Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.229
Filter
1.
Technol Cancer Res Treat ; 23: 15330338241246457, 2024.
Article in English | MEDLINE | ID: mdl-38836311

ABSTRACT

Objectives: Exploring the relationship between the hOGG1 rs1052133 polymorphism and the occurrence of nasopharyngeal carcinoma (NPC). Methods: PubMed, Web of Science, Scopus, CNKI, Wanfangdata, and VIP were used to search for studies and the NOS evaluation scale was used to evaluate the quality. All studies were grouped according to different genotypes. The Cochrane's Q test and I2 test were used for heterogeneity evaluations. If heterogeneity was small, the fixed effects model was used, and conversely, the random effects model was used. Publication bias was also detected. P < .05 in all results indicated statistically significant. Results: We ultimately included 6 studies with 2021 NPC patients in the study group and 2375 healthy populations in the control group. After meta-analysis, it was found that the total OR value of the "Ser/Cys (CG) vs Ser/Ser (CC)" group was 1.00 (95% CI: 0.85-1.18) and the "Cys/Cys (GG) vs Ser/Ser (CC)" group was 1.06 (95% CI: 0.87-1.28). These results were not statistically significant (P > .05). Furthermore, the integrated total OR values of each group were not statistically significant with or without the smoking history, even in other genotype models (Allele, Dominant, Recessive, and Additive) (P > .05). Conclusion: There is no clear correlation between the hOGG1 rs1052133 polymorphism and the occurrence of NPC, even with or without the smoking history.


Subject(s)
Alleles , DNA Glycosylases , Genetic Predisposition to Disease , Genotype , Nasopharyngeal Carcinoma , Polymorphism, Single Nucleotide , Humans , Nasopharyngeal Carcinoma/genetics , DNA Glycosylases/genetics , Nasopharyngeal Neoplasms/genetics , Odds Ratio , Genetic Association Studies , Publication Bias , Case-Control Studies
2.
PLoS One ; 19(5): e0296255, 2024.
Article in English | MEDLINE | ID: mdl-38701093

ABSTRACT

Ivermectin (IVM) is an anti-parasitic drug which is used for treating parasitic infestations. It has been used in humans for treating intestinal strongyloidiasis and onchocerciasis however, currently researchers are investigating its potential for treating coronavirus SARS-CoV-2. Due to its broad-spectrum activities, IVM is being used excessively in animals which has generated an interest for researchers to investigate its toxic effects. Cytotoxic and genotoxic effects have been reported in animals due to excessive usage of IVM. Therefore, this study aims to evaluate the cytotoxic and genotoxic effects of IVM on the Madin-Darby-Bovine-Kidney (MDBK) cell line by examining the expression of a DNA damage-responsive gene (OGG1). Cytotoxicity of IVM was tested using an assay (MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), whereas the genotoxicity was evaluated using comet assay along with micronucleus assay. Moreover, the gene expression of DNA damage response gene (OGG1) was measured by qRT-PCR, after extraction of RNA from the MDBK cell line using the TRIzol method and its conversion to cDNA by reverse-transcriptase PCR. During the experiment, cell viability percentage was measured at different doses of IVM i.e., 25%, 50%, 75%, along with LC50/2, LC50 and LC50*2. It was observed that the gene expression of OGG1 increased as the concentration of IVM increased. It was concluded that IVM has both cytotoxic and genotoxic effects on the MDBK cell line. Furthermore, it is recommended that studies related to the toxic effects of IVM at molecular level and on other model organisms should be conducted to combat its hazardous effects.


Subject(s)
DNA Damage , Ivermectin , Ivermectin/toxicity , Ivermectin/pharmacology , Animals , DNA Damage/drug effects , Cell Line , Cattle , Cell Survival/drug effects , Micronucleus Tests , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , Comet Assay , Mutagens/toxicity , Antiparasitic Agents/pharmacology , Antiparasitic Agents/toxicity , Kidney/drug effects , Kidney/cytology
3.
Genes (Basel) ; 15(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38790183

ABSTRACT

BACKGROUND: MUTYH germline monoallelic variants have been detected in a number of patients affected by breast/ovarian cancer or endometrial cancer, suggesting a potential susceptibility role, though their significance remains elusive since the disease mechanism is normally recessive. Hence, the aim of this research was to explore the hypothesis that a second hit could have arisen in the other allele in the tumor tissue. METHODS: we used Sanger sequencing and immunohistochemistry to search for a second MUTYH variant in the tumoral DNA and to assess protein expression, respectively. RESULTS: we detected one variant of unknown significance, one variant with conflicting interpretation of pathogenicity and three benign/likely benign variants; the MUTYH protein was not detected in the tumor tissue of half of the patients, and in others, its expression was reduced. CONCLUSIONS: our results fail to demonstrate that germinal monoallelic MUTYH variants increase cancer risk through a LOH (loss of heterozygosity) mechanism in the somatic tissue; however, the absence or partial loss of the MUTYH protein in many tumors suggests its dysregulation regardless of MUTYH genetic status.


