Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.780
Filter
1.
Hum Genomics ; 18(1): 55, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822443

ABSTRACT

BACKGROUND: Although CDKN2A alteration has been explored as a favorable factor for tumorigenesis in pan-cancers, the association between CDKN2A point mutation (MUT) and intragenic deletion (DEL) and response to immune checkpoint inhibitors (ICIs) is still disputed. This study aims to determine the associations of CDKN2A MUT and DEL with overall survival (OS) and response to immune checkpoint inhibitors treatment (ICIs) among pan-cancers and the clinical features of CDKN2A-altered gastric cancer. METHODS: This study included 45,000 tumor patients that underwent tumor sequencing across 33 cancer types from four cohorts, the MSK-MetTropism, MSK-IMPACT, OrigiMed2020 and TCGA cohorts. Clinical outcomes and genomic factors associated with response to ICIs, including tumor mutational burden, copy number alteration, neoantigen load, microsatellite instability, tumor immune microenvironment and immune-related gene signatures, were collected in pan-cancer. Clinicopathologic features and outcomes were assessed in gastric cancer. Patients were grouped based on the presence of CDKN2A wild type (WT), CDKN2A MUT, CDKN2A DEL and CDKN2A other alteration (ALT). RESULTS: Our research showed that CDKN2A-MUT patients had shorter survival times than CDKN2A-WT patients in the MSK MetTropism and TCGA cohorts, but longer OS in the MSK-IMPACT cohort with ICIs treatment, particularly in patients having metastatic disease. Similar results were observed among pan-cancer patients with CDKN2A DEL and other ALT. Notably, CDKN2A ALT frequency was positively related to tumor-specific objective response rates to ICIs in MSK MetTropism and OrigiMed 2020. Additionally, individuals with esophageal carcinoma or stomach adenocarcinoma who had CDKN2A MUT had poorer OS than patients from the MSK-IMPACT group, but not those with adenocarcinoma. We also found reduced levels of activated NK cells, T cells CD8 and M2 macrophages in tumor tissue from CDKN2A-MUT or DEL pan-cancer patients compared to CDKN2A-WT patients in TCGA cohort. Gastric cancer scRNA-seq data also showed that CDKN2A-ALT cancer contained less CD8 T cells but more exhausted T cells than CDKN2A-WT cancer. A crucial finding of the pathway analysis was the inhibition of three immune-related pathways in the CDKN2A ALT gastric cancer patients, including the interferon alpha response, inflammatory response, and interferon gamma response. CONCLUSIONS: This study illustrates the CDKN2A MUT and DEL were associated with a poor outcome across cancers. CDKN2A ALT, on the other hand, have the potential to be used as a biomarker for choosing patients for ICI treatment, notably in esophageal carcinoma and stomach adenocarcinoma.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p16 , Stomach Neoplasms , Tumor Microenvironment , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/immunology , Cyclin-Dependent Kinase Inhibitor p16/genetics , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Male , Female , Immune Checkpoint Inhibitors/therapeutic use , Middle Aged , Biomarkers, Tumor/genetics , Aged , Prognosis , DNA Copy Number Variations/genetics , Mutation/genetics , Microsatellite Instability
2.
Orphanet J Rare Dis ; 19(1): 223, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831459

ABSTRACT

BACKGROUND: Extramammary Paget's disease (EMPD) is a rare cancer that occurs within the epithelium of the skin, arising predominantly in areas with high apocrine gland concentration such as the vulva, scrotum, penis and perianal regions. Here, we aim to integrate clinicopathological data with genomic analysis of aggressive, rapidly-progressing de novo metastatic EMPD responding to HER2-directed treatment in combination with other agents, to attain a more comprehensive understanding of the disease landscape. METHODS: Immunohistochemical staining on the scrotal wall tumor and bone marrow metastasis demonstrated HER2 overexpression. Whole genome sequencing of the tumor and matched blood was performed. RESULTS: Notable copy number gains (log2FC > 0.9) on chromosomes 7 and 8 were detected (n = 81), with 92.6% of these unique genes specifically located on chromosome 8. Prominent cancer-associated genes include ZNF703, HOOK3, DDHD2, LSM1, NSD3, ADAM9, BRF2, KAT6A and FGFR1. Interestingly, ERBB2 gene did not exhibit high copy number gain (log2FC = 0.4) although 90% of tumor cells stained HER2-positive. Enrichment in pathways associated with transforming growth factor-beta (TGFß) (FDR = 0.0376, Enrichment Ratio = 8.12) and fibroblast growth factor receptor (FGFR1) signaling (FDR = 0.0082, Enrichment Ratio = 2.3) was detected. Amplicon structure analysis revealed that this was a simple-linear amplification event. CONCLUSION: Whole genome sequencing revealed the underlying copy number variation landscape in HER2-positive metastatic EMPD. The presence of alternative signalling pathways and genetic variants suggests potential interactions with HER2 signalling, which possibly contributed to the HER2 overexpression and observed response to HER2-directed therapy combined with other agents in a comprehensive treatment regimen.


