Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76.971
Filter
1.
Nat Commun ; 15(1): 4609, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816425

ABSTRACT

The protection of the replication fork structure under stress conditions is essential for genome maintenance and cancer prevention. A key signaling pathway for fork protection involves TRPV2-mediated Ca2+ release from the ER, which is triggered after the generation of cytosolic DNA and the activation of cGAS/STING. This results in CaMKK2/AMPK activation and subsequent Exo1 phosphorylation, which prevent aberrant fork processing, thereby ensuring genome stability. However, it remains poorly understood how the TRPV2 channel is activated by the presence of cytosolic DNA. Here, through a genome-wide CRISPR-based screen, we identify TRPM8 channel-associated factor 1 (TCAF1) as a key factor promoting TRPV2-mediated Ca2+ release under replication stress or other conditions that activate cGAS/STING. Mechanistically, TCAF1 assists Ca2+ release by facilitating the dissociation of STING from TRPV2, thereby relieving TRPV2 repression. Consistent with this function, TCAF1 is required for fork protection, chromosomal stability, and cell survival after replication stress.


Subject(s)
Calcium , Cytosol , DNA Replication , Membrane Proteins , TRPV Cation Channels , Humans , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Calcium/metabolism , Cytosol/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , HEK293 Cells , DNA/metabolism , HeLa Cells , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics , Phosphorylation , Genomic Instability , DNA Damage , Animals
2.
Sci Adv ; 10(22): eadn4490, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820146

ABSTRACT

In recent years, there has been a growing interest in engineering dynamic and autonomous systems with robotic functionalities using biomolecules. Specifically, the ability of molecular motors to convert chemical energy to mechanical forces and the programmability of DNA are regarded as promising components for these systems. However, current systems rely on the manual addition of external stimuli, limiting the potential for autonomous molecular systems. Here, we show that DNA-based cascade reactions can act as a molecular controller that drives the autonomous assembly and disassembly of DNA-functionalized microtubules propelled by kinesins. The DNA controller is designed to produce two different DNA strands that program the interaction between the microtubules. The gliding microtubules integrated with the controller autonomously assemble to bundle-like structures and disassemble into discrete filaments without external stimuli, which is observable by fluorescence microscopy. We believe this approach to be a starting point toward more autonomous behavior of motor protein-based multicomponent systems with robotic functionalities.


Subject(s)
DNA , Kinesins , Microtubules , Robotics , DNA/chemistry , DNA/metabolism , Microtubules/metabolism , Microtubules/chemistry , Kinesins/metabolism , Kinesins/chemistry , Molecular Motor Proteins/metabolism , Molecular Motor Proteins/chemistry
4.
J Am Chem Soc ; 146(19): 13126-13132, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38696488

ABSTRACT

Cisplatin, a cornerstone in cancer chemotherapy, is known for its DNA-binding capacity and forms lesions that lead to cancer cell death. However, the repair of these lesions compromises cisplatin's effectiveness. This study investigates how phosphorylation of HMGB1, a nuclear protein, modifies its binding to cisplatin-modified DNA (CP-DNA) and thus protects it from repair. Despite numerous methods for detecting protein-DNA interactions, quantitative approaches for understanding their molecular mechanism remain limited. Here, we applied click chemistry-based single-molecule force spectroscopy, achieving high-precision quantification of the interaction between phosphorylated HMGB1 and CP-DNA. This method utilizes a synergy of click chemistry and enzymatic ligation for precise DNA-protein immobilization and interaction in the system. Our results revealed that HMGB1 binds to CP-DNA with a significantly high rupture force of ∼130 pN, stronger than most natural DNA-protein interactions and varying across different DNA sequences. Moreover, Ser14 is identified as the key phosphorylation site, enhancing the interaction's kinetic stability by 35-fold. This increase in stability is attributed to additional hydrogen bonding suggested by molecular dynamics (MD) simulations. Our findings not only reveal the important role of phosphorylated HMGB1 in potentially improving cisplatin's therapeutic efficacy but also provide a precise method for quantifying protein-DNA interactions.