Subject(s)
Breast Neoplasms , DNA Glycosylases , Endometrial Neoplasms , Ovarian Neoplasms , Humans , DNA Glycosylases/genetics , Female , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Middle Aged , Loss of Heterozygosity , Genetic Predisposition to Disease , Aged , Adult
4.
Mol Med ; 30(1): 72, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822247

ABSTRACT

BACKGROUND: 8-Oxoguanine DNA glycosylase (OGG1), a well-known DNA repair enzyme, has been demonstrated to promote lung fibrosis, while the specific regulatory mechanism of OGG1 during pulmonary fibrosis remains unclarified. METHODS: A bleomycin (BLM)-induced mouse pulmonary fibrosis model was established, and TH5487 (the small molecule OGG1 inhibitor) and Mitochondrial division inhibitor 1 (Mdivi-1) were used for administration. Histopathological injury of the lung tissues was assessed. The profibrotic factors and oxidative stress-related factors were examined using the commercial kits. Western blot was used to examine protein expression and immunofluorescence analysis was conducted to assess macrophages polarization and autophagy. The conditional medium from M2 macrophages was harvested and added to HFL-1 cells for culture to simulate the immune microenvironment around fibroblasts during pulmonary fibrosis. Subsequently, the loss- and gain-of function experiments were conducted to further confirm the molecular mechanism of OGG1/PINK1. RESULTS: In BLM-induced pulmonary fibrosis, OGG1 was upregulated while PINK1/Parkin was downregulated. Macrophages were activated and polarized to M2 phenotype. TH5487 administration effectively mitigated pulmonary fibrosis, M2 macrophage polarization, oxidative stress and mitochondrial dysfunction while promoted PINK1/Parkin-mediated mitophagy in lung tissues of BLM-induced mice, which was partly hindered by Mdivi-1. PINK1 overexpression restricted M2 macrophages-induced oxidative stress, mitochondrial dysfunction and mitophagy inactivation in lung fibroblast cells, and OGG1 knockdown could promote PINK1/Parkin expression and alleviate M2 macrophages-induced mitochondrial dysfunction in HFL-1 cells. CONCLUSION: OGG1 inhibition protects against pulmonary fibrosis, which is partly via activating PINK1/Parkin-mediated mitophagy and retarding M2 macrophage polarization, providing a therapeutic target for pulmonary fibrosis.


Subject(s)
Bleomycin , DNA Glycosylases , Disease Models, Animal , Macrophages , Mitophagy , Protein Kinases , Pulmonary Fibrosis , Animals , Mitophagy/drug effects , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/pathology , DNA Glycosylases/metabolism , DNA Glycosylases/genetics , Mice , Macrophages/metabolism , Protein Kinases/metabolism , Bleomycin/adverse effects , Male , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Oxidative Stress/drug effects , Mice, Inbred C57BL , Macrophage Activation , Humans , Quinazolinones
5.
Br J Surg ; 111(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38722804

ABSTRACT

BACKGROUND: Hereditary adenomatous polyposis syndromes, including familial adenomatous polyposis and other rare adenomatous polyposis syndromes, increase the lifetime risk of colorectal and other cancers. METHODS: A team of 38 experts convened to update the 2008 European recommendations for the clinical management of patients with adenomatous polyposis syndromes. Additionally, other rare monogenic adenomatous polyposis syndromes were reviewed and added. Eighty-nine clinically relevant questions were answered after a systematic review of the existing literature with grading of the evidence according to Grading of Recommendations, Assessment, Development, and Evaluation methodology. Two levels of consensus were identified: consensus threshold (≥67% of voting guideline committee members voting either 'Strongly agree' or 'Agree' during the Delphi rounds) and high threshold (consensus ≥ 80%). RESULTS: One hundred and forty statements reached a high level of consensus concerning the management of hereditary adenomatous polyposis syndromes. CONCLUSION: These updated guidelines provide current, comprehensive, and evidence-based practical recommendations for the management of surveillance and treatment of familial adenomatous polyposis patients, encompassing additionally MUTYH-associated polyposis, gastric adenocarcinoma and proximal polyposis of the stomach and other recently identified polyposis syndromes based on pathogenic variants in other genes than APC or MUTYH. Due to the rarity of these diseases, patients should be managed at specialized centres.