Subject(s)
Paget Disease, Extramammary , Receptor, ErbB-2 , Whole Genome Sequencing , Humans , Paget Disease, Extramammary/genetics , Paget Disease, Extramammary/metabolism , Paget Disease, Extramammary/pathology , Male , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Aged , DNA Copy Number Variations/genetics
3.
Psychiatr Genet ; 34(3): 74-80, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38690959

ABSTRACT

BACKGROUND: Biallelic loss-of-function variants in SMPD4 cause a rare and severe neurodevelopmental disorder. These variants have been identified in a group of children with neurodevelopmental disorders with microcephaly, arthrogryposis, and structural brain anomalies. SMPD4 encodes a sphingomyelinase that hydrolyzes sphingomyelin into ceramide at neutral pH and can thereby affect membrane lipid homeostasis. SMPD4 localizes to the membranes of the endoplasmic reticulum and nuclear envelope and interacts with nuclear pore complexes. MATERIALS AND METHODS: For the efficient prenatal diagnosis of rare and undiagnosed diseases, the parallel detection of copy number variants (CNVs) and single nucleotide variants using whole-exome analysis is required. A physical examination of the parents was performed. Karyotype and whole-exome analysis were performed for the fetus and the parents. RESULTS: A fetus with microcephaly and arthrogryposis; biallelic null variants (c.387-1G>A; Chr2[GRCh38]: g.130142742_130202459del) were detected by whole-exome sequencing (WES). We have reported for the first time the biallelic loss-of-function mutations in SMPD4 in patients born to unrelated parents in China. CONCLUSION: WES could replace chromosomal microarray analysis and copy number variation sequencing as a more cost-effective genetic test for detecting CNVs and diagnosing highly heterogeneous conditions.


Subject(s)
DNA Copy Number Variations , Exome Sequencing , Microcephaly , Polymorphism, Single Nucleotide , Prenatal Diagnosis , Sphingomyelin Phosphodiesterase , Humans , DNA Copy Number Variations/genetics , Exome Sequencing/methods , Female , Prenatal Diagnosis/methods , Sphingomyelin Phosphodiesterase/genetics , Polymorphism, Single Nucleotide/genetics , Pregnancy , Microcephaly/genetics , Heterozygote , Arthrogryposis/genetics , Arthrogryposis/diagnosis , Male , Exome/genetics , Mutation/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/diagnosis
4.
Birth Defects Res ; 116(5): e2351, 2024 May.
Article in English | MEDLINE | ID: mdl-38766695

ABSTRACT

BACKGROUND: Pathogenic copy number variants (pCNVs) are associated with fetal ultrasound anomalies, which can be efficiently identified through chromosomal microarray analysis (CMA). The primary objective of the present study was to enhance understanding of the genotype-phenotype correlation in fetuses exhibiting absent or hypoplastic nasal bones using CMA. METHODS: Enrolled in the present study were 94 cases of fetuses with absent/hypoplastic nasal bone, which were divided into an isolated absent/hypoplastic nasal bone group (n = 49) and a non-isolated group (n = 45). All pregnant women enrolled in the study underwent karyotype analysis and CMA to assess chromosomal abnormalities in the fetuses. RESULTS: Karyotype analysis and CMA detection were successfully performed in all cases. The results of karyotype and CMA indicate the presence of 11 cases of chromosome aneuploidy, with trisomy 21 being the most prevalent among them. A small supernumerary marker chromosome (sSMC) detected by karyotype analysis was further interpreted as a pCNV by CMA. Additionally, CMA detection elicited three cases of pCNVs, despite normal findings in their karyotype analysis results. Among them, one case of Roche translocation was identified to be a UPD in chromosome 15 with a low proportion of trisomy 15. Further, a significant difference in the detection rate of pCNVs was observed between non-isolated and isolated absent/hypoplastic nasal bone (24.44% vs. 8.16%, p < .05). CONCLUSION: The present study enhances the utility of CMA in diagnosing the etiology of absent or hypoplastic nasal bone in fetuses. Further, isolated cases of absent or hypoplastic nasal bone strongly suggest the presence of chromosomal abnormalities, necessitating genetic evaluation through CMA.


