Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.766
Filter
1.
Proc Natl Acad Sci U S A ; 121(24): e2404383121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38843184

ABSTRACT

Transcription is extremely important for cellular processes but can be hindered by RNA polymerase II (RNAPII) pausing and stalling. Cockayne syndrome protein B (CSB) promotes the progression of paused RNAPII or initiates transcription-coupled nucleotide excision repair (TC-NER) to remove stalled RNAPII. However, the specific mechanism by which CSB initiates TC-NER upon damage remains unclear. In this study, we identified the indispensable role of the ARK2N-CK2 complex in the CSB-mediated initiation of TC-NER. The ARK2N-CK2 complex is recruited to damage sites through CSB and then phosphorylates CSB. Phosphorylation of CSB enhances its binding to stalled RNAPII, prolonging the association of CSB with chromatin and promoting CSA-mediated ubiquitination of stalled RNAPII. Consistent with this finding, Ark2n-/- mice exhibit a phenotype resembling Cockayne syndrome. These findings shed light on the pivotal role of the ARK2N-CK2 complex in governing the fate of RNAPII through CSB, bridging a critical gap necessary for initiating TC-NER.


Subject(s)
Cockayne Syndrome , DNA Helicases , DNA Repair Enzymes , DNA Repair , Poly-ADP-Ribose Binding Proteins , RNA Polymerase II , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Humans , Animals , Mice , DNA Helicases/metabolism , DNA Helicases/genetics , Cockayne Syndrome/genetics , Cockayne Syndrome/metabolism , Transcription, Genetic , Phosphorylation , Casein Kinase II/metabolism , Casein Kinase II/genetics , Mice, Knockout , DNA Damage , ATPases Associated with Diverse Cellular Activities/metabolism , ATPases Associated with Diverse Cellular Activities/genetics , Chromatin/metabolism , Ubiquitination , Excision Repair
2.
Orphanet J Rare Dis ; 19(1): 237, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877473

ABSTRACT

BACKGROUND: SMARCA4, as one of the subunits of the SWI/SNF chromatin remodeling complex, drives SMARCA4-deficient tumors. Gastric SMARCA4-deficient tumors may include gastric SMARCA4-deficient carcinoma and gastric SMARCA4-deficient undifferentiated tumor (SMARCA4-UT). Gastric SMARCA4-UT is rare and challenging to diagnose in clinical practice. The present report aims to provide insight into the clinicopathological characteristics and genetic alterations of gastric SMARCA4-UTs. RESULTS: We retrospectively reported four rare cases of gastric SMARCA4-UTs. All four cases were male, aged between 61 and 82 years. These tumors presented as ulcerated and transmural masses with infiltration, staged as TNM IV in cases 1, 2 and 4, and TNM IIIA in case 3. Pathologically, four cases presented solid architecture with undifferentiated morphology. Cases 2 and 3 showed focal necrosis and focal rhabdoid morphology. Immunohistochemical staining showed negative expression of epithelial markers and deficient expression of SMARCA4. Furthermore, positivity for Syn (cases 1, 2 and 3) and SALL4 (cases 1 and 2) were observed. Mutant p53 expression occurred in four cases, resulting in strong and diffuse staining of p53 expression in cases 1, 2 and 4, and complete loss in case 3. The Ki67 proliferative index exceeded 80%. 25% (1/4, case 4) of cases had mismatch repair deficiency (dMMR). Two available cases (cases 1 and 3) were detected with SMRACA4 gene alterations. The response to neoadjuvant therapy was ineffective in case 1. CONCLUSIONS: Gastric SMARCA4-UT is a rare entity of gastric cancer with a poor prognosis, predominantly occurs in male patients. The tumors are typically diagnosed at advanced stages and shows a solid architecture with undifferentiated morphology. Negative expression of epithelial markers and complete loss of SMARCA4 immunoexpression are emerging as a useful diagnostic tool for rare gastric SMARCA4-UTs.


