Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76.254
Filter
1.
Biochemistry (Mosc) ; 89(4): 653-662, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38831502

ABSTRACT

Chromosome conformation capture techniques have revolutionized our understanding of chromatin architecture and dynamics at the genome-wide scale. In recent years, these methods have been applied to a diverse array of species, revealing fundamental principles of chromosomal organization. However, structural organization of the extrachromosomal entities, like viral genomes or plasmids, and their interactions with the host genome, remain relatively underexplored. In this work, we introduce an enhanced 4C-protocol tailored for probing plasmid DNA interactions. We design specific plasmid vector and optimize protocol to allow high detection rate of contacts between the plasmid and host DNA.


Subject(s)
Plasmids , Plasmids/metabolism , Plasmids/genetics , DNA/chemistry , DNA/genetics , Chromatin/genetics , Chromatin/metabolism , Chromatin/chemistry , Genome
2.
J Genet ; 1032024.
Article in English | MEDLINE | ID: mdl-38831651

ABSTRACT

In the past, there were no easily distinct and recognizable features as a guide for precise clinical and genetic diagnosis of cases with chromosome microdeletions involving 15q26 including CHD2,. The present study analysed the clinical data and collected venous blood samples from a pediatric patient and his healthy family members for DNA testing. The whole-exome sequencing was performed by the next-generation sequencing (NGS). Chromosomal copy-number variations were tested based on NGS. We present a review of all cases with chromosome microdeletions affecting CHD2. A novel de novo 5.82-Mb deletion at 15q25.3-15q26.1 including CHD2 was identified in our patient who is an 11.6-year-old boy. We first found surprising efficacy of lamotrigine in controlling intractable drop seizures in the individual. These cases have development delay, behavioural problems, epilepsy, variable multiple anomalies, etc. Phenotypes of individuals with deletions involving 15q26 including CHD2 are highly variable with regard to facial features and multiple developmental anomalies. We first found the special clinical entity of development delay, behavioural problems, epilepsy, variable skeletal and muscular anomalies, abnormalities of variable multiple systems and characteristic craniofacial phenotypes in patients with chromosome microdeletions involving CHD2. The larger deletions involving 15q26 including CHD2 tend to cause the classical phenotype. A distinctive craniofacial appearance of the classical phenotype is midface hypoplasia and perifacial protrusion.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 15 , Humans , Male , Child , Chromosomes, Human, Pair 15/genetics , DNA-Binding Proteins/genetics , Animals , DNA Copy Number Variations , High-Throughput Nucleotide Sequencing , Phenotype , Exome Sequencing , DNA/genetics , DNA/isolation & purification , Female , Sequence Analysis, DNA
3.
Sci Rep ; 14(1): 12870, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834632

ABSTRACT

One of the most recent advances in the genome editing field has been the addition of "TALE Base Editors", an innovative platform for cell therapy that relies on the deamination of cytidines within double strand DNA, leading to the formation of an uracil (U) intermediate. These molecular tools are fusions of transcription activator-like effector domains (TALE) for specific DNA sequence binding, split-DddA deaminase halves that will, upon catalytic domain reconstitution, initiate the conversion of a cytosine (C) to a thymine (T), and an uracil glycosylase inhibitor (UGI). We developed a high throughput screening strategy capable to probe key editing parameters in a precisely defined genomic context in cellulo, excluding or minimizing biases arising from different microenvironmental and/or epigenetic contexts. Here we aimed to further explore how target composition and TALEB architecture will impact the editing outcomes. We demonstrated how the nature of the linker between TALE array and split DddAtox head allows us to fine tune the editing window, also controlling possible bystander activity. Furthermore, we showed that both the TALEB architecture and spacer length separating the two TALE DNA binding regions impact the target TC editing dependence by the surrounding bases, leading to more restrictive or permissive editing profiles.


