, Arg882His, in DNMT3A disrupts its cooperative mechanism and leads to reduced enzymatic activity, thus explaining the genomic hypomethylation in AML cells. However, the underlying cause of the oncogenic effect of Arg882His in DNMT3A is not fully understood. Here, we discovered that DNMT3A WT enzyme under conditions that favor non-cooperative kinetic mechanism as well as DNMT3A Arg882His variant acquire CpG flanking sequence preference akin to that of DNMT3B, which is non-cooperative. We tested if DNMT3A Arg882His could preferably methylate DNMT3B-specific target sites in vivo. Rescue experiments in Dnmt3a/3b double knockout mouse embryonic stem cells show that the corresponding Arg878His mutation in mouse DNMT3A severely impairs its ability to methylate major satellite DNA, a DNMT3A-preferred target, but has no overt effect on the ability to methylate minor satellite DNA, a DNMT3B-preferred target. We also observed a previously unappreciated CpG flanking sequence bias in major and minor satellite repeats that is consistent with DNMT3A and DNMT3B specificity suggesting that DNA methylation patterns are guided by the sequence preference of these enzymes. We speculate that aberrant methylation of DNMT3B target sites could contribute to the oncogenic potential of DNMT3A AML variant.


Subject(s)
Amino Acid Substitution , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Leukemia, Myeloid, Acute/genetics , Animals , Arginine , CpG Islands , DNA Methylation , DNA Methyltransferase 3A , DNA, Satellite/metabolism , Embryonic Stem Cells/metabolism , Humans , Kinetics , Mice , Mutation , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Substrate Specificity , DNA Methyltransferase 3B
12.
Genes (Basel) ; 11(1)2020 01 09.
Article in English | MEDLINE | ID: mdl-31936645

ABSTRACT

Repetitive DNA is a major organizational component of eukaryotic genomes, being intrinsically related with their architecture and evolution. Tandemly repeated satellite DNAs (satDNAs) can be found clustered in specific heterochromatin-rich chromosomal regions, building vital structures like functional centromeres and also dispersed within euchromatin. Interestingly, despite their association to critical chromosomal structures, satDNAs are widely variable among species due to their high turnover rates. This dynamic behavior has been associated with genome plasticity and chromosome rearrangements, leading to the reshaping of genomes. Here we present the current knowledge regarding satDNAs in the light of new genomic technologies, and the challenges in the study of these sequences. Furthermore, we discuss how these sequences, together with other repeats, influence genome architecture, impacting its evolution and association with disease.


Subject(s)
Adaptation, Physiological/genetics , DNA, Satellite/genetics , DNA, Satellite/metabolism , Animals , Centromere/genetics , Centromere/metabolism , Chromosomes/genetics , DNA Transposable Elements/genetics , Eukaryota , Evolution, Molecular , Gene Rearrangement/genetics , Genomics , Heterochromatin/genetics , Heterochromatin/metabolism , Humans
13.
Genes Genet Syst ; 94(6): 301-306, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-31813924

ABSTRACT

Centromere protein B (CENP-B), a protein participating in centromere formation, binds to centromere satellite DNA by recognizing a 17-bp motif called the CENP-B box. This motif is found in hominids (humans and great apes) at an identical location in repeat units of their centromere satellite DNA. We have recently reported that the CENP-B box exists at diverse locations in three New World monkey species (marmoset, squirrel monkey and tamarin). However, the evolutionary origin of the CENP-B box in these species was not determined. It could have been present in a common ancestor, or emerged multiple times in different lineages. Here we present results of a phylogenetic analysis of centromere satellite DNA that support the multiple emergence hypothesis. Repeat units almost invariably formed monophyletic groups in each species and the CENP-B box location was unique for each species. The CENP-B box is not essential for the immediate survival of its host organism. On the other hand, it is known to be required for de novo centromere assembly. Our results suggest that the CENP-B box confers a long-term selective advantage. For example, it may play a pivotal role when a centromere is accidentally lost or impaired.


Subject(s)
Centromere Protein B/metabolism , Centromere/chemistry , DNA, Satellite/chemistry , Evolution, Molecular , Platyrrhini/genetics , Animals , DNA, Satellite/metabolism , Nucleotide Motifs , Phylogeny , Platyrrhini/classification , Platyrrhini/metabolism
14.
Virus Genes ; 56(1): 16-26, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31773493

ABSTRACT

Betasatellites are a group of circular, single-stranded DNA molecules that are frequently found to be associated with monopartite begomoviruses of the family Geminiviridae. Betasatellites require their helper viruses for replication, movement, and encapsidation and they are often essential for induction of typical disease symptoms. The ßC1 protein encoded by betasatellites is multifunctional that participates in diverse cellular events. It interferes with several cellular processes like normal development, chloroplasts, and innate immune system of plants. Recent research has indicated ßC1 protein interaction with cellular proteins and its involvement in modulation of the host's cell cycle and symptom determination. This article focuses on the functional mechanisms of ßC1 and its interactions with other viral and host proteins.