Subject(s)
Adenocarcinoma , Adenomatous Polyposis Coli , DNA Glycosylases , Stomach Neoplasms , Humans , Adenomatous Polyposis Coli/genetics , Adenomatous Polyposis Coli/therapy , Adenomatous Polyposis Coli/diagnosis , Stomach Neoplasms/genetics , Stomach Neoplasms/therapy , Stomach Neoplasms/diagnosis , Adenocarcinoma/genetics , Adenocarcinoma/therapy , Adenocarcinoma/diagnosis , DNA Glycosylases/genetics , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/therapy , Neoplastic Syndromes, Hereditary/diagnosis , Europe , Adenomatous Polyps/genetics , Adenomatous Polyps/therapy , Polyps
6.
Transl Psychiatry ; 14(1): 207, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789433

ABSTRACT

Previous evidence suggests elevated levels of oxidatively-induced DNA damage, particularly 8-hydroxy-2'-deoxyguanosine (8-OH-dG), and abnormalities in the repair of 8-OH-dG by the base excision repair (BER) in bipolar disorder (BD). However, the genetic disposition of these abnormalities remains unknown. In this study, we aimed to investigate the levels of oxidatively-induced DNA damage and BER mechanisms in individuals with BD and their siblings, as compared to healthy controls (HCs). 46 individuals with BD, 41 siblings of individuals with BD, and 51 HCs were included in the study. Liquid chromatography-tandem mass spectrometry was employed to evaluate the levels of 8-OH-dG in urine, which were then normalized based on urine creatinine levels. The real-time-polymerase chain reaction was used to measure the expression levels of 8-oxoguanine DNA glycosylase 1 (OGG1), apurinic/apyrimidinic endonuclease 1 (APE1), poly ADP-ribose polymerase 1 (PARP1), and DNA polymerase beta (POLß). The levels of 8-OH-dG were found to be elevated in both individuals with BD and their siblings when compared to the HCs. The OGG1 and APE1 expressions were downregulated, while POLß expressions were upregulated in both the patient and sibling groups compared to the HCs. Age, smoking status, and the number of depressive episodes had an impact on APE1 expression levels in the patient group while body mass index, smoking status, and past psychiatric history had an impact on 8-OH-dG levels in siblings. Both individuals with BD and unaffected siblings presented similar abnormalities regarding oxidatively-induced DNA damage and BER, suggesting a link between abnormalities in DNA damage/BER mechanisms and familial susceptibility to BD. Our findings suggest that targeting the oxidatively-induced DNA damage and BER pathway could offer promising therapeutic strategies for reducing the risk of age-related diseases and comorbidities in individuals with a genetic predisposition to BD.


Subject(s)
8-Hydroxy-2'-Deoxyguanosine , Bipolar Disorder , DNA Damage , DNA Glycosylases , DNA Repair , Oxidative Stress , Siblings , Humans , Bipolar Disorder/genetics , Bipolar Disorder/metabolism , Female , Male , Adult , DNA Glycosylases/genetics , Oxidative Stress/genetics , Middle Aged , DNA Polymerase beta/genetics , DNA Polymerase beta/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Case-Control Studies , Young Adult , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/urine , Excision Repair
7.
DNA Repair (Amst) ; 139: 103695, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795603

ABSTRACT

The base excision repair (BER) pathway is a precise and versatile mechanism of DNA repair that is initiated by DNA glycosylases. Endonuclease VIII-like 1 (NEIL1) is a bifunctional glycosylase/abasic site (AP) lyase that excises a damaged base and subsequently cleaves the phosphodiester backbone. NEIL1 is able to recognize and hydrolyze a broad range of oxidatively-induced base lesions and substituted ring-fragmented guanines, including aflatoxin-induced 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxyaflatoxin B1 (AFB1-FapyGua). Due to NEIL1's protective role against these and other pro-mutagenic lesions, it was hypothesized that naturally occurring single nucleotide polymorphic (SNP) variants of NEIL1 could increase human risk for aflatoxin-induced hepatocellular carcinoma (HCC). Given that populations in South Asia experience high levels of dietary aflatoxin exposures and hepatitis B viral infections that induce oxidative stress, investigations on SNP variants of NEIL1 that occur in this region may have clinical implications. In this study, the most common South Asian variants of NEIL1 were expressed, purified, and functionally characterized. All tested variants exhibited activities and substrate specificities similar to wild type (wt)-NEIL1 on high-molecular weight DNA containing an array of oxidatively-induced base lesions. On short oligodeoxynucleotides (17-mers) containing either a site-specific apurinic/apyrimidinic (AP) site, thymine glycol (ThyGly), or AFB1-FapyGua, P206L-NEIL1 was catalytically comparable to wt-NEIL1, while the activities of NEIL1 variants Q67K and T278I on these substrates were ≈2-fold reduced. Variant T103A had a greatly diminished ability to bind to 17-mer DNAs, limiting the subsequent glycosylase and lyase reactions. Consistent with this observation, the rate of excision by T103A on 17-mer oligodeoxynucleotides containing ThyGly or AFB1-FapyGua could not be measured. However, the ability of T103A to excise ThyGly was improved on longer oligodeoxynucleotides (51-mers), with ≈7-fold reduced activity compared to wt-NEIL1. Our studies suggest that NEIL1 variant T103A may present a pathogenic phenotype that is limited in damage recognition, potentially increasing human risk for HCC.