Subject(s)
Cytosine , Gene Editing , Thymine , Gene Editing/methods , Humans , Cytosine/metabolism , Cytosine/chemistry , Thymine/metabolism , Thymine/chemistry , Transcription Activator-Like Effectors/metabolism , Transcription Activator-Like Effectors/genetics , DNA/metabolism , DNA/genetics , HEK293 Cells
4.
Sci Rep ; 14(1): 12875, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38834639

ABSTRACT

The millions of specimens stored in entomological collections provide a unique opportunity to study historical insect diversity. Current technologies allow to sequence entire genomes of historical specimens and estimate past genetic diversity of present-day endangered species, advancing our understanding of anthropogenic impact on genetic diversity and enabling the implementation of conservation strategies. A limiting challenge is the extraction of historical DNA (hDNA) of adequate quality for sequencing platforms. We tested four hDNA extraction protocols on five body parts of pinned false heath fritillary butterflies, Melitaea diamina, aiming to minimise specimen damage, preserve their scientific value to the collections, and maximise DNA quality and yield for whole-genome re-sequencing. We developed a very effective approach that successfully recovers hDNA appropriate for short-read sequencing from a single leg of pinned specimens using silica-based DNA extraction columns and an extraction buffer that includes SDS, Tris, Proteinase K, EDTA, NaCl, PTB, and DTT. We observed substantial variation in the ratio of nuclear to mitochondrial DNA in extractions from different tissues, indicating that optimal tissue choice depends on project aims and anticipated downstream analyses. We found that sufficient DNA for whole genome re-sequencing can reliably be extracted from a single leg, opening the possibility to monitor changes in genetic diversity maintaining the scientific value of specimens while supporting current and future conservation strategies.


Subject(s)
DNA , Animals , DNA/isolation & purification , DNA/genetics , Butterflies/genetics , DNA, Mitochondrial/genetics , Specimen Handling/methods , Lepidoptera/genetics , Retrospective Studies , Genetic Variation , Genome, Insect , Sequence Analysis, DNA/methods
5.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38830772

ABSTRACT

Nucleosome positioning is a key factor for transcriptional regulation. Nucleosomes regulate the dynamic accessibility of chromatin and interact with the transcription machinery at every stage. Influences to steer nucleosome positioning are diverse, and the according importance of the DNA sequence in contrast to active chromatin remodeling has been the subject of long discussion. In this study, we evaluate the functional role of DNA sequence for all major elements along the process of transcription. We developed a random forest classifier based on local DNA structure that assesses the sequence-intrinsic support for nucleosome positioning. On this basis, we created a simple data resource that we applied genome-wide to the human genome. In our comprehensive analysis, we found a special role of DNA in mediating the competition of nucleosomes with cis-regulatory elements, in enabling steady transcription, for positioning of stable nucleosomes in exons, and for repelling nucleosomes during transcription termination. In contrast, we relate these findings to concurrent processes that generate strongly positioned nucleosomes in vivo that are not mediated by sequence, such as energy-dependent remodeling of chromatin.


Subject(s)
Chromatin Assembly and Disassembly , DNA , Gene Expression Regulation , Nucleosomes , Transcription, Genetic , Nucleosomes/metabolism , Nucleosomes/genetics , Humans , Chromatin Assembly and Disassembly/genetics , DNA/genetics , DNA/metabolism , Chromatin/metabolism , Chromatin/genetics , Genome, Human , Base Sequence
6.
Mikrochim Acta ; 191(7): 376, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849560

ABSTRACT

CRISPR/Cas system has been widely applied in the assay of disease-related nucleic acids. However, it is still challenging to use CRISPR/Cas system to detect multiple nucleic acids at the same time. Herein, we combined the preponderance of DNA logic circuit, label-free, and CRISPR/Cas technology to construct a label-free "AND" logical gate for multiple microRNAs detection with high specificity and sensitivity. With the simultaneous input of miRNA-155 and miRNA-141, the logic gate starts, and the activation chain of Cas12a is destroyed; thus, the activity is inhibited and the fluorescence of the signal probe ssDNA-AgNCs is turned on. The detection limit of this method for simultaneous quantitative detection of double target is 84 fmol/L (S/N = 3). In this "AND" logic gate, it is only necessary for the design of a simple DNA hairpin probe, which is inexpensive and easy, and since this method involves only one signal output, the data processing is very simple. What is more important, in this strategy two types of microRNAs can be monitored simultaneously by only using CRISPR/Cas12a and a type of crRNA, which offers a new design concept for the exploitation of single CRISPR/Cas system for multiple nucleic acid assays.


Subject(s)
CRISPR-Cas Systems , MicroRNAs , MicroRNAs/analysis , MicroRNAs/genetics , CRISPR-Cas Systems/genetics , Humans , Limit of Detection , CRISPR-Associated Proteins/genetics , Endodeoxyribonucleases/genetics , Metal Nanoparticles/chemistry , Biosensing Techniques/methods , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , Bacterial Proteins/genetics , DNA/genetics , DNA/chemistry
7.
Science ; 384(6700): 1053-1054, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843345

ABSTRACT

Achievement demonstrates feasibility of making all of life's code easily searchable, researchers say.