Subject(s)
Begomovirus/physiology , Plant Diseases/virology , Satellite Viruses/physiology , Begomovirus/classification , Begomovirus/genetics , Begomovirus/isolation & purification , DNA, Satellite/genetics , DNA, Satellite/metabolism , DNA, Viral/genetics , DNA, Viral/metabolism , Satellite Viruses/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
15.
Hum Mol Genet ; 28(23): 3997-4011, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31630170

ABSTRACT

The DUX4 transcription factor is normally expressed in the cleavage-stage embryo and regulates genes involved in embryonic genome activation. Misexpression of DUX4 in skeletal muscle, however, is toxic and causes facioscapulohumeral muscular dystrophy (FSHD). We recently showed DUX4-induced toxicity is due, in part, to the activation of the double-stranded RNA (dsRNA) response pathway and the accumulation of intranuclear dsRNA foci. Here, we determined the composition of DUX4-induced dsRNAs. We found that a subset of DUX4-induced dsRNAs originate from inverted Alu repeats embedded within the introns of DUX4-induced transcripts and from DUX4-induced dsRNA-forming intergenic transcripts enriched for endogenous retroviruses, Alu and LINE-1 elements. However, these repeat classes were also represented in dsRNAs from cells not expressing DUX4. In contrast, pericentric human satellite II (HSATII) repeats formed a class of dsRNA specific to the DUX4 expressing cells. Further investigation revealed that DUX4 can initiate the bidirectional transcription of normally heterochromatin-silenced HSATII repeats. DUX4-induced HSATII RNAs co-localized with DUX4-induced nuclear dsRNA foci and with intranuclear aggregation of EIF4A3 and ADAR1. Finally, gapmer-mediated knockdown of HSATII transcripts depleted DUX4-induced intranuclear ribonucleoprotein aggregates and decreased DUX4-induced cell death, suggesting that HSATII-formed dsRNAs contribute to DUX4 toxicity.


Subject(s)
DNA, Satellite/genetics , Homeodomain Proteins/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Cell Line , DNA, Satellite/metabolism , Gene Expression Regulation , Homeodomain Proteins/genetics , Humans , Introns , Models, Biological , Muscle, Skeletal/metabolism , Muscular Dystrophy, Facioscapulohumeral/metabolism , Myoblasts/metabolism , RNA, Double-Stranded/metabolism , RNA-Binding Proteins/metabolism , Transcription Factors/genetics
16.
Cell ; 178(3): 624-639.e19, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31348889

ABSTRACT

Recent breakthroughs with synthetic budding yeast chromosomes expedite the creation of synthetic mammalian chromosomes and genomes. Mammals, unlike budding yeast, depend on the histone H3 variant, CENP-A, to epigenetically specify the location of the centromere-the locus essential for chromosome segregation. Prior human artificial chromosomes (HACs) required large arrays of centromeric α-satellite repeats harboring binding sites for the DNA sequence-specific binding protein, CENP-B. We report the development of a type of HAC that functions independently of these constraints. Formed by an initial CENP-A nucleosome seeding strategy, a construct lacking repetitive centromeric DNA formed several self-sufficient HACs that showed no uptake of genomic DNA. In contrast to traditional α-satellite HAC formation, the non-repetitive construct can form functional HACs without CENP-B or initial CENP-A nucleosome seeding, revealing distinct paths to centromere formation for different DNA sequence types. Our developments streamline the construction and characterization of HACs to facilitate mammalian synthetic genome efforts.


Subject(s)
Centromere/metabolism , Chromosomes, Artificial, Human/metabolism , DNA, Satellite/metabolism , Binding Sites , Cell Line, Tumor , Centromere/genetics , Centromere Protein A/genetics , Centromere Protein A/metabolism , Centromere Protein B/deficiency , Centromere Protein B/genetics , Centromere Protein B/metabolism , Epigenesis, Genetic , Humans , Nucleosomes/chemistry , Nucleosomes/metabolism , Plasmids/genetics , Plasmids/metabolism
17.
PLoS Genet ; 15(5): e1008028, 2019 05.
Article in English | MEDLINE | ID: mdl-31071079

ABSTRACT

Intron gigantism, where genes contain megabase-sized introns, is observed across species, yet little is known about its purpose or regulation. Here we identify a unique gene expression program utilized for the proper expression of genes with intron gigantism. We find that two Drosophila genes with intron gigantism, kl-3 and kl-5, are transcribed in a spatiotemporal manner over the course of spermatocyte differentiation, which spans ~90 hours. The introns of these genes contain megabases of simple satellite DNA repeats that comprise over 99% of the gene loci, and these satellite-DNA containing introns are transcribed. We identify two RNA-binding proteins that specifically localize to kl-3 and kl-5 transcripts and are needed for the successful transcription or processing of these genes. We propose that genes with intron gigantism require a unique gene expression program, which may serve as a platform to regulate gene expression during cellular differentiation.