Subject(s)
DNA Copy Number Variations , Karyotyping , Microarray Analysis , Nasal Bone , Pregnancy Trimester, Second , Prenatal Diagnosis , Humans , Female , Nasal Bone/diagnostic imaging , Nasal Bone/abnormalities , Pregnancy , Microarray Analysis/methods , Adult , Prenatal Diagnosis/methods , DNA Copy Number Variations/genetics , Karyotyping/methods , Fetus , Chromosome Aberrations/embryology , Ultrasonography, Prenatal/methods , Genetic Association Studies/methods
5.
Nat Genet ; 56(5): 889-899, 2024 May.
Article in English | MEDLINE | ID: mdl-38741018

ABSTRACT

The extent of cell-to-cell variation in tumor mitochondrial DNA (mtDNA) copy number and genotype, and the phenotypic and evolutionary consequences of such variation, are poorly characterized. Here we use amplification-free single-cell whole-genome sequencing (Direct Library Prep (DLP+)) to simultaneously assay mtDNA copy number and nuclear DNA (nuDNA) in 72,275 single cells derived from immortalized cell lines, patient-derived xenografts and primary human tumors. Cells typically contained thousands of mtDNA copies, but variation in mtDNA copy number was extensive and strongly associated with cell size. Pervasive whole-genome doubling events in nuDNA associated with stoichiometrically balanced adaptations in mtDNA copy number, implying that mtDNA-to-nuDNA ratio, rather than mtDNA copy number itself, mediated downstream phenotypes. Finally, multimodal analysis of DLP+ and single-cell RNA sequencing identified both somatic loss-of-function and germline noncoding variants in mtDNA linked to heteroplasmy-dependent changes in mtDNA copy number and mitochondrial transcription, revealing phenotypic adaptations to disrupted nuclear/mitochondrial balance.


Subject(s)
Cell Nucleus , DNA Copy Number Variations , DNA, Mitochondrial , Genome, Mitochondrial , Neoplasms , Single-Cell Analysis , Humans , DNA, Mitochondrial/genetics , Single-Cell Analysis/methods , DNA Copy Number Variations/genetics , Cell Nucleus/genetics , Neoplasms/genetics , Neoplasms/pathology , Cell Line, Tumor , Animals , Mitochondria/genetics , Whole Genome Sequencing/methods , Mice , Heteroplasmy/genetics
6.
Hum Genomics ; 18(1): 46, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730490

ABSTRACT

BACKGROUND: Current clinical diagnosis pathway for lysosomal storage disorders (LSDs) involves sequential biochemical enzymatic tests followed by DNA sequencing, which is iterative, has low diagnostic yield and is costly due to overlapping clinical presentations. Here, we describe a novel low-cost and high-throughput sequencing assay using single-molecule molecular inversion probes (smMIPs) to screen for causative single nucleotide variants (SNVs) and copy number variants (CNVs) in genes associated with 29 common LSDs in India. RESULTS: 903 smMIPs were designed to target exon and exon-intron boundaries of targeted genes (n = 23; 53.7 kb of the human genome) and were equimolarly pooled to create a sequencing library. After extensive validation in a cohort of 50 patients, we screened 300 patients with either biochemical diagnosis (n = 187) or clinical suspicion (n = 113) of LSDs. A diagnostic yield of 83.4% was observed in patients with prior biochemical diagnosis of LSD. Furthermore, diagnostic yield of 73.9% (n = 54/73) was observed in patients with high clinical suspicion of LSD in contrast with 2.4% (n = 1/40) in patients with low clinical suspicion of LSD. In addition to detecting SNVs, the assay could detect single and multi-exon copy number variants with high confidence. Critically, Niemann-Pick disease type C and neuronal ceroid lipofuscinosis-6 diseases for which biochemical testing is unavailable, could be diagnosed using our assay. Lastly, we observed a non-inferior performance of the assay in DNA extracted from dried blood spots in comparison with whole blood. CONCLUSION: We developed a flexible and scalable assay to reliably detect genetic causes of 29 common LSDs in India. The assay consolidates the detection of multiple variant types in multiple sample types while having improved diagnostic yield at same or lower cost compared to current clinical paradigm.


Subject(s)
DNA Copy Number Variations , Genetic Testing , High-Throughput Nucleotide Sequencing , Lysosomal Storage Diseases , Humans , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/diagnosis , India , DNA Copy Number Variations/genetics , Genetic Testing/methods , High-Throughput Nucleotide Sequencing/methods , Polymorphism, Single Nucleotide/genetics , Female , Male , Molecular Probes/genetics
7.
Clin Genet ; 106(1): 114-115, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38715525

ABSTRACT

FGF12 related epilepsy presents with variable phenotypes. We report another patient with a duplication involving the FGF12 gene who presented similar to other published cases having normal early development and responded to phenytoin.