Subject(s)
DNA , DNA/genetics , Internet , Genetic Code
8.
Folia Biol (Praha) ; 70(1): 62-73, 2024.
Article in English | MEDLINE | ID: mdl-38830124

ABSTRACT

Germline DNA testing using the next-gene-ration sequencing (NGS) technology has become the analytical standard for the diagnostics of hereditary diseases, including cancer. Its increasing use places high demands on correct sample identification, independent confirmation of prioritized variants, and their functional and clinical interpretation. To streamline these processes, we introduced parallel DNA and RNA capture-based NGS using identical capture panel CZECANCA, which is routinely used for DNA analysis of hereditary cancer predisposition. Here, we present the analytical workflow for RNA sample processing and its analytical and diagnostic performance. Parallel DNA/RNA analysis allowed credible sample identification by calculating the kinship coefficient. The RNA capture-based approach enriched transcriptional targets for the majority of clinically relevant cancer predisposition genes to a degree that allowed analysis of the effect of identified DNA variants on mRNA processing. By comparing the panel and whole-exome RNA enrichment, we demonstrated that the tissue-specific gene expression pattern is independent of the capture panel. Moreover, technical replicates confirmed high reproducibility of the tested RNA analysis. We concluded that parallel DNA/RNA NGS using the identical gene panel is a robust and cost-effective diagnostic strategy. In our setting, it allows routine analysis of 48 DNA/RNA pairs using NextSeq 500/550 Mid Output Kit v2.5 (150 cycles) in a single run with sufficient coverage to analyse 226 cancer predisposition and candidate ge-nes. This approach can replace laborious Sanger confirmatory sequencing, increase testing turnaround, reduce analysis costs, and improve interpretation of the impact of variants by analysing their effect on mRNA processing.


Subject(s)
Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Humans , High-Throughput Nucleotide Sequencing/methods , Neoplasms/genetics , Neoplasms/diagnosis , RNA/genetics , Reproducibility of Results , Sequence Analysis, DNA/methods , Sequence Analysis, RNA/methods , DNA/genetics
9.
Nat Commun ; 15(1): 4897, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851742

ABSTRACT

DNA base editors enable direct editing of adenine (A), cytosine (C), or guanine (G), but there is no base editor for direct thymine (T) editing currently. Here we develop two deaminase-free glycosylase-based base editors for direct T editing (gTBE) and C editing (gCBE) by fusing Cas9 nickase (nCas9) with engineered human uracil DNA glycosylase (UNG) variants. By several rounds of structure-informed rational mutagenesis on UNG in cultured human cells, we obtain gTBE and gCBE with high activity of T-to-S (i.e., T-to-C or T-to-G) and C-to-G conversions, respectively. Furthermore, we conduct parallel comparison of gTBE/gCBE with those recently developed using other protein engineering strategies, and find gTBE/gCBE show the outperformance. Thus, we provide several base editors, gTBEs and gCBEs, with corresponding engineered UNG variants, broadening the targeting scope of base editors.


Subject(s)
CRISPR-Associated Protein 9 , Gene Editing , Protein Engineering , Uracil-DNA Glycosidase , Humans , Gene Editing/methods , Uracil-DNA Glycosidase/metabolism , Uracil-DNA Glycosidase/genetics , Protein Engineering/methods , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , Cytosine/metabolism , Thymine/metabolism , CRISPR-Cas Systems , HEK293 Cells , Mutagenesis , Guanine/metabolism , DNA/metabolism , DNA/genetics
10.
Nat Methods ; 21(5): 748, 2024 May.
Article in English | MEDLINE | ID: mdl-38745075
11.
Signal Transduct Target Ther ; 9(1): 135, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760366

ABSTRACT

DNA double-strand break (DSB) sites that prevent the disjunction of broken DNA ends are formed through poly (ADP-ribose) (PAR) polymerase 1 (PARP1)-DNA co-condensation. The co-condensates apply mechanical forces to hold the DNA ends together and generate enzymatic activity for the synthesis of PAR. PARylation can promote the release of PARP1 from DNA ends and recruit various proteins, such as Fused in sarcoma (FUS) proteins, thereby stabilizing broken DNA ends and preventing their separation.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , DNA , Poly (ADP-Ribose) Polymerase-1 , Humans , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , DNA Repair/genetics , DNA/genetics , DNA/metabolism
12.
J Vis Exp ; (207)2024 May 03.
Article in English | MEDLINE | ID: mdl-38767369