Subject(s)
DNA, Satellite/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Introns , Spermatocytes/metabolism , Spermatogenesis/genetics , Animals , DNA, Satellite/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Exons , Gene Expression Regulation, Developmental , Male , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Signal Transduction , Spermatocytes/cytology , Spermatocytes/growth & development , Transcription, Genetic , Y Chromosome/chemistry
18.
Plant J ; 99(6): 1066-1079, 2019 09.
Article in English | MEDLINE | ID: mdl-31074166

ABSTRACT

Repetitive sequences are ubiquitous components of all eukaryotic genomes. They contribute to genome evolution and the regulation of gene transcription. However, the uncontrolled activity of repetitive sequences can negatively affect genome functions and stability. Therefore, repetitive DNAs are embedded in a highly repressive heterochromatic environment in plant cell nuclei. Here, we analyzed the sequence, composition and the epigenetic makeup of peculiar non-pericentromeric heterochromatic segments in the genome of the Australian crucifer Ballantinia antipoda. By the combination of high throughput sequencing, graph-based clustering and cytogenetics, we found that the heterochromatic segments consist of a mixture of unique sequences and an A-T-rich 174 bp satellite repeat (BaSAT1). BaSAT1 occupies about 10% of the B. antipoda nuclear genome in >250 000 copies. Unlike many other highly repetitive sequences, BaSAT1 repeats are hypomethylated; this contrasts with the normal patterns of DNA methylation in the B. antipoda genome. Detailed analysis of several copies revealed that these non-methylated BaSAT1 repeats were also devoid of heterochromatic histone H3K9me2 methylation. However, the factors decisive for the methylation status of BaSAT1 repeats remain currently unknown. In summary, we show that even highly repetitive sequences can exist as hypomethylated in the plant nuclear genome.


Subject(s)
DNA Methylation/genetics , DNA, Satellite/genetics , Heterochromatin/genetics , Tracheophyta/genetics , Arabidopsis/genetics , DNA, Satellite/chemistry , DNA, Satellite/metabolism , Epigenesis, Genetic , Genome, Plant , Heterochromatin/metabolism , High-Throughput Nucleotide Sequencing , Histones/chemistry , Histones/metabolism , Phylogeny , Tracheophyta/chemistry , Tracheophyta/metabolism
19.
Nat Commun ; 10(1): 2301, 2019 05 24.
Article in English | MEDLINE | ID: mdl-31127102

ABSTRACT

Genomic DNA in eukaryotes is organized into chromatin through association with core histones to form nucleosomes, each distinguished by their DNA sequences and histone variants. Here, we used a single-chain antibody fragment (scFv) derived from the anti-nucleosome antibody mAb PL2-6 to stabilize human CENP-A nucleosome containing a native α-satellite DNA and solved its structure by the cryo-electron microscopy (cryo-EM) to 2.6 Å resolution. In comparison, the corresponding cryo-EM structure of the free CENP-A nucleosome could only reach 3.4 Å resolution. We find that scFv binds to a conserved acidic patch on the histone H2A-H2B dimer without perturbing the nucleosome structure. Our results provide an atomic resolution cryo-EM structure of a nucleosome and insight into the structure and function of the CENP-A nucleosome. The scFv approach is applicable to the structural determination of other native-like nucleosomes with distinct DNA sequences.


Subject(s)
Centromere Protein A/ultrastructure , DNA, Satellite/ultrastructure , Nucleosomes/ultrastructure , Centromere Protein A/immunology , Centromere Protein A/metabolism , Cryoelectron Microscopy , DNA, Satellite/metabolism , Histones/metabolism , Histones/ultrastructure , Models, Molecular , Nucleosomes/metabolism , Single-Chain Antibodies/immunology , Single-Chain Antibodies/metabolism , Single-Chain Antibodies/ultrastructure
20.
Chromosome Res ; 26(3): 115-138, 2018 09.
Article in English | MEDLINE | ID: mdl-29974361

ABSTRACT

Repetitive DNA, formerly referred to by the misnomer "junk DNA," comprises a majority of the human genome. One class of this DNA, alpha satellite, comprises up to 10% of the genome. Alpha satellite is enriched at all human centromere regions and is competent for de novo centromere assembly. Because of the highly repetitive nature of alpha satellite, it has been difficult to achieve genome assemblies at centromeres using traditional next-generation sequencing approaches, and thus, centromeres represent gaps in the current human genome assembly. Moreover, alpha satellite DNA is transcribed into repetitive noncoding RNA and contributes to a large portion of the transcriptome. Recent efforts to characterize these transcripts and their function have uncovered pivotal roles for satellite RNA in genome stability, including silencing "selfish" DNA elements and recruiting centromere and kinetochore proteins. This review will describe the genomic and epigenetic features of alpha satellite DNA, discuss recent findings of noncoding transcripts produced from distinct alpha satellite arrays, and address current progress in the functional understanding of this oft-neglected repetitive sequence. We will discuss unique challenges of studying human satellite DNAs and RNAs and point toward new technologies that will continue to advance our understanding of this largely untapped portion of the genome.


Subject(s)
DNA, Satellite/metabolism , Genome, Human/physiology , Kinetochores/metabolism , RNA, Untranslated/metabolism , Transcriptome/physiology , Animals , DNA, Satellite/genetics , Humans , RNA, Untranslated/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...