Subject(s)
DNA Glycosylases , DNA Repair , Polymorphism, Single Nucleotide , DNA Glycosylases/metabolism , DNA Glycosylases/genetics , DNA Glycosylases/chemistry , Humans , Aflatoxin B1/metabolism , DNA Damage , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/enzymology , Substrate Specificity , Liver Neoplasms/genetics , Liver Neoplasms/enzymology
8.
Environ Toxicol Pharmacol ; 108: 104433, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583790

ABSTRACT

We investigated possible associations between the internal concentrations of POPs and correlations between blood and tumor tissue concentrations in patients who underwent surgery for breast cancer and breast reduction as controls. Genetic variations in CYP1A1, GSTP1, GSTM1, and GSTT1 and hOGG1 were evaluated to determine whether they represent risk factors for breast cancer. Certain POPs have been found to be associated with breast cancer development. GST-P1 polymorphism represented a significant risk for breast cancer with unadjusted OR. However, the GSTT1 null polymorphism represented a significant risk for breast cancer when OR adjusted for age and smoking status. CYP1A1 polymorphism was a significant risk factor for breast cancer, regardless of whether the OR was adjusted. These results suggest that exposure to certain POPs, GSTT1 and CYP1A1 polymorphisms, age, and smoking status are risk factors for breast cancer. In addition, the blood concentrations of some POPs represent surrogates for breast tissue concentrations.


Subject(s)
Breast Neoplasms , Cytochrome P-450 CYP1A1 , Genetic Predisposition to Disease , Glutathione Transferase , Persistent Organic Pollutants , Humans , Breast Neoplasms/genetics , Female , Glutathione Transferase/genetics , Cytochrome P-450 CYP1A1/genetics , Middle Aged , Adult , Persistent Organic Pollutants/blood , Polymorphism, Genetic , Aged , Glutathione S-Transferase pi/genetics , Risk Factors , DNA Glycosylases
9.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167190, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657912

ABSTRACT

Cervical cancer cells possess high levels of reactive oxygen species (ROS); thus, increasing oxidative stress above the toxicity threshold to induce cell death is a promising chemotherapeutic strategy. However, the underlying mechanisms of cell death are elusive, and efficacy and toxicity issues remain. Within DNA, 8-oxo-7,8-dihydroguanine (8-oxoG) is the most frequent base lesion repaired by 8-oxoguanine glycosylase 1 (OGG1)-initiated base excision repair. Cancer cells also express high levels of MutT homolog 1 (MTH1), which prevents DNA replication-induced incorporation of 8-oxoG into the genome by hydrolyzing 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP). Here, we revealed that ROS-inducing agents triggered cervical cancer to undergo parthanatos, which was mainly induced by massive DNA strand breaks resulting from overwhelming 8-oxoG excision by OGG1. Furthermore, the MTH1 inhibitor synergized with a relatively low dose of ROS-inducing agents by enhancing 8-oxoG loading in the DNA. In vivo, this drug combination suppressed the growth of tumor xenografts, and this inhibitory effect was significantly decreased in the absence of OGG1. Hence, the present study highlights the roles of base repair enzymes in cell death induction and suggests that the combination of lower doses of ROS-inducing agents with MTH1 inhibitors may be a more selective and safer strategy for cervical cancer chemotherapy.


Subject(s)
DNA Glycosylases , DNA Repair Enzymes , Phosphoric Monoester Hydrolases , Reactive Oxygen Species , Uterine Cervical Neoplasms , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Humans , Female , Reactive Oxygen Species/metabolism , Animals , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/antagonists & inhibitors , DNA Glycosylases/metabolism , DNA Glycosylases/antagonists & inhibitors , DNA Glycosylases/genetics , Mice , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/antagonists & inhibitors , DNA Repair Enzymes/genetics , Guanine/analogs & derivatives , Guanine/pharmacology , Cell Line, Tumor , DNA Repair/drug effects , Mice, Nude , Xenograft Model Antitumor Assays , Drug Synergism , HeLa Cells , Oxidative Stress/drug effects
10.
Biochem Biophys Res Commun ; 712-713: 149907, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38636303