ABSTRACT

A total of five samples of Chrysomya megacephala samples - three fresh samples, one sample stored in alcohol for 2 years, and one sample stored in dry sealed storage for 2 years protected from light only - were selected to investigate whether a blood DNA extraction kit could extract DNA from necrophilous flies and to determine whether alcohol could prolong the preservation of necrophilous flies' DNA. First, the blood DNA extraction kit was used to extract DNA from their thorax tissues. Then, the DNA purity and concentration were examined using a microplate reader and a fluorometer. Finally, PCR amplification and electrophoresis of the extracted DNA were done with necrophilic fly-specific primers located in the mitochondrial CO I gene sequence. The results showed that the DNA purity of all samples was greater than 2.0. The DNA concentration was observed to be of the following order: fresh samples > alcohol-preserved old samples > untreated, old samples. All samples had specific electrophoretic bands after PCR amplification. In conclusion, a blood DNA extraction kit can be used to extract DNA from necrophilic flies successfully, and the DNA concentration of fresh fly samples is greater than that of old fly samples. The flies can be stored in alcohol for a long time.


Subject(s)
DNA , Polymerase Chain Reaction , Animals , DNA/isolation & purification , DNA/genetics , Polymerase Chain Reaction/methods , Calliphoridae/genetics , Calliphoridae/chemistry
13.
Sci Rep ; 14(1): 11522, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38769102

ABSTRACT

Digital PCR (dPCR) is a technique for absolute quantification of nucleic acid molecules. To develop a dPCR technique that enables more accurate nucleic acid detection and quantification, we established a novel dPCR apparatus known as centrifugal force real-time dPCR (crdPCR). This system is efficient than other systems with only 2.14% liquid loss by dispensing samples using centrifugal force. Moreover, we applied a technique for analyzing the real-time graph of the each micro-wells and distinguishing true/false positives using artificial intelligence to mitigate the rain, a persistent issue with dPCR. The limits of detection and quantification were 1.38 and 4.19 copies/µL, respectively, showing a two-fold higher sensitivity than that of other comparable devices. With the integration of this new technology, crdPCR will significantly contribute to research on next-generation PCR targeting absolute micro-analysis.


Subject(s)
DNA , Real-Time Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction/methods , DNA/analysis , DNA/genetics , Centrifugation/methods , Limit of Detection
14.
Sci Rep ; 14(1): 11340, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760358

ABSTRACT

Genetics studies are used by wildlife managers and researchers to gain inference into a population of a species of interest. To gain these insights, microsatellites have been the primary method; however, there currently is a shift from microsatellites to single nucleotide polymorphisms (SNPs). With the different DNA requirements between microsatellites and SNPs, an investigation into which samples can provide adequate DNA yield is warranted. Using samples that were collected from previous genetic projects from regions in the USA from 2014 to 2021, we investigated the DNA yield of eight sample categories to gain insights into which provided adequate DNA to be used in ddRADseq or already developed high- or medium-density SNP panels. We found seven sample categories that met the DNA requirements for use in all three panels, and one sample category that did not meet any of the three panels requirements; however, DNA integrity was highly variable and not all sample categories that met panel DNA requirements could be considered high quality DNA. Additionally, we used linear random-effects models to determine which covariates would have the greatest influence on DNA yield. We determined that all covariates (tissue type, storage method, preservative, DNA quality, time until DNA extraction and time after DNA extraction) could influence DNA yield.