Subject(s)
DNA Copy Number Variations , Epilepsy , Fibroblast Growth Factors , Humans , DNA Copy Number Variations/genetics , Fibroblast Growth Factors/genetics , Epilepsy/genetics , Male , Female , Phenotype
8.
Int J Mol Sci ; 25(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38791417

ABSTRACT

To create a radiogenomics map and evaluate the correlation between molecular and imaging phenotypes in localized prostate cancer (PCa), using radical prostatectomy histopathology as a reference standard. Radiomic features were extracted from T2-weighted (T2WI) and Apparent Diffusion Coefficient (ADC) images of clinically localized PCa patients (n = 15) across different Gleason score-based risk categories. DNA extraction was performed on formalin-fixed, paraffin-embedded (FFPE) samples. Gene expression analysis of androgen receptor expression, apoptosis, and hypoxia was conducted using the Chromosome Analysis Suite (ChAS) application and OSCHIP files. The relationship between gene expression alterations and textural features was assessed using Pearson's correlation analysis. Receiver operating characteristic (ROC) analysis was utilized to evaluate the predictive accuracy of the model. A significant correlation was observed between radiomic texture features and copy number variation (CNV) of genes associated with apoptosis, hypoxia, and androgen receptor (p-value ≤ 0.05). The identified radiomic features, including Sum Entropy ADC, Inverse Difference ADC, Sum Variance T2WI, Entropy T2WI, Difference Variance T2WI, and Angular Secondary Moment T2WI, exhibited potential for predicting cancer grade and biological processes such as apoptosis and hypoxia. Incorporating radiomics and genomics into a prediction model significantly improved the prediction of prostate cancer grade (clinically significant prostate cancer), yielding an AUC of 0.95. Radiomic texture features significantly correlate with genotypes for apoptosis, hypoxia, and androgen receptor expression in localised prostate cancer. Integration of these into the prediction model improved prediction accuracy of clinically significant prostate cancer.


Subject(s)
Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/diagnostic imaging , Middle Aged , Aged , Receptors, Androgen/genetics , Neoplasm Grading , Magnetic Resonance Imaging/methods , Biopsy , Phenotype , ROC Curve , DNA Copy Number Variations/genetics
10.
Sci Rep ; 14(1): 11861, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789621

ABSTRACT

The Integrative Cluster subtypes (IntClusts) provide a framework for the classification of breast cancer tumors into 10 distinct groups based on copy number and gene expression, each with unique biological drivers of disease and clinical prognoses. Gene expression data is often lacking, and accurate classification of samples into IntClusts with copy number data alone is essential. Current classification methods achieve low accuracy when gene expression data are absent, warranting the development of new approaches to IntClust classification. Copy number data from 1980 breast cancer samples from METABRIC was used to train multiclass XGBoost machine learning algorithms (CopyClust). A piecewise constant fit was applied to the average copy number profile of each IntClust and unique breakpoints across the 10 profiles were identified and converted into ~ 500 genomic regions used as features for CopyClust. These models consisted of two approaches: a 10-class model with the final IntClust label predicted by a single multiclass model and a 6-class model with binary reclassification in which four pairs of IntClusts were combined for initial multiclass classification. Performance was validated on the TCGA dataset, with copy number data generated from both SNP arrays and WES platforms. CopyClust achieved 81% and 79% overall accuracy with the TCGA SNP and WES datasets, respectively, a nine-percentage point or greater improvement in overall IntClust subtype classification accuracy. CopyClust achieves a significant improvement over current methods in classification accuracy of IntClust subtypes for samples without available gene expression data and is an easily implementable algorithm for IntClust classification of breast cancer samples with copy number data.


Subject(s)
Algorithms , Breast Neoplasms , DNA Copy Number Variations , Machine Learning , Humans , Breast Neoplasms/genetics , Breast Neoplasms/classification , Female , DNA Copy Number Variations/genetics , Cluster Analysis , Gene Expression Profiling/methods
11.
Nat Commun ; 15(1): 3844, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714690

ABSTRACT

Multiple myeloma (MM) is a heterogeneous disease characterized by frequent MYC translocations. Sporadic MYC activation in the germinal center of genetically engineered Vk*MYC mice is sufficient to induce plasma cell tumors in which a variety of secondary mutations are spontaneously acquired and selected over time. Analysis of 119 Vk*MYC myeloma reveals recurrent copy number alterations, structural variations, chromothripsis, driver mutations, apolipoprotein B mRNA-editing enzyme, catalytic polypeptide (APOBEC) mutational activity, and a progressive decrease in immunoglobulin transcription that inversely correlates with proliferation. Moreover, we identify frequent insertional mutagenesis by endogenous retro-elements as a murine specific mechanism to activate NF-kB and IL6 signaling pathways shared with human MM. Despite the increased genomic complexity associated with progression, advanced tumors remain dependent on MYC. In summary, here we credential the Vk*MYC mouse as a unique resource to explore MM genomic evolution and describe a fully annotated collection of diverse and immortalized murine MM tumors.


Subject(s)
Multiple Myeloma , Proto-Oncogene Proteins c-myc , Animals , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Humans , Mice , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Cell Transformation, Neoplastic/genetics , Mutation , Signal Transduction/genetics , Mice, Transgenic , NF-kappa B/metabolism , NF-kappa B/genetics , Mutagenesis, Insertional , DNA Copy Number Variations/genetics , Genomics/methods , Translocation, Genetic
12.
Orphanet J Rare Dis ; 19(1): 205, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764027

ABSTRACT

BACKGROUND: Trio-based whole-exome sequencing (trio-WES) enables identification of pathogenic variants, including copy-number variants (CNVs), in children with unexplained neurodevelopmental delay (NDD) and neurodevelopmental comorbidities (NDCs), including autism spectrum disorder (ASD), epilepsy, and attention deficit hyperactivity disorder. Further phenotypic and genetic analysis on trio-WES-tested NDD-NDCs cases may help to identify key phenotypic factors related to higher diagnostic yield of using trio-WES and novel risk genes associated with NDCs in clinical settings. METHODS: In this study, we retrospectively performed phenotypic analysis on 163 trio-WES-tested NDD-NDCs children to determine the phenotypic differences between genetically diagnosed and non-genetically diagnosed groups. Additionally, we conducted genetic analysis of ASD genes with the help of Simons Foundation for Autism Research Institute (SFARI) Gene database to identify novel possible ASD-risk genes underlying genetic NDD conditions. RESULTS: Among these 163 patients, pathogenic variants were identified in 82 cases (82/163, 50.3%), including 20 cases with CNVs. By comparing phenotypic variables between genetically diagnosed group (82 cases) and non-genetically diagnosed group (81 cases) with multivariate binary logistic regression analysis, we revealed that NDD-NDCs cases presenting with severe-profound NDD [53/82 vs 17/81, adjusted-OR (95%CI): 4.865 (2.213 - 10.694), adjusted-P < 0.001] or having multiple NDCs [26/82 vs 8/81, adjusted-OR (95%CI): 3.731 (1.399 - 9.950), adjusted-P = 0.009] or accompanying ASD [64/82 vs 35/81, adjusted-OR (95%CI): 3.256 (1.479 - 7.168), adjusted-P = 0.003] and head circumference abnormality [33/82 vs 11/81, adjusted-OR (95%CI): 2.788 (1.148 - 6.774), adjusted-P = 0.024] were more likely to have a genetic diagnosis using trio-WES. Moreover, 37 genes with monogenetic variants were identified in 48 patients genetically diagnosed with NDD-ASD, and 15 dosage-sensitive genes were identified in 16 individuals with NDD-ASD carrying CNVs. Most of those genes had been proven to be ASD-related genes. However, some of them (9 genes) were not proven sufficiently to correlate with ASD. By literature review and constructing protein-protein interaction networks among these 9 candidate ASD-risk genes and 102 established ASD genes obtained from the SFARI Gene database, we identified CUL4B, KCNH1, and PLA2G6 as novel possible ASD-risk genes underlying genetic NDD conditions. CONCLUSIONS: Trio-WES testing is recommended for patients with unexplained NDD-NDCs that have severe-profound NDD or multiple NDCs, particularly those with accompanying ASD and head circumference abnormality, as these independent factors may increase the likelihood of genetic diagnosis using trio-WES. Moreover, NDD patients with pathogenic variants in CUL4B, KCNH1 and PLA2G6 should be aware of potential risks of developing ASD during their disease courses.


Subject(s)
Autism Spectrum Disorder , Exome Sequencing , Neurodevelopmental Disorders , Humans , Exome Sequencing/methods , Female , Male , Child , Child, Preschool , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/epidemiology , Autism Spectrum Disorder/genetics , Retrospective Studies , DNA Copy Number Variations/genetics , Phenotype , Adolescent , Infant , Developmental Disabilities/genetics , Developmental Disabilities/epidemiology , East Asian People
13.
Nat Med ; 30(5): 1395-1405, 2024 May.
Article in English | MEDLINE | ID: mdl-38693247

ABSTRACT

Cerebral palsy (CP) is the most common motor disability in children. To ascertain the role of major genetic variants in the etiology of CP, we conducted exome sequencing on a large-scale cohort with clinical manifestations of CP. The study cohort comprised 505 girls and 1,073 boys. Utilizing the current gold standard in genetic diagnostics, 387 of these 1,578 children (24.5%) received genetic diagnoses. We identified 412 pathogenic and likely pathogenic (P/LP) variants across 219 genes associated with neurodevelopmental disorders, and 59 P/LP copy number variants. The genetic diagnostic rate of children with CP labeled at birth with perinatal asphyxia was higher than the rate in children without asphyxia (P = 0.0033). Also, 33 children with CP manifestations (8.5%, 33 of 387) had findings that were clinically actionable. These results highlight the need for early genetic testing in children with CP, especially those with risk factors like perinatal asphyxia, to enable evidence-based medical decision-making.


Subject(s)
Cerebral Palsy , DNA Copy Number Variations , Exome Sequencing , Genetic Heterogeneity , Humans , Cerebral Palsy/genetics , Female , Male , Child , Child, Preschool , DNA Copy Number Variations/genetics , Exome/genetics , Infant , Genetic Testing , Cohort Studies , Genetic Predisposition to Disease , Infant, Newborn
14.
J Transl Med ; 22(1): 414, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693538

ABSTRACT

Primary testicular lymphoma (PTL) is a rare lymphoma predominantly occurring in the elderly male population. It is characterized by a limited response to treatment and a heightened tendency towards relapse. Histologically, approximately 90% of PTL cases are classified as diffuse large B-cell lymphomas (DLBCL). Genetic features of PTL were delineated in a limited scope within several independent studies. Some of the articles which analyzed the genetic characterization of DLBCL have incorporated PTL samples, but these have been constrained by small sample sizes. In addition, there have been an absence of independent molecular typing studies of PTL. This report summarizes the common mutational features, copy number variations (CNVs) and molecular typing of PTL patients, based on whole-exome sequencing (WES) conducted on a cohort of 25 PTL patients. Among them, HLA, CDKN2A and MYD88 had a high mutation frequency. In addition, we found two core mutational characteristics in PTL including mutation in genes linked to genomic instability (TP53 and CDKN2A) and mutation in immune-related genes (HLA, MYD88, CD79B). We performed molecular typing of 25 PTL patients into C1 subtype with predominantly TP53 mutations and C2 subtype with predominantly HLA mutations. Notably, mutations in the TP53 gene predicted a poor outcome in most types of lymphomas. However, the C1 subtype, dominated by TP53 mutations, had a better prognosis compared to the C2 subtype in PTL. C2 subtype exhibited a worse prognosis, aligning with our finding that the mechanism of immune escape in PTL was primarily the deletions of HLA rather than PD-L1/PD-L2 alterations, a contrast to other DLBCLs. Moreover, we calculated the tumor mutation burden (TMB) and identified that TMB can predict prognosis and recurrence rate in PTL. Our study underscores the significance of molecular typing in PTL based on mutational characteristics, which plays a crucial role in prognostication and guiding therapeutic strategies for patients.


Subject(s)
DNA Copy Number Variations , Genomics , Mutation , Testicular Neoplasms , Humans , Male , Testicular Neoplasms/genetics , Testicular Neoplasms/pathology , Testicular Neoplasms/classification , Mutation/genetics , DNA Copy Number Variations/genetics , Aged , Middle Aged , Lymphoma/genetics , Lymphoma/pathology , Lymphoma/classification , Exome Sequencing , Aged, 80 and over , Adult , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/classification
15.
Sci Rep ; 14(1): 7694, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565889

ABSTRACT

The proteome holds great potential as an intermediate layer between the genome and phenome. Previous protein quantitative trait locus studies have focused mainly on describing the effects of common genetic variations on the proteome. Here, we assessed the impact of the common and rare genetic variations as well as the copy number variants (CNVs) on 326 plasma proteins measured in up to 500 individuals. We identified 184 cis and 94 trans signals for 157 protein traits, which were further fine-mapped to credible sets for 101 cis and 87 trans signals for 151 proteins. Rare genetic variation contributed to the levels of 7 proteins, with 5 cis and 14 trans associations. CNVs were associated with the levels of 11 proteins (7 cis and 5 trans), examples including a 3q12.1 deletion acting as a hub for multiple trans associations; and a CNV overlapping NAIP, a sensor component of the NAIP-NLRC4 inflammasome which is affecting pro-inflammatory cytokine interleukin 18 levels. In summary, this work presents a comprehensive resource of genetic variation affecting the plasma protein levels and provides the interpretation of identified effects.


Subject(s)
Genome-Wide Association Study , Proteome , Humans , Proteome/genetics , Estonia , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , Blood Proteins/genetics , DNA Copy Number Variations/genetics
16.
Brain Behav ; 14(4): e3437, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38616334

ABSTRACT

BACKGROUND: The 15q11-q13 region is a genetic locus with genes subject to genomic imprinting, significantly influencing neurodevelopment. Genomic imprinting is an epigenetic phenomenon that causes differential gene expression based on the parent of origin. In most diploid organisms, gene expression typically involves an equal contribution from both maternal and paternal alleles, shaping the phenotype. Nevertheless, in mammals, including humans, mice, and marsupials, the functional equivalence of parental alleles is not universally maintained. Notably, during male and female gametogenesis, parental alleles may undergo differential marking or imprinting, thereby modifying gene expression without altering the underlying DNA sequence. Neurodevelopmental disorders, such as Prader-Willi syndrome (PWS) (resulting from the absence of paternally expressed genes in this region), Angelman syndrome (AS) (associated with the absence of the maternally expressed UBE3A gene), and 15q11-q13 duplication syndrome (resulting from the two common forms of duplications-either an extra isodicentric 15 chromosome or an interstitial 15 duplication), are the outcomes of genetic variations in this imprinting region. METHODS: Conducted a genomic study to identify the frequency of pathogenic variants impacting the 15q11-q13 region in an ethnically homogenous population from Bangladesh. Screened all known disorders from the DECIPHER database and identified variant enrichment within this cohort. Using the Horizon analysis platform, performed enrichment analysis, requiring at least >60% overlap between a copy number variation and a disorder breakpoint. Deep clinical phenotyping was carried out through multiple examination sessions to evaluate a range of clinical symptoms. RESULTS: This study included eight individuals with clinically suspected PWS/AS, all previously confirmed through chromosomal microarray analysis, which revealed chromosomal breakpoints within the 15q11-q13 region. Among this cohort, six cases (75%) exhibited variable lengths of deletions, whereas two cases (25%) showed duplications. These included one type 2 duplication, one larger atypical duplication, one shorter type 2 deletion, one larger type 1 deletion, and four cases with atypical deletions. Furthermore, thorough clinical assessments led to the diagnosis of four PWS patients, two AS patients, and two individuals with 15q11-q13 duplication syndrome. CONCLUSION: Our deep phenotypic observations identified a spectrum of clinical features that overlap and are unique to PWS, AS, and Dup15q syndromes. Our findings establish genotype-phenotype correlation for patients impacted by variable structural variations within the 15q11-q13 region.


Subject(s)
Angelman Syndrome , Prader-Willi Syndrome , Humans , Female , Male , Animals , Mice , DNA Copy Number Variations/genetics , Alleles , Angelman Syndrome/genetics , Prader-Willi Syndrome/genetics , Bangladesh , Mammals
17.
Sci Rep ; 14(1): 9230, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649688

ABSTRACT

With its high rate of consanguineous marriages and diverse ethnic population, little is currently understood about the genetic architecture of autism spectrum disorder (ASD) in Pakistan. Pakistan has a highly ethnically diverse population, yet with a high proportion of endogamous marriages, and is therefore anticipated to be enriched for biallelic disease-relate variants. Here, we attempt to determine the underlying genetic abnormalities causing ASD in thirty-six small simplex or multiplex families from Pakistan. Microarray genotyping followed by homozygosity mapping, copy number variation analysis, and whole exome sequencing were used to identify candidate. Given the high levels of consanguineous marriages among these families, autosomal recessively inherited variants were prioritized, however de novo/dominant and X-linked variants were also identified. The selected variants were validated using Sanger sequencing. Here we report the identification of sixteen rare or novel coding variants in fifteen genes (ARAP1, CDKL5, CSMD2, EFCAB12, EIF3H, GML, NEDD4, PDZD4, POLR3G, SLC35A2, TMEM214, TMEM232, TRANK1, TTC19, and ZNF292) in affected members in eight of the families, including ten homozygous variants in four families (nine missense, one loss of function). Three heterozygous de novo mutations were also identified (in ARAP1, CSMD2, and NEDD4), and variants in known X-linked neurodevelopmental disorder genes CDKL5 and SLC35A2. The current study offers information on the genetic variability associated with ASD in Pakistan, and demonstrates a marked enrichment for biallelic variants over that reported in outbreeding populations. This information will be useful for improving approaches for studying ASD in populations where endogamy is commonly practiced.


Subject(s)
Autism Spectrum Disorder , Exome Sequencing , Pedigree , Humans , Autism Spectrum Disorder/genetics , Pakistan , Male , Female , DNA Copy Number Variations/genetics , Genetic Predisposition to Disease , Child , Alleles , Consanguinity , Child, Preschool , Mutation , Homozygote
18.
Mol Ecol ; 33(9): e17339, 2024 May.
Article in English | MEDLINE | ID: mdl-38556927

ABSTRACT

Copy number variation is a common contributor to phenotypic diversity, yet its involvement in ecological adaptation is not easily discerned. Instances of parallelly evolving populations of the same species in a similar environment marked by strong selective pressures present opportunities to study the role of copy number variants (CNVs) in adaptation. By identifying CNVs that repeatedly occur in multiple populations of the derived ecotype and are not (or are rarely) present in the populations of the ancestral ecotype, the association of such CNVs with adaptation to the novel environment can be inferred. We used this paradigm to identify CNVs associated with recurrent adaptation of the Mexican tetra (Astyanax mexicanus) to cave environment. Using a read-depth approach, we detected CNVs from previously re-sequenced genomes of 44 individuals belonging to two ancestral surfaces and three derived cave populations. We identified 102 genes and 292 genomic regions that repeatedly diverge in copy number between the two ecotypes and occupy 0.8% of the reference genome. Functional analysis revealed their association with processes previously recognized to be relevant for adaptation, such as vision, immunity, oxygen consumption, metabolism, and neural function and we propose that these variants have been selected for in the cave or surface waters. The majority of the ecotype-divergent CNVs are multiallelic and display copy number increases in cavefish compared to surface fish. Our findings suggest that multiallelic CNVs - including gene duplications - and divergence in copy number provide a fast route to produce novel phenotypes associated with adaptation to subterranean life.


Subject(s)
Caves , Characidae , DNA Copy Number Variations , DNA Copy Number Variations/genetics , Animals , Characidae/genetics , Genetics, Population , Adaptation, Physiological/genetics , Ecotype , Mexico
19.
BMC Res Notes ; 17(1): 120, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38679744

ABSTRACT

OBJECTIVE: Breast cancer is the leading cause of cancer incidence and mortality among Indonesian women. A comprehensive investigation is required to enhance the early detection of this disease. Mitochondrial DNA copy number (mtDNA-CN) and relative telomere length (RTL) have been proposed as potential biomarkers for several cancer risks, as they are linked through oxidative stress mechanisms. We conducted a case-control study to examine peripheral blood mtDNA-CN and RTL patterns in Indonesian breast cancer patients (n = 175) and healthy individuals (n = 181). The relative ratios of mtDNA-CN and RTL were determined using quantitative real-time PCR (qPCR). RESULTS: Median values of mtDNA-CN and RTL were 1.62 and 0.70 in healthy subjects and 1.79 and 0.73 in breast cancer patients, respectively. We found a positive association between peripheral blood mtDNA-CN and RTL (p < 0.001). In under 48 years old breast cancer patients, higher peripheral blood mtDNA-CN (mtDNA-CN ≥ 1.73 (median), p = 0.009) and RTL (continuous variable, p = 0.010) were observed, compared to the corresponding healthy subjects. We also found a significantly higher 'High-High' pattern of mtDNA-CN and RTL in breast cancer patients under 48 years old (p = 0.011). Our findings suggest that peripheral blood mtDNA-CN and RTL could serve as additional minimally invasive biomarkers for breast cancer risk evaluation.


Subject(s)
Breast Neoplasms , DNA Copy Number Variations , DNA, Mitochondrial , Telomere , Humans , Breast Neoplasms/genetics , Breast Neoplasms/blood , Female , DNA, Mitochondrial/blood , DNA, Mitochondrial/genetics , Indonesia , Middle Aged , Case-Control Studies , Adult , DNA Copy Number Variations/genetics , Telomere/genetics , Telomere Homeostasis , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Aged
20.
Am J Hum Genet ; 111(5): 863-876, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38565148

ABSTRACT

Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and, with new innovative methods, can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the Genomics Research to Elucidate the Genetics of Rare Diseases consortium and analyzed using the seqr platform. The addition of CNV detection to exome analysis identified causal CNVs for 171 families (2.6%). The estimated sizes of CNVs ranged from 293 bp to 80 Mb. The causal CNVs consisted of 140 deletions, 15 duplications, 3 suspected complex structural variants (SVs), 3 insertions, and 10 complex SVs, the latter two groups being identified by orthogonal confirmation methods. To classify CNV variant pathogenicity, we used the 2020 American College of Medical Genetics and Genomics/ClinGen CNV interpretation standards and developed additional criteria to evaluate allelic and functional data as well as variants on the X chromosome to further advance the framework. We interpreted 151 CNVs as likely pathogenic/pathogenic and 20 CNVs as high-interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals undiagnosed after standard testing approaches, providing a higher-resolution alternative to arrays at a fraction of the cost of genome sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.


Subject(s)
DNA Copy Number Variations , Exome Sequencing , Exome , Rare Diseases , Humans , DNA Copy Number Variations/genetics , Rare Diseases/genetics , Rare Diseases/diagnosis , Exome/genetics , Male , Female , Cohort Studies , Genetic Testing/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...