Subject(s)
DNA Helicases , Nuclear Proteins , Stomach Neoplasms , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/deficiency , Male , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , DNA Helicases/genetics , DNA Helicases/deficiency , DNA Helicases/metabolism , Middle Aged , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/deficiency , Aged, 80 and over , Retrospective Studies , Aged
3.
Nat Commun ; 15(1): 5113, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879529

ABSTRACT

Factor-dependent termination uses molecular motors to remodel transcription machineries, but the associated mechanisms, especially in eukaryotes, are poorly understood. Here we use single-molecule fluorescence assays to characterize in real time the composition and the catalytic states of Saccharomyces cerevisiae transcription termination complexes remodeled by Sen1 helicase. We confirm that Sen1 takes the RNA transcript as its substrate and translocates along it by hydrolyzing multiple ATPs to form an intermediate with a stalled RNA polymerase II (Pol II) transcription elongation complex (TEC). We show that this intermediate dissociates upon hydrolysis of a single ATP leading to dissociation of Sen1 and RNA, after which Sen1 remains bound to the RNA. We find that Pol II ends up in a variety of states: dissociating from the DNA substrate, which is facilitated by transcription bubble rewinding, being retained to the DNA substrate, or diffusing along the DNA substrate. Our results provide a complete quantitative framework for understanding the mechanism of Sen1-dependent transcription termination in eukaryotes.


Subject(s)
Adenosine Triphosphate , DNA Helicases , RNA Polymerase II , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Single Molecule Imaging , Transcription Termination, Genetic , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , RNA Polymerase II/metabolism , Adenosine Triphosphate/metabolism , DNA Helicases/metabolism , DNA Helicases/genetics , Single Molecule Imaging/methods , RNA Helicases/metabolism , RNA Helicases/genetics , Transcription, Genetic , RNA, Fungal/metabolism , RNA, Fungal/genetics , DNA, Fungal/metabolism , DNA, Fungal/genetics , Hydrolysis
4.
Environ Microbiol Rep ; 16(3): e13269, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822640

ABSTRACT

Recombinational repair is an important mechanism that allows DNA replication to overcome damaged templates, so the DNA is duplicated timely and correctly. The RecFOR pathway is one of the common ways to load RecA, while the RuvABC complex operates in the resolution of DNA intermediates. We have generated deletions of recO, recR and ruvB genes in Thermus thermophilus, while a recF null mutant could not be obtained. The recO deletion was in all cases accompanied by spontaneous loss of function mutations in addA or addB genes, which encode a helicase-exonuclease also key for recombination. The mutants were moderately affected in viability and chromosome segregation. When we generated these mutations in a Δppol/addAB strain, we observed that the transformation efficiency was maintained at the typical level of Δppol/addAB, which is 100-fold higher than that of the wild type. Most mutants showed increased filamentation phenotypes, especially ruvB, which also had DNA repair defects. These results suggest that in T. thermophilus (i) the components of the RecFOR pathway have differential roles, (ii) there is an epistatic relationship of the AddAB complex over the RecFOR pathway and (iii) that neither of the two pathways or their combination is strictly required for viability although they are necessary for normal DNA repair and chromosome segregation.


Subject(s)
Bacterial Proteins , DNA Helicases , Thermus thermophilus , Thermus thermophilus/genetics , Thermus thermophilus/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Repair/genetics , Gene Deletion , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Chromosome Segregation/genetics , DNA, Bacterial/genetics , Mutation
6.
Exp Dermatol ; 33(6): e15100, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38840387

ABSTRACT

Skin wound healing is driven by proliferation, migration and differentiation of several cell types that are controlled by the alterations in the gene expression programmes. Brahma Gene 1 (BRG1) (also known as SMARCA4) is a core ATPase in the BRG1 Associated Factors (BAF) ATP-dependent chromatin remodelling complexes that alter DNA-histone interaction in chromatin at the specific gene regulatory elements resulting in increase or decrease of the target gene transcription. Using siRNA mediated suppression of BRG1 during wound healing in a human ex vivo and in vitro (scratch assay) models, we demonstrated that BRG1 is essential for efficient skin wound healing by promoting epidermal keratinocytes migration, but not their proliferation or survival. BRG1 controls changes in the expression of genes associated with gene transcription, response to wounding, cell migration and cell signalling. Altogether, our data revealed that BRG1 play positive role in skin repair by promoting keratinocyte migration and impacting the genes expression programmes associated with cell migration and cellular signalling.


Subject(s)
Cell Movement , DNA Helicases , Keratinocytes , Nuclear Proteins , Signal Transduction , Transcription Factors , Wound Healing , Humans , Keratinocytes/metabolism , DNA Helicases/metabolism , DNA Helicases/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Skin/metabolism , Cell Proliferation , RNA, Small Interfering
7.
Gigascience ; 132024 Jan 02.
Article in English | MEDLINE | ID: mdl-38869150

ABSTRACT

Viral helicases are promising targets for the development of antiviral therapies. Given their vital function of unwinding double-stranded nucleic acids, inhibiting them blocks the viral replication cycle. Previous studies have elucidated key structural details of these helicases, including the location of substrate binding sites, flexible domains, and the discovery of potential inhibitors. Here we present a series of new Galaxy tools and workflows for performing and analyzing molecular dynamics simulations of viral helicases. We first validate them by demonstrating recapitulation of data from previous simulations of Zika (NS3) and SARS-CoV-2 (NSP13) helicases in apo and complex with inhibitors. We further demonstrate the utility and generalizability of these Galaxy workflows by applying them to new cases, proving their usefulness as a widely accessible method for exploring antiviral activity.


Subject(s)
Molecular Dynamics Simulation , SARS-CoV-2 , SARS-CoV-2/enzymology , Zika Virus/enzymology , Workflow , RNA Helicases/chemistry , RNA Helicases/metabolism , Humans , DNA Helicases/chemistry , DNA Helicases/metabolism , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus Papain-Like Proteases/chemistry , Coronavirus Papain-Like Proteases/metabolism , Binding Sites , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
8.
Mol Biol Rep ; 51(1): 754, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874681

ABSTRACT

BACKGROUND: Telomeropathies are a group of inherited disorders caused by germline pathogenic variants in genes involved in telomere maintenance, resulting in excessive telomere attrition that affects several tissues, including hematopoiesis. RecQ and RTEL1 helicases contribute to telomere maintenance by unwinding telomeric structures such as G-quadruplexes (G4), preventing replication defects. Germline RTEL1 variants also are etiologic in telomeropathies. METHODS AND RESULTS: Here we investigated the expression of RecQ (RECQL1, BLM, WRN, RECQL4, and RECQL5) and RTEL1 helicase genes in peripheral blood mononuclear cells (PBMCs) from human telomeropathy patients. The mRNA expression levels of all RecQ helicases, but not RTEL1, were significantly downregulated in patients' primary cells. Reduced RecQ expression was not attributable to cell proliferative exhaustion, as RecQ helicases were not attenuated in T cells exhausted in vitro. An additional fifteen genes involved in DNA damage repair and RecQ functional partners also were downregulated in the telomeropathy cells. CONCLUSION: These findings indicate that the expression of RecQ helicases and functional partners involved in DNA repair is downregulated in PBMCs of telomeropathy patients.


Subject(s)
Leukocytes, Mononuclear , RecQ Helicases , Humans , RecQ Helicases/genetics , RecQ Helicases/metabolism , Leukocytes, Mononuclear/metabolism , Male , Female , DNA Repair/genetics , DNA Helicases/genetics , DNA Helicases/metabolism , Telomere/metabolism , Telomere/genetics , Adult , Telomere Homeostasis/genetics
9.
Toxicol Lett ; 397: 48-54, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734221

ABSTRACT

The skin, the organ with the largest surface area in the body, is the most susceptible to chemical exposure from the external environment. In this study, we aimed to establish an in vitro skin toxicity monitoring system that utilizes the mechanism of stress granule (SG) formation induced by various cellular stresses. In HaCaT cells, a keratinocyte cell line that comprises the human skin, a green fluorescent protein (GFP) was knocked in at the C-terminal genomic locus of Ras GTPase-activating protein-binding protein 1 (G3BP1), a representative component of SGs. The G3BP1-GFP knock-in HaCaT cells and wild-type (WT) HaCaT cells formed SGs containing G3BP1-GFP upon exposure to arsenite and household chemicals, such as bisphenol A (BPA) and benzalkonium chloride (BAC), in real-time. In addition, the exposure of G3BP1-GFP knock-in HaCaT cells to BPA and BAC promoted the phosphorylation of eukaryotic initiation factor 2 alpha and protein kinase R-like endoplasmic reticulum kinase, which are cell signaling factors involved in SG formation, similar to WT HaCaT cells. In conclusion, this novel G3BP1-GFP knock-in human skin cell system can monitor SG formation in real-time and be utilized to assess skin toxicity to various substances.


Subject(s)
Cytoplasmic Granules , DNA Helicases , Green Fluorescent Proteins , Keratinocytes , Poly-ADP-Ribose Binding Proteins , RNA Helicases , RNA Recognition Motif Proteins , Humans , RNA Recognition Motif Proteins/genetics , RNA Recognition Motif Proteins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , RNA Helicases/genetics , RNA Helicases/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Cytoplasmic Granules/drug effects , Cytoplasmic Granules/metabolism , Keratinocytes/drug effects , Keratinocytes/metabolism , Arsenites/toxicity , Skin/drug effects , Skin/metabolism , Gene Knock-In Techniques , Genes, Reporter/drug effects , Phenols/toxicity , HaCaT Cells , Phosphorylation , Benzhydryl Compounds/toxicity , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-2/genetics , Toxicity Tests/methods
10.
Cancer Lett ; 592: 216929, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38697461

ABSTRACT

Small cell lung cancer (SCLC) is a recalcitrant cancer characterized by high frequency loss-of-function mutations in tumor suppressors with a lack of targeted therapy due to absence of high frequency gain-of-function abnormalities in oncogenes. SMARCAL1 is a member of the ATP-dependent chromatin remodeling protein SNF2 family that plays critical roles in DNA damage repair and genome stability maintenance. Here, we showed that SMARCAL1 was overexpressed in SCLC patient samples and was inversely associated with overall survival of the patients. SMARCAL1 was required for SCLC cell proliferation and genome integrity. Mass spectrometry revealed that PAR6B was a downstream SMARCAL1 signal molecule which rescued inhibitory effects caused by silencing of SMARCAL1. By screening of 36 FDA-approved clinically available agents related to DNA damage repair, we found that an aza-anthracenedione, pixantrone, was a potent SMARCAL1 inhibitor which suppressed the expression of SMARCAL1 and PAR6B at protein level. Pixantrone caused DNA damage and exhibited inhibitory effects on SCLC cells in vitro and in a patient-derived xenograft mouse model. These results indicated that SMARCAL1 functions as an oncogene in SCLC, and pixantrone as a SMARCAL1 inhibitor bears therapeutic potentials in this deadly disease.


Subject(s)
Cell Proliferation , DNA Helicases , Lung Neoplasms , Small Cell Lung Carcinoma , Xenograft Model Antitumor Assays , Humans , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Animals , DNA Helicases/genetics , DNA Helicases/metabolism , Cell Proliferation/drug effects , Mice , Cell Line, Tumor , DNA Damage , Gene Expression Regulation, Neoplastic/drug effects , DNA Repair/drug effects
12.
Nat Commun ; 15(1): 4561, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811575

ABSTRACT

The mammalian SWI/SNF-like BAF complexes play critical roles during animal development and pathological conditions. Previous gene deletion studies and characterization of human gene mutations implicate that the complexes both repress and activate a large number of genes. However, the direct function of the complexes in cells remains largely unclear due to the relatively long-term nature of gene deletion or natural mutation. Here we generate a mouse line by knocking in the auxin-inducible degron tag (AID) to the Smarca4 gene, which encodes BRG1, the essential ATPase subunit of the BAF complexes. We show that the tagged BRG1 can be efficiently depleted by osTIR1 expression and auxin treatment for 6 to 10 h in CD4 + T cells, hepatocytes, and fibroblasts isolated from the knock-in mice. The acute depletion of BRG1 leads to decreases in nascent RNAs and RNA polymerase II binding at a large number of genes, which are positively correlated with the loss of BRG1. Further, these changes are correlated with diminished accessibility at DNase I Hypersensitive Sites (DHSs) and p300 binding. The acute BRG1 depletion results in three major patterns of nucleosome shifts leading to narrower nucleosome spacing surrounding transcription factor motifs and at enhancers and transcription start sites (TSSs), which are correlated with loss of BRG1, decreased chromatin accessibility and decreased nascent RNAs. Acute depletion of BRG1 severely compromises the Trichostatin A (TSA) -induced histone acetylation, suggesting a substantial interplay between the chromatin remodeling activity of BRG1 and histone acetylation. Our data suggest BRG1 mainly plays a direct positive role in chromatin accessibility, RNAPII binding, and nascent RNA production by regulating nucleosome positioning and facilitating transcription factor binding to their target sites.


Subject(s)
DNA Helicases , Nuclear Proteins , Transcription Factors , Animals , Transcription Factors/metabolism , Transcription Factors/genetics , DNA Helicases/metabolism , DNA Helicases/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Mice , Nucleosomes/metabolism , Nucleosomes/genetics , Indoleacetic Acids/metabolism , RNA Polymerase II/metabolism , Fibroblasts/metabolism , Gene Knock-In Techniques , Hepatocytes/metabolism , E1A-Associated p300 Protein/metabolism , E1A-Associated p300 Protein/genetics , Transcriptional Activation , Transcription, Genetic , Histones/metabolism , Deoxyribonuclease I/metabolism , Chromatin/metabolism , Humans
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167249, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38768929

ABSTRACT

RET fusion is an oncogenic driver in 1-2 % of patients with non-small