Subject(s)
DNA , Polymorphism, Single Nucleotide , DNA/genetics , DNA/analysis , Animals , Microsatellite Repeats/genetics , Specimen Handling/methods
15.
J Pharm Biomed Anal ; 245: 116180, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38703748

ABSTRACT

Oligonucleotides have emerged as important therapeutic options for inherited diseases. In recent years, RNA therapeutics, especially mRNA, have been pushed to the market. Analytical methods for these molecules have been published extensively in the last few years. Notably, mass spectrometry has proven as a state-of-the-art quality control method. For RNA based therapeutics, numerous methods are available, while DNA therapeutics lack of suitable MS-based methods when it comes to molecules exceeding approximately 60 nucleotides. We present a method which combines the use of common restriction enzymes and short enzyme-directing oligonucleotides to generate DNA digestion products with the advantages of high-resolution tandem mass spectrometry. The instrumentation includes ion pair reverse phase chromatography coupled to a time-of-flight mass spectrometer with a collision induced dissociation (CID) for sequence analysis. Utilizing this approach, we increased the sequence coverage from 23.3% for a direct CID-MS/MS experiment of a 100 nucleotide DNA molecule to 100% sequence coverage using the restriction enzyme mediated approach presented in this work. This approach is suitable for research and development and quality control purposes in a regulated environment, which makes it a versatile tool for drug development.


Subject(s)
DNA Restriction Enzymes , DNA , Oligonucleotides , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , DNA/chemistry , DNA/genetics , DNA Restriction Enzymes/metabolism , Oligonucleotides/chemistry , Nucleotides/analysis , Nucleotides/chemistry , Chromatography, Reverse-Phase/methods , Quality Control , Sequence Analysis, DNA/methods
16.
Methods Cell Biol ; 186: 25-49, 2024.
Article in English | MEDLINE | ID: mdl-38705603

ABSTRACT

One of the earliest applications of flow cytometry was the measurement of DNA content in cells. This method is based on the ability to stain DNA in a stoichiometric manner (i.e., the amount of stain is directly proportional to the amount of DNA within the cell). For more than 40years, a number of studies have consistently demonstrated the utility of DNA flow cytometry as a potential diagnostic and/or prognostic tool in patients with most epithelial tumors, including pre-invasive lesions (such as dysplasia) in the gastrointestinal tract. However, its availability as a clinical test has been limited to few medical centers due to the requirement for fresh tissue in earlier studies and perceived technical demands. However, more recent studies have successfully utilized formalin-fixed paraffin-embedded (FFPE) tissue to generate high-quality DNA content histograms, demonstrating the feasibility of this methodology. This review summarizes step-by-step methods on how to perform DNA flow cytometry using FFPE tissue and analyze DNA content histograms based on the published consensus guidelines in order to assist in the diagnosis and/or risk stratification of many different epithelial tumors, with particular emphasis on dysplasia associated with Barrett's esophagus and inflammatory bowel disease.


Subject(s)
Flow Cytometry , Gastrointestinal Neoplasms , Genomic Instability , Humans , Flow Cytometry/methods , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/diagnosis , Gastrointestinal Neoplasms/pathology , Genomic Instability/genetics , Precancerous Conditions/genetics , Precancerous Conditions/diagnosis , Precancerous Conditions/pathology , Tissue Fixation/methods , Paraffin Embedding/methods , DNA/genetics , DNA/analysis , Gastrointestinal Tract/pathology , Gastrointestinal Tract/metabolism , Barrett Esophagus/genetics , Barrett Esophagus/pathology , Barrett Esophagus/diagnosis
17.
Hereditas ; 161(1): 16, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711122
18.
PeerJ ; 12: e17071, 2024.
Article in English | MEDLINE | ID: mdl-38711623

ABSTRACT

Adipose tissue in the human body occurs in various forms with different functions. It is an energy store, a complex endocrine organ, and a source of cells used in medicine. Many molecular analyses require the isolation of nucleic acids, which can cause some difficulties connected with the large amount of lipids in adipocytes. Ribonucleic acid isolation is particularly challenging due to its low stability and easy degradation by ribonucleases. The study aimed to compare and evaluate five RNA and DNA isolation methods from adipose tissue. The tested material was subcutaneous porcine adipose tissue subjected to different homogenization methods and RNA or DNA purification. A mortar and liquid nitrogen or ceramic beads were used for homogenization. The organic extraction (TriPure Reagent), spin columns with silica-membrane (RNeasy Mini Kit or High Pure PCR Template Preparation Kit), and the automatic MagNA Pure system were used for the purification. Five combinations were compared for RNA and DNA isolation. Obtained samples were evaluated for quantity and quality. The methods were compared in terms of yield (according to tissue mass), purity (A260/280 and A260/230), and nucleic acid degradation (RNA Integrity Number, RIN; DNA Integrity Number, DIN). The results were analyzed statistically. The average RNA yield was highest in method I, which used homogenization with ceramic beads and organic extraction. Low RNA concentration didn't allow us to measure degradation for all samples in method III (homogenization with ceramic beads and spin-column purification). The highest RNA quality was achieved with method IV using homogenization in liquid nitrogen and spin column purification, which makes it the most effective for RNA isolation from adipose tissue. Required values of DNA yield, purity, and integrity were achieved only with spin column-based methods (III and IV). The most effective method for DNA isolation from adipose tissue is method III, using spin-columns without additional homogenization.