ABSTRACT

Over the past decades, cancer stem cells (CSCs) have emerged as a critical subset of tumor cells associated with tumor recurrence and resistance to chemotherapy. Understanding the mechanisms underlying CSC-mediated chemoresistance is imperative for improving cancer therapy outcomes. This study delves into the regulatory role of NEIL1, a DNA glycosylase, in chemoresistance in ovarian CSCs. We first observed a decreased expression of NEIL1 in ovarian CSCs, suggesting its potential involvement in CSC regulation. Using pan-cancer analysis, we confirmed the diminished NEIL1 expression in ovarian tumors compared to normal tissues. Furthermore, NEIL1 downregulation correlated with an increase in stemness markers and enrichment of CSCs, highlighting its role in modulating CSC phenotype. Further mechanistic investigation revealed an inverse correlation between NEIL1 and RAD18 expression in ovarian CSCs. NEIL1 depletion led to heightened RAD18 expression, promoting chemoresistance possibly via enhancing Translesion DNA Synthesis (TLS)-mediated DNA lesion bypass. Moreover, dowregulation of NEIL1 results in reduced DNA damage accumulation and suppressed apoptosis in ovarian cancer. Overall, our findings unveil a novel mechanism involving NEIL1 and RAD18 in regulating chemoresistance in ovarian CSCs. Targeting this NEIL1-RAD18 axis may offer promising therapeutic strategies for combating chemoresistance and improving ovarian cancer treatment outcomes.


Subject(s)
DNA Glycosylases , DNA-Binding Proteins , Drug Resistance, Neoplasm , Neoplastic Stem Cells , Ovarian Neoplasms , Up-Regulation , Humans , Female , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , DNA Glycosylases/metabolism , DNA Glycosylases/genetics , Cell Line, Tumor , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , DNA Damage , Apoptosis/drug effects , Apoptosis/genetics
11.
Nature ; 629(8011): 410-416, 2024 May.
Article in English | MEDLINE | ID: mdl-38632404

ABSTRACT

Bacteria have adapted to phage predation by evolving a vast assortment of defence systems1. Although anti-phage immunity genes can be identified using bioinformatic tools, the discovery of novel systems is restricted to the available prokaryotic sequence data2. Here, to overcome this limitation, we infected Escherichia coli carrying a soil metagenomic DNA library3 with the lytic coliphage T4 to isolate clones carrying protective genes. Following this approach, we identified Brig1, a DNA glycosylase that excises α-glucosyl-hydroxymethylcytosine nucleobases from the bacteriophage T4 genome to generate abasic sites and inhibit viral replication. Brig1 homologues that provide immunity against T-even phages are present in multiple phage defence loci across distinct clades of bacteria. Our study highlights the benefits of screening unsequenced DNA and reveals prokaryotic DNA glycosylases as important players in the bacteria-phage arms race.


Subject(s)
Bacteria , Bacteriophage T4 , DNA Glycosylases , Bacteria/classification , Bacteria/enzymology , Bacteria/genetics , Bacteria/immunology , Bacteria/virology , Bacteriophage T4/growth & development , Bacteriophage T4/immunology , Bacteriophage T4/metabolism , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , Escherichia coli/genetics , Escherichia coli/virology , Gene Library , Metagenomics/methods , Soil Microbiology , Virus Replication
12.
DNA Repair (Amst) ; 139: 103680, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38663144

ABSTRACT

Endonuclease VIII-like 3 (NEIL3) is a versatile DNA glycosylase that repairs a diverse array of chemical modifications to DNA. Unlike other glycosylases, NEIL3 has a preference for lesions within single-strand DNA and at single/double-strand DNA junctions. Beyond its canonical role in base excision repair of oxidized DNA, NEIL3 initiates replication-dependent interstrand DNA crosslink repair as an alternative to the Fanconi Anemia pathway. This review outlines our current understanding of NEIL3's biological functions, role in disease, and three-dimensional structure as it pertains to substrate specificity and catalytic mechanism.


Subject(s)
DNA Glycosylases , DNA Repair , Humans , DNA Glycosylases/metabolism , DNA Glycosylases/chemistry , Substrate Specificity , DNA/metabolism , DNA Damage , Animals , DNA Replication , N-Glycosyl Hydrolases
13.
J Chem Theory Comput ; 20(6): 2666-2675, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38451471

ABSTRACT

DNA glycosylases play key roles in the maintenance of genomic integrity. These enzymes effectively find rare damaged sites in DNA and participate in subsequent base excision repair. Single-molecule and ensemble experiments have revealed key aspects of this damage-site searching mechanism and the involvement of facilitated diffusion. In this study, we describe free energy landscapes of enzyme translocation along nonspecific DNA obtained using a fully atomistic molecular dynamics (MD) simulation of a well-known DNA glycosylase, human 8-oxoguanine DNA glycosylase 1 (hOGG1). Based on an analysis of simulated free energy profiles, we propose a three-state model for the damage-site searching mechanism. In the three states, named the L1, L2, and L3 states, the L1 state is a helical sliding mode in close contact with DNA, whereas the L2 state is a major- or minor-groove tracking mode in loose contact with DNA and the L3 state is a two-dimensional freely diffusing mode during which hOGG1 is somewhat removed from the DNA surface (∼24 Šaway from the surface). This three-state model well describes key experimental findings obtained from single-molecule and ensemble experiments and provides a unified molecular picture of the DNA lesion-searching mechanism of hOGG1.


Subject(s)
DNA Glycosylases , Humans , DNA Glycosylases/metabolism , DNA Damage , DNA , Molecular Dynamics Simulation
14.
Nucleic Acids Res ; 52(9): 5107-5120, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38554113

ABSTRACT

Sirtuin 2 (SIRT2) regulates the maintenance of genome integrity by targeting pathways of DNA damage response and homologous recombination repair. However, whether and how SIRT2 promotes base excision repair (BER) remain to be determined. Here, we found that independent of its catalytic activity SIRT2 interacted with the critical glycosylase OGG1 to promote OGG1 recruitment to its own promoter upon oxidative stress, thereby enhancing OGG1 promoter activity and increasing BER efficiency. Further studies revealed that SIRT2 was phosphorylated on S46 and S53 by ATM/ATR upon oxidative stress, and SIRT2 phosphorylation enhanced the SIRT2-OGG1 interaction and mediated the stimulatory effect of SIRT2 on OGG1 promoter activity. We also characterized 37 cancer-derived SIRT2 mutants and found that 5 exhibited the loss of the stimulatory effects on OGG1 transcription. Together, our data reveal that SIRT2 acts as a tumor suppressor by promoting OGG1 transcription and increasing BER efficiency in an ATM/ATR-dependent manner.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , DNA Glycosylases , DNA Repair , Sirtuin 2 , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Humans , Sirtuin 2/metabolism , Sirtuin 2/genetics , DNA Glycosylases/metabolism , DNA Glycosylases/genetics , Phosphorylation , Promoter Regions, Genetic , Oxidative Stress , Transcriptional Activation , HEK293 Cells , DNA Damage , Transcription, Genetic , Cell Line, Tumor , Excision Repair
15.
Structure ; 32(6): 838-848.e3, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38508191

ABSTRACT

Protein missense mutations and resulting protein stability changes are important causes for many human genetic diseases. However, the accurate prediction of stability changes due to mutations remains a challenging problem. To address this problem, we have developed an unbiased effective model: PMSPcnn that is based on a convolutional neural network. We have included an anti-symmetry property to build a balanced training dataset, which improves the prediction, in particular for stabilizing mutations. Persistent homology, which is an effective approach for characterizing protein structures, is used to obtain topological features. Additionally, a regression stratification cross-validation scheme has been proposed to improve the prediction for mutations with extreme ΔΔG. For three test datasets: Ssym, p53, and myoglobin, PMSPcnn achieves a better performance than currently existing predictors. PMSPcnn also outperforms currently available methods for membrane proteins. Overall, PMSPcnn is a promising method for the prediction of protein stability changes caused by single point mutations.


Subject(s)
Neural Networks, Computer , Point Mutation , Protein Stability , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/metabolism , Myoglobin/chemistry , Myoglobin/genetics , Myoglobin/metabolism , Databases, Protein , Mutation, Missense , Models, Molecular , DNA Glycosylases
16.
JCO Precis Oncol ; 8: e2300251, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38394468

ABSTRACT

PURPOSE: Biallelic germline pathogenic variants of the base excision repair (BER) pathway gene MUTYH predispose to colorectal cancer (CRC) and other cancers. The possible association of heterozygous variants with broader cancer susceptibility remains uncertain. This study investigated the prevalence and consequences of pathogenic MUTYH variants and MUTYH loss of heterozygosity (LOH) in a large pan-cancer analysis. MATERIALS AND METHODS: Data from 354,366 solid tumor biopsies that were sequenced as part of routine clinical care were analyzed using a validated algorithm to distinguish germline from somatic MUTYH variants. RESULTS: Biallelic germline pathogenic MUTYH variants were identified in 119 tissue biopsies. Most were CRCs and showed increased tumor mutational burden (TMB) and a mutational signature consistent with defective BER (COSMIC Signature SBS18). Germline heterozygous pathogenic variants were identified in 5,991 biopsies and their prevalence was modestly elevated in some cancer types. About 12% of these cancers (738 samples: including adrenal gland cancers, pancreatic islet cell tumors, nonglioma CNS tumors, GI stromal tumors, and thyroid cancers) showed somatic LOH for MUTYH, higher rates of chromosome 1p loss (where MUTYH is located), elevated genomic LOH, and higher COSMIC SBS18 signature scores, consistent with BER deficiency. CONCLUSION: This analysis of MUTYH alterations in a large set of solid cancers suggests that in addition to the established role of biallelic pathogenic MUTYH variants in cancer predisposition, a broader range of cancers may possibly arise in MUTYH heterozygotes via a mechanism involving somatic LOH at the MUTYH locus and defective BER. However, the effect is modest and requires confirmation in additional studies before being clinically actionable.


Subject(s)
DNA Glycosylases , Excision Repair , Neoplasms , Humans , Genetic Predisposition to Disease/genetics , Germ-Line Mutation/genetics , Mutation/genetics , Neoplasms/epidemiology , Neoplasms/genetics , DNA Glycosylases/genetics
17.
Free Radic Biol Med ; 213: 470-487, 2024 03.
Article in English | MEDLINE | ID: mdl-38301978

ABSTRACT

The NTHL1 and NEIL1-3 DNA glycosylases are major enzymes in the removal of oxidative DNA base lesions, via the base excision repair (BER) pathway. It is expected that lack of these DNA glycosylases activities would render cells vulnerable to oxidative stress, promoting cell death. Intriguingly, we found that single, double, triple, and quadruple DNA glycosylase knockout HAP1 cells are, however, more resistant to oxidative stress caused by genotoxic agents than wild type cells. Furthermore, glutathione depletion in NEIL deficient cells further enhances resistance to cell death induced via apoptosis and ferroptosis. Finally, we observed higher basal level of glutathione and differential expression of NRF2-regulated genes associated with glutathione homeostasis in the NEIL triple KO cells. We propose that lack of NEIL DNA glycosylases causes aberrant transcription and subsequent errors in protein synthesis. This leads to increased endoplasmic reticulum stress and proteotoxic stress. To counteract the elevated intracellular stress, an adaptive response mediated by increased glutathione basal levels, rises in these cells. This study reveals an unforeseen role of NEIL glycosylases in regulation of resistance to oxidative stress, suggesting that modulation of NEIL glycosylase activities is a potential approach to improve the efficacy of e.g. anti-inflammatory therapies.


Subject(s)
DNA Glycosylases , DNA Repair , DNA Repair/genetics , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , Oxidative Stress/genetics , DNA Damage/genetics , Apoptosis/genetics
18.
J Phys Chem B ; 128(7): 1606-1617, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38331753

ABSTRACT

Alkyladenine DNA glycosylase (AAG) is an essential enzyme responsible for maintaining genome integrity by repairing several DNA lesions damaged by alkylation or deamination. Understanding how it can recognize and excise the lesions thus lays the foundation for therapeutic treatment against lesion-associated diseases or cancers. However, the molecular details of how the lesion can be distinguished from the matched base by AAG and how it enters the cleavage site, ready for excision, are not fully elucidated. In this study, we have revealed the molecular details of the flipping dynamics of 1, N6-ethenoadenine (εA) not only in the form of free double-stranded DNA (dsDNA) but also in the form of the AAG-dsDNA complex. Our MD simulations and PMF calculations have shown that the flipping of εA and dA is thermodynamically disfavored in the free dsDNA, even though εA has a lower flipping energy barrier than dA. By sharp contrast, the flipping of εA is thermodynamically favored in AAG with an obvious free energy drop, while dA is equally stabilized before and after the flipping. Moreover, a comparison of the PMFs in the forms of free dsDNA and the AAG-dsDNA complex has pinpointed the role of AAG in discriminating εA against dA and facilitating the flipping of εA. Besides, the flipping process is simulated along the major and minor grooves, and our results have additionally demonstrated that the flipping is not directional in the free dsDNA while flipping along the major groove is kinetically more favorable than the minor groove in the AAG-dsDNA complex. Overall, our study has offered molecular insights into the flipping dynamics of εA and revealed its discrimination mechanism by AAG, which is expected to guide further enzyme engineering for therapeutic applications.


Subject(s)
DNA Glycosylases , DNA Glycosylases/metabolism , DNA/genetics , DNA Repair , DNA Damage
19.
Int J Mol Sci ; 25(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38396961

ABSTRACT

Excessive consumption of food rich in saturated fatty acids and carbohydrates can lead to metabolic disturbances and cardiovascular disease. Hyperlipidemia is a significant risk factor for acute cardiac events due to its association with oxidative stress. This leads to arterial wall remodeling, including an increase in the thickness of the intima media complex (IMT), and endothelial dysfunction leading to plaque formation. The decreased nitric oxide synthesis and accumulation of lipids in the wall result in a reduction in the vasodilating potential of the vessel. This study aimed to establish a clear relationship between markers of endothelial dysfunction and the activity of repair enzymes in cardiac tissue from a pig model of early atherosclerosis. The study was conducted on 28 female Polish Landrace pigs, weighing 40 kg (approximately 3.5 months old), which were divided into three groups. The control group (n = 11) was fed a standard, commercial, balanced diet (BDG) for 12 months. The second group (n = 9) was fed an unbalanced, high-calorie Western-type diet (UDG). The third group (n = 8) was fed a Western-type diet for nine months and then switched to a standard, balanced diet (regression group, RG). Control examinations, including blood and urine sampling, were conducted every three months under identical conditions with food restriction for 12 h and water restriction for four hours before general anesthesia. The study analyzed markers of oxidative stress formed during lipid peroxidation processes, including etheno DNA adducts, ADMA, and NEFA. These markers play a crucial role in reactive oxygen species analysis in ischemia-reperfusion and atherosclerosis in mammalian tissue. Essential genes involved in oxidative-stress-induced DNA demethylation like OGG1 (8-oxoguanine DNA glycosylase), MPG (N-Methylpurine DNA Glycosylase), TDG (Thymine-DNA glycosylase), APEX (apurinic/apirymidinic endodeoxyribonuclease 1), PTGS2 (prostaglandin-endoperoxide synthase 2), and ALOX (Arachidonate Lipoxygenase) were measured using the Real-Time RT-PCR method. The data suggest that high oxidative stress, as indicated by TBARS levels, is associated with high levels of DNA repair enzymes and depends on the expression of genes involved in the repair pathway. In all analyzed groups of heart tissue homogenates, the highest enzyme activity and gene expression values were observed for the OGG1 protein recognizing the modified 8oxoG. Conclusion: With the long-term use of an unbalanced diet, the levels of all DNA repair genes are increased, especially (significantly) Apex, Alox, and Ptgs, which strongly supports the hypothesis that an unbalanced diet induces oxidative stress that deregulates DNA repair mechanisms and may contribute to genome instability and tissue damage.


Subject(s)
Atherosclerosis , DNA Glycosylases , Thymine DNA Glycosylase , Female , Animals , Swine , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , DNA Repair , Atherosclerosis/genetics , Atherosclerosis/metabolism , Oxidative Stress , DNA Adducts , Thymine DNA Glycosylase/metabolism , DNA Damage , Mammals/metabolism
20.
Genes (Basel) ; 15(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38397143

ABSTRACT

Several modifiable risk factors for neurodegeneration and dementia have been identified, although individuals vary in their vulnerability despite a similar risk of exposure. This difference in vulnerability could be explained at least in part by the variability in DNA repair mechanisms' efficiency between individuals. Therefore, the aim of this study was to test associations between documented, prevalent genetic variation (single nucleotide polymorphism, SNP) in DNA repair genes, cognitive function, and brain structure. Community-living participants (n = 488,159; 56.54 years (8.09); 54.2% female) taking part in the UK Biobank study and for whom cognitive and genetic measures were available were included. SNPs in base excision repair (BER) genes of the bifunctional DNA glycosylases OGG1 (rs1052133, rs104893751), NEIL1 (rs7402844, rs5745906), NEIL2 (rs6601606), NEIL3 (rs10013040, rs13112390, rs13112358, rs1395479), MUTYH (rs34612342, rs200165598), NTHL1 (rs150766139, rs2516739) were considered. Cognitive measures included fluid intelligence, the symbol-digit matching task, visual matching, and trail-making. Hierarchical regression and latent class analyses were used to test the associations between SNPs and cognitive measures. Associations between SNPs and brain measures were also tested in a subset of 39,060 participants. Statistically significant associations with cognition were detected for 12 out of the 13 SNPs analyzed. The strongest effects amounted to a 1-6% difference in cognitive function detected for NEIL1 (rs7402844), NEIL2 (rs6601606), and NTHL1 (rs2516739). Associations varied by age and sex, with stronger effects detected in middle-aged women. Weaker associations with brain measures were also detected. Variability in some BER genes is associated with cognitive function and brain structure and may explain variability in the risk for neurodegeneration and dementia.


Subject(s)
DNA Glycosylases , Dementia , Middle Aged , Humans , Female , Male , DNA Repair/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Cognition , DNA Glycosylases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...