Subject(s)
Cisplatin , Click Chemistry , DNA , HMGB1 Protein , Molecular Dynamics Simulation , HMGB1 Protein/metabolism , HMGB1 Protein/chemistry , Cisplatin/chemistry , Cisplatin/pharmacology , Cisplatin/metabolism , Phosphorylation , DNA/chemistry , DNA/metabolism , Humans , Protein Binding , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
5.
ACS Appl Mater Interfaces ; 16(19): 24162-24171, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38696548

ABSTRACT

Molecular carriers are necessary for the controlled release of drugs and genes to achieve the desired therapeutic outcomes. DNA hydrogels can be a promising candidate in this application with their distinctive sequence-dependent programmability, which allows precise encapsulation of specific cargo molecules and stimuli-responsive release of them at the target. However, DNA hydrogels are inherently susceptible to the degradation of nucleases, making them vulnerable in a physiological environment. To be an effective molecular carrier, DNA hydrogels should be able to protect encapsulated cargo molecules until they reach the target and release them once they are reached. Here, we develop a simple way of controlling the enzyme resistance of DNA hydrogels for cargo protection and release by using cation-mediated condensation and expansion. We found that DNA hydrogels condensed by spermine are highly resistant to enzymatic degradation. They become degradable again if expanded back to their original, uncondensed state by sodium ions interfering with the interaction between spermine and DNA. These controllable condensation, expansion, and degradation of DNA hydrogels pave the way for the development of DNA hydrogels as an effective molecular carrier.


Subject(s)
DNA , Hydrogels , Spermine , Hydrogels/chemistry , DNA/chemistry , DNA/metabolism , Spermine/chemistry , Drug Carriers/chemistry
6.
Methods Mol Biol ; 2800: 35-53, 2024.
Article in English | MEDLINE | ID: mdl-38709476

ABSTRACT

Clustering of type II tumor necrosis factor (TNF) receptors (TNFRs) is essential for their activation, yet currently available drugs fail to activate signaling. Some strategies aim to cluster TNFR by using multivalent streptavidin or scaffolds based on dextran or graphene. However, these strategies do not allow for control of the valency or spatial organization of the ligands, and consequently control of the TNFR activation is not optimal. DNA origami nanostructures allow nanometer-precise control of the spatial organization of molecules and complexes, with defined spacing, number and valency. Here, we demonstrate the design and characterization of a DNA origami nanostructure that can be decorated with engineered single-chain TNF-related apoptosis-inducing ligand (SC-TRAIL) complexes, which show increased cell killing compared to SC-TRAIL alone on Jurkat cells. The information in this chapter can be used as a basis to decorate DNA origami nanostructures with various proteins, complexes, or other biomolecules.


Subject(s)
DNA , Nanostructures , Nanostructures/chemistry , Humans , Jurkat Cells , DNA/chemistry , DNA/metabolism , TNF-Related Apoptosis-Inducing Ligand/chemistry , TNF-Related Apoptosis-Inducing Ligand/metabolism , Receptors, Tumor Necrosis Factor/metabolism , Receptors, Tumor Necrosis Factor/chemistry , Nanotechnology/methods , Nucleic Acid Conformation
7.
J Chem Inf Model ; 64(10): 4002-4008, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38798191

ABSTRACT

Transcription factors (TFs) are important regulatory elements for vital cellular activities, and the identification of transcription factor binding sites (TFBS) can help to explore gene regulatory mechanisms. Research studies have proved that cfDNA (cell-free DNA) shows relatively higher coverage at TFBS due to the protection by TF from degradation by nucleases and short fragments of cfDNA are enriched in TFBS. However, there are still great difficulties in the noninvasive identification of TFBSs from experimental techniques. In this study, we propose a deep learning-based approach that can noninvasively predict TFBSs of cfDNA by learning sequence information from known TFBSs through convolutional neural networks. Under the addition of long short-term memory, our model achieved an area under the curve of 84%. Based on this model to predict cfDNA, we found consistent motifs in cfDNA fragments and lower coverage occurred upstream and downstream of these cfDNA fragments, which is consistent with a previous study. We also found that the binding sites of the same TF differ in different cell lines. TF-specific target genes were detected from cfDNA and were enriched in cancer-related pathways. In summary, our method of locating TFBSs from plasma has the potential to reflect the intrinsic regulatory mechanism from a noninvasive perspective and provide technical guidance for dynamic monitoring of disease in clinical practice.


Subject(s)
Cell-Free Nucleic Acids , Deep Learning , Transcription Factors , Transcription Factors/metabolism , Transcription Factors/chemistry , Binding Sites , Humans , Cell-Free Nucleic Acids/metabolism , Cell-Free Nucleic Acids/chemistry , DNA/metabolism , DNA/chemistry
8.
Nat Commun ; 15(1): 4057, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744910

ABSTRACT

With just four building blocks, low sequence information density, few functional groups, poor control over folding, and difficulties in forming compact folds, natural DNA and RNA have been disappointing platforms from which to evolve receptors, ligands, and catalysts. Accordingly, synthetic biology has created "artificially expanded genetic information systems" (AEGIS) to add nucleotides, functionality, and information density. With the expected improvements seen in AegisBodies and AegisZymes, the task for synthetic biologists shifts to developing for expanded DNA the same analytical tools available to natural DNA. Here we report one of these, an enzyme-assisted sequencing of expanded genetic alphabet (ESEGA) method to sequence six-letter AEGIS DNA. We show how ESEGA analyses this DNA at single base resolution, and applies it to optimized conditions for six-nucleotide PCR, assessing the fidelity of various DNA polymerases, and extending this to AEGIS components with functional groups. This supports the renewed exploitation of expanded DNA alphabets in biotechnology.


Subject(s)
DNA , High-Throughput Nucleotide Sequencing , High-Throughput Nucleotide Sequencing/methods , DNA/genetics , DNA/metabolism , Synthetic Biology/methods , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Polymerase Chain Reaction/methods , Base Sequence , Sequence Analysis, DNA/methods
9.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791183

ABSTRACT

Apurinic/apyrimidinic endonuclease 1 (APE1) is involved in DNA repair and transcriptional regulation mechanisms. This multifunctional activity of APE1 should be supported by specific structural properties of APE1 that have not yet been elucidated. Herein, we applied atomic force microscopy (AFM) to characterize the interactions of APE1 with DNA containing two well-separated G-rich segments. Complexes of APE1 with DNA containing G-rich segments were visualized, and analysis of the complexes revealed the affinity of APE1 to G-rich DNA sequences, and their yield was as high as 53%. Furthermore, APE1 is capable of binding two DNA segments leading to the formation of loops in the DNA-APE1 complexes. The analysis of looped APE1-DNA complexes revealed that APE1 can bridge G-rich segments of DNA. The yield of loops bridging two G-rich DNA segments was 41%. Analysis of protein size in various complexes was performed, and these data showed that loops are formed by APE1 monomer, suggesting that APE1 has two DNA binding sites. The data led us to a model for the interaction of APE1 with DNA and the search for the specific sites. The implication of these new APE1 properties in organizing DNA, by bringing two distant sites together, for facilitating the scanning for damage and coordinating repair and transcription is discussed.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase , DNA , Microscopy, Atomic Force , Protein Binding , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/chemistry , DNA/metabolism , DNA/chemistry , Humans , Binding Sites , DNA Repair
10.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791202

ABSTRACT

Knowledge of the composition of proteins that interact with plasma DNA will provide a better understanding of the homeostasis of circulating nucleic acids and the various modes of interaction with target cells, which may be useful in the development of gene targeted therapy approaches. The goal of the present study is to shed light on the composition and architecture of histone-containing nucleoprotein complexes (NPCs) from the blood plasma of healthy females (HFs) and breast cancer patients (BCPs) and to explore the relationship of proteins with crucial steps of tumor progression: epithelial-mesenchymal transition (EMT), cell proliferation, invasion, cell migration, stimulation of angiogenesis, and immune response. MALDI-TOF mass spectrometric analysis of NPCs isolated from blood samples using affine chromatography was performed. Bioinformatics analysis showed that the shares of DNA-binding proteins in the compositions of NPCs in normal and cancer patients are comparable and amount to 40% and 33%, respectively; in total, we identified 38 types of DNA-binding motifs. Functional enrichment analysis using FunRich 3.13 showed that, in BCP blood, the share of DNA-binding proteins involved in nucleic acid metabolism increased, while the proportion of proteins involved in intercellular communication and signal transduction decreased. The representation of NPC passenger proteins in breast cancer also changes: the proportion of proteins involved in transport increases and the share of proteins involved in energy biological pathways decreases. Moreover, in the HF blood, proteins involved in the processes of apoptosis were more represented in the composition of NPCs and in the BCP blood-in the processes of active secretion. For the first time, bioinformatics approaches were used to visualize the architecture of circulating NPCs in the blood and to show that breast cancer has an increased representation of passenger proteins involved in EMT, cell proliferation, invasion, cell migration, and immune response. Using breast cancer protein data from the Human Protein Atlas (HPA) and DEPC, we found that 86% of NPC proteins in the blood of BCPs were not previously annotated in these databases. The obtained data may indirectly indicate directed protein sorting in NPCs, which, along with extracellular vesicles, can not only be diagnostically significant molecules for liquid biopsy, but can also carry out the directed transfer of genetic material from donor cells to recipient cells.


Subject(s)
Breast Neoplasms , DNA-Binding Proteins , Humans , Female , Breast Neoplasms/blood , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , DNA-Binding Proteins/metabolism , Epithelial-Mesenchymal Transition , Carcinogenesis/metabolism , Cell Proliferation , DNA/metabolism , DNA/blood , Computational Biology/methods , Nucleoproteins/metabolism , Nucleoproteins/blood , Cell Movement
11.
Anal Chem ; 96(21): 8458-8466, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38710075

ABSTRACT

G-triplexes are G-rich oligonucleotides composed of three G-tracts and have absorbed much attention due to their potential biological functions and attractive performance in biosensing. Through the optimization of loop compositions, DNA lengths, and 5'-flanking bases of G-rich sequences, a new stable G-triplex sequence with 14 bases (G3-F15) was discovered to dramatically activate the fluorescence of Thioflavin T (ThT), a water-soluble fluorogenic dye. The fluorescence enhancement of ThT after binding with G3-F15 reached 3200 times, which was the strongest one by far among all of the G-rich sequences. The conformations of G3-F15 and G3-F15/ThT were studied by circular dichroism. The thermal stability measurements indicated that G3-F15 was a highly stable G-triplex structure. The conformations of G3-F15 and G3-F15/ThT in the presence of different metal cations were studied thoroughly by fluorescent spectroscopy, circular dichroism, and nuclear magnetic resonance. Furthermore, using the G3-F15/ThT complex as a fluorescent probe, a robust and simple turn-on fluorescent sensor for uracil-DNA glycosylase activity was developed. This study proposes a new systematic strategy to explore new functional G-rich sequences and their ligands, which will promote their applications in diagnosis, therapy, and biosensing.


Subject(s)
Benzothiazoles , DNA , Fluorescent Dyes , Uracil-DNA Glycosidase , Benzothiazoles/chemistry , Benzothiazoles/metabolism , Fluorescent Dyes/chemistry , DNA/chemistry , DNA/metabolism , Uracil-DNA Glycosidase/metabolism , Uracil-DNA Glycosidase/chemistry , Spectrometry, Fluorescence , Fluorescence , Biosensing Techniques/methods , Circular Dichroism , Humans
12.
Proc Natl Acad Sci U S A ; 121(20): e2403871121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38717857

ABSTRACT

DNA base damage is a major source of oncogenic mutations and disruption to gene expression. The stalling of RNA polymerase II (RNAP) at sites of DNA damage and the subsequent triggering of repair processes have major roles in shaping the genome-wide distribution of mutations, clearing barriers to transcription, and minimizing the production of miscoded gene products. Despite its importance for genetic integrity, key mechanistic features of this transcription-coupled repair (TCR) process are controversial or unknown. Here, we exploited a well-powered in vivo mammalian model system to explore the mechanistic properties and parameters of TCR for alkylation damage at fine spatial resolution and with discrimination of the damaged DNA strand. For rigorous interpretation, a generalizable mathematical model of DNA damage and TCR was developed. Fitting experimental data to the model and simulation revealed that RNA polymerases frequently bypass lesions without triggering repair, indicating that small alkylation adducts are unlikely to be an efficient barrier to gene expression. Following a burst of damage, the efficiency of transcription-coupled repair gradually decays through gene bodies with implications for the occurrence and accurate inference of driver mutations in cancer. The reinitation of transcription from the repair site is not a general feature of transcription-coupled repair, and the observed data is consistent with reinitiation never taking place. Collectively, these results reveal how the directional but stochastic activity of TCR shapes the distribution of mutations following DNA damage.


Subject(s)
DNA Damage , DNA Repair , RNA Polymerase II , Transcription, Genetic , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Animals , Stochastic Processes , Mice , DNA/metabolism , DNA/genetics , Humans , Alkylation , Mutation , Excision Repair
13.
Anal Chem ; 96(21): 8754-8762, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38740024

ABSTRACT

Simultaneous profiling of redox-regulated markers at different cellular sublocations is of great significance for unraveling the upstream and downstream molecular mechanisms of oxidative stress in living cells. Herein, by synchronizing dual target-triggered DNA machineries in one nanoentity, we engineered a DNA walker-driven mass nanotag (MNT) assembly system (w-MNT-AS) that can be sequentially activated by oxidative stress-associated mucin 1 (MUC1) and apurinic/apyrimidinic endonuclease 1 (APE1) from plasma membrane to cytoplasm and induce recycled assembly of MNTs for multiplex detection of the two markers by matrix-assisted laser desorption ionization mass spectrometry (MALDI MS). In the working cascade, the sensing process governs the separate activation of w-MNT-AS by MUC1 and APE1 in diverse locations, while the assembly process contributes to the parallel amplification of the ion signal of the characteristic mass tags. In this manner, the differences between MCF-7, HeLa, HepG2, and L02 cells in membrane MUC1 expression and cytoplasmic APE1 activation were fully characterized. Furthermore, the oxidative stress level and dynamics caused by exogenous H2O2, doxorubicin, and simvastatin were comprehensively demonstrated by tracking the fate of the two markers across different cellular locations. The proposed w-MNT-AS coupled MS method provides an effective route to probe multiple functional molecules that lie at different locations while participating in the same cellular event, facilitating the mechanistic studies on cellular response to oxidative stress and other disease-related cellular processes.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase , DNA , Mucin-1 , Oxidative Stress , Humans , Mucin-1/metabolism , DNA/metabolism , DNA/chemistry , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Hydrogen Peroxide/metabolism
14.
Nat Commun ; 15(1): 4292, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769345

ABSTRACT

Deficiencies in the BRCA1 tumor suppressor gene are the main cause of hereditary breast and ovarian cancer. BRCA1 is involved in the Homologous Recombination DNA repair pathway and, together with BARD1, forms a heterodimer with ubiquitin E3 activity. The relevance of the BRCA1/BARD1 ubiquitin E3 activity for tumor suppression and DNA repair remains controversial. Here, we observe that the BRCA1/BARD1 ubiquitin E3 activity is not required for Homologous Recombination or resistance to Olaparib. Using TULIP2 methodology, which enables the direct identification of E3-specific ubiquitination substrates, we identify substrates for BRCA1/BARD1. We find that PCNA is ubiquitinated by BRCA1/BARD1 in unperturbed conditions independently of RAD18. PCNA ubiquitination by BRCA1/BARD1 avoids the formation of ssDNA gaps during DNA replication and promotes continuous DNA synthesis. These results provide additional insight about the importance of BRCA1/BARD1 E3 activity in Homologous Recombination.


Subject(s)
BRCA1 Protein , DNA Replication , Phthalazines , Piperazines , Proliferating Cell Nuclear Antigen , Tumor Suppressor Proteins , Ubiquitin-Protein Ligases , Ubiquitination , Humans , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Proliferating Cell Nuclear Antigen/metabolism , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Phthalazines/pharmacology , Piperazines/pharmacology , Homologous Recombination , Female , HEK293 Cells , Cell Line, Tumor , DNA/metabolism
15.
Nat Commun ; 15(1): 4395, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782894

ABSTRACT

The conformational dynamics of nucleosome arrays generate a diverse spectrum of microscopic states, posing challenges to their structural determination. Leveraging cryogenic electron tomography (cryo-ET), we determine the three-dimensional (3D) structures of individual mononucleosomes and arrays comprising di-, tri-, and tetranucleosomes. By slowing the rate of condensation through a reduction in ionic strength, we probe the intra-array structural transitions that precede inter-array interactions and liquid droplet formation. Under these conditions, the arrays exhibite irregular zig-zag conformations with loose packing. Increasing the ionic strength promoted intra-array compaction, yet we do not observe the previously reported regular 30-nanometer fibers. Interestingly, the presence of H1 do not induce array compaction; instead, one-third of the arrays display nucleosomes invaded by foreign DNA, suggesting an alternative role for H1 in chromatin network construction. We also find that the crucial parameter determining the structure adopted by chromatin arrays is the angle between the entry and exit of the DNA and the corresponding tangents to the nucleosomal disc. Our results provide insights into the initial stages of intra-array compaction, a critical precursor to condensation in the regulation of chromatin organization.


Subject(s)
DNA , Electron Microscope Tomography , Nucleosomes , Nucleosomes/metabolism , Nucleosomes/ultrastructure , Nucleosomes/chemistry , Electron Microscope Tomography/methods , DNA/chemistry , DNA/metabolism , Cryoelectron Microscopy/methods , Nucleic Acid Conformation , Chromatin/chemistry , Chromatin/ultrastructure , Chromatin/metabolism , Histones/metabolism , Histones/chemistry , Osmolar Concentration , Animals
16.
Nat Commun ; 15(1): 4403, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782907

ABSTRACT

Controlled manipulation of cultured cells by delivery of exogenous macromolecules is a cornerstone of experimental biology. Here we describe a platform that uses nanopipettes to deliver defined numbers of macromolecules into cultured cell lines and primary cells at single molecule resolution. In the nanoinjection platform, the nanopipette is used as both a scanning ion conductance microscope (SICM) probe and an injection probe. The SICM is used to position the nanopipette above the cell surface before the nanopipette is inserted into the cell into a defined location and to a predefined depth. We demonstrate that the nanoinjection platform enables the quantitative delivery of DNA, globular proteins, and protein fibrils into cells with single molecule resolution and that delivery results in a phenotypic change in the cell that depends on the identity of the molecules introduced. Using experiments and computational modeling, we also show that macromolecular crowding in the cell increases the signal-to-noise ratio for the detection of translocation events, thus the cell itself enhances the detection of the molecules delivered.


Subject(s)
DNA , Single Molecule Imaging , Humans , Single Molecule Imaging/methods , DNA/metabolism , DNA/chemistry , Animals , Nanotechnology/methods , Proteins/metabolism , Proteins/chemistry , Macromolecular Substances/metabolism , Macromolecular Substances/chemistry , Signal-To-Noise Ratio
17.
Sci Rep ; 14(1): 11788, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38783016

ABSTRACT

Fascaplysin is a red cytotoxic pigment with anticancer properties isolated from the marine sponge Fascaplysinopsis sp. Recently, structure-activity relationship analysis reported by our group suggested that selective cytotoxicity of fascaplysin derivatives towards tumor cells negatively correlates with their ability to intercalate into DNA. To validate this hypothesis, we synthesized 6- and 7-tert-butylfascaplysins which reveal mitigated DNA-intercalating properties. These derivatives were found to be strongly cytotoxic to drug-resistant human prostate cancer cells, albeit did not demonstrate improved selectivity towards cancer cells when compared to fascaplysin. At the same time, kinome analysis suggested an activation of CHK1/ATR axis in cancer cells shortly after the drug exposure. Further experiments revealed induction of replication stress that is eventually converted to the toxic DNA double-strand breaks, resulting in caspase-independent apoptosis-like cell death. Our observations highlight new DNA-targeting effect of some fascaplysin derivatives and indicate more complex structure-activity relationships within the fascaplysin family, suggesting that cytotoxicity and selectivity of these alkaloids are influenced by multiple factors. Furthermore, combination with clinically-approved inhibitors of ATR/CHK1 as well as testing in tumors particularly sensitive to the DNA damage should be considered in further studies.


Subject(s)
Antineoplastic Agents , Checkpoint Kinase 1 , Humans , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/antagonists & inhibitors , Indoles/pharmacology , Indoles/chemistry , Apoptosis/drug effects , Structure-Activity Relationship , Male , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , DNA/metabolism , Animals , DNA Breaks, Double-Stranded/drug effects , Quaternary Ammonium Compounds , Carbolines , Indolizines
18.
Nat Struct Mol Biol ; 31(5): 791-800, 2024 May.
Article in English | MEDLINE | ID: mdl-38714889

ABSTRACT

The recognition that DNA can be ADP ribosylated provides an unexpected regulatory level of how ADP-ribosylation contributes to genome stability, epigenetics and immunity. Yet, it remains unknown whether DNA ADP-ribosylation (DNA-ADPr) promotes genome stability and how it is regulated. Here, we show that telomeres are subject to DNA-ADPr catalyzed by PARP1 and removed by TARG1. Mechanistically, we show that DNA-ADPr is coupled to lagging telomere DNA strand synthesis, forming at single-stranded DNA present at unligated Okazaki fragments and on the 3' single-stranded telomere overhang. Persistent DNA-linked ADPr, due to TARG1 deficiency, eventually leads to telomere shortening. Furthermore, using the bacterial DNA ADP-ribosyl-transferase toxin to modify DNA at telomeres directly, we demonstrate that unhydrolyzed DNA-linked ADP-ribose compromises telomere replication and telomere integrity. Thus, by identifying telomeres as chromosomal targets of PARP1 and TARG1-regulated DNA-ADPr, whose deregulation compromises telomere replication and integrity, our study highlights and establishes the critical importance of controlling DNA-ADPr turnover for sustained genome stability.


Subject(s)
ADP-Ribosylation , DNA Replication , DNA , Poly (ADP-Ribose) Polymerase-1 , Telomere , Telomere/metabolism , Telomere/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Humans , DNA/metabolism , Animals , Mice , Adenosine Diphosphate Ribose/metabolism , Genomic Instability , Telomere Shortening
19.
Proc Natl Acad Sci U S A ; 121(19): e2318438121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38696464

ABSTRACT

Alternative lengthening of telomeres (ALT) is a telomere maintenance mechanism mediated by break-induced replication, evident in approximately 15% of human cancers. A characteristic feature of ALT cancers is the presence of C-circles, circular single-stranded telomeric DNAs composed of C-rich sequences. Despite the fact that extrachromosomal C-rich single-stranded DNAs (ssDNAs), including C-circles, are unique to ALT cells, their generation process remains undefined. Here, we introduce a method to detect single-stranded telomeric DNA, called 4SET (Strand-Specific Southern-blot for Single-stranded Extrachromosomal Telomeres) assay. Utilizing 4SET, we are able to capture C-rich single-stranded DNAs that are near 200 to 1500 nucleotides in size. Both linear C-rich ssDNAs and C-circles are abundant in the fractions of cytoplasm and nucleoplasm, which supports the idea that linear and circular C-rich ssDNAs are generated concurrently. We also found that C-rich ssDNAs originate during Okazaki fragment processing during lagging strand DNA synthesis. The generation of C-rich ssDNA requires CST-PP (CTC1/STN1/TEN1-PRIMASE-Polymerase alpha) complex-mediated priming of the C-strand DNA synthesis and subsequent excessive strand displacement of the C-rich strand mediated by the DNA Polymerase delta and the BLM helicase. Our work proposes a model for the generation of C-rich ssDNAs and C-circles during ALT-mediated telomere elongation.


Subject(s)
DNA, Single-Stranded , Telomere Homeostasis , Telomere , Telomere/genetics , Telomere/metabolism , Humans , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , DNA Replication , DNA/genetics , DNA/metabolism , DNA, Circular/genetics , DNA, Circular/metabolism , Blotting, Southern , DNA Polymerase III/metabolism , DNA Polymerase III/genetics
20.
Chem Biol Interact ; 395: 111031, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38703805

ABSTRACT

Alternative DNA structures play critical roles in fundamental biological processes linked to human diseases. Thus, targeting and stabilizing these structures by specific ligands could affect the progression of cancer and other diseases. Here, we describe, using methods of molecular biophysics, the interactions of two oxidatively locked [Co2L3]6+ cylinders, rac-2 and meso-1, with diverse alternative DNA structures, such as junctions, G quadruplexes, and bulges. This study was motivated by earlier results demonstrating that both Co(III) cylinders exhibit potent and selective activity against cancer cells, accumulate in the nucleus of cancer cells, and prove to be efficient DNA binders. The results show that the bigger cylinder rac-2 stabilizes all DNA structures, while the smaller cylinder meso-1 stabilizes just the Y-shaped three-way junctions. Collectively, the results of this study suggest that the stabilization of alternative DNA structures by Co(III) cylinders investigated in this work might contribute to the mechanism of their biological activity.


Subject(s)
Cobalt , DNA , DNA/chemistry , DNA/metabolism , Cobalt/chemistry , Humans , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Nucleic Acid Conformation , G-Quadruplexes
SELECTION OF CITATIONS
SEARCH DETAIL
...