Subject(s)
Adipose Tissue , DNA , RNA , Animals , RNA/isolation & purification , RNA/genetics , Swine , DNA/isolation & purification , DNA/genetics , Adipose Tissue/metabolism
19.
ACS Nano ; 18(19): 12401-12411, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38701333

ABSTRACT

Accurate identification of single nucleotide variants (SNVs) in key driver genes holds a significant value for disease diagnosis and treatment. Fluorescent probes exhibit tremendous potential in specific, high-resolution, and rapid detection of SNVs. However, additional steps are required in most post-PCR assays to convert double-stranded DNA (dsDNA) products into single-stranded DNA (ssDNA), enabling them to possess hybridization activity to trigger subsequent reactions. This process not only prolongs the complexity of the experiment but also introduces the risk of losing target information. In this study, we proposed two strategies for enriching active double-stranded DNA, involving PCR based on obstructive groups and cleavable units. Building upon this, we explored the impact of modified units on the strand displacement reaction (SDR) and assessed their discriminatory efficacy for mutations. The results showed that detection of low variant allele frequencies (VAF) as low as 0.1% can be achieved. The proposed strategy allowed orthogonal identification of 45 clinical colorectal cancer tissue samples with 100% specificity, and the results were generally consistent with sequencing results. Compared to existing methods for enriching active targets, our approach offers a more diverse set of enrichment strategies, characterized by the advantage of being simple and fast and preserving original information to the maximum extent. The objective of this study is to offer an effective solution for the swift and facile acquisition of active double-stranded DNA. We anticipate that our work will facilitate the practical applications of SDR based on dsDNA.


Subject(s)
DNA , Polymorphism, Single Nucleotide , Polymorphism, Single Nucleotide/genetics , Humans , DNA/genetics , DNA/chemistry , Colorectal Neoplasms/genetics , Polymerase Chain Reaction , Fluorescent Dyes/chemistry , DNA, Single-Stranded/genetics , DNA, Single-Stranded/chemistry
20.
Biosens Bioelectron ; 259: 116409, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38795495

ABSTRACT

DNA-based molecular amplifiers offer significant promise for molecular-level disease diagnosis and treatment, yet tailoring their activation for precise timing and localization remains a challenge. Herein, we've pioneered a dual activation strategy harnessing external light and internal ATP to create a highly controlled DNA logic amplifier (FDLA) for accurate miRNA monitoring in cancer cells. The FDLA was constructed by tethered the two functionalized catalytic hairpin assembly (CHA) hairpin modules (ATP aptamer sealed hairpin aH1 and photocleavable (PC-linker) sites modified hairpin pH2) to DNA tetrahedron (DTN). The FDLA system incorporates ATP aptamers and PC-linkers as logic control units, allowing them to respond to both exogenous UV light and endogenous ATP present within cancer cells. This response triggers the release of CHA hairpin modules, enabling amplified FRET miRNA imaging through an AND-AND gate. The DTN structure could improve the stability of FDLA and accelerate the kinetics of the strand displacement reaction. It is noteworthy that the UV and ATP co-gated DNA circuit can control the DNA bio-computing at specific time and location, offering spatial and temporal capabilities that can be harnessed for miRNA imaging. Furthermore, the miRNA-sensing FDLA amplifier demonstrates reliable imaging of intracellular miRNA with minimal background noise and false-positive signals. This highlights the feasibility of utilizing both exogenous and endogenous regulatory strategies to achieve spatial and temporal control of DNA molecular circuits within living cancer cells. Such advancements hold immense potential for unraveling the correlation between miRNA and associated diseases.


Subject(s)
Adenosine Triphosphate , Aptamers, Nucleotide , Biosensing Techniques , DNA , MicroRNAs , MicroRNAs/analysis , Humans , Biosensing Techniques/methods , Adenosine Triphosphate/analysis , Aptamers, Nucleotide/chemistry , DNA/chemistry , DNA/genetics , Fluorescence Resonance Energy Transfer/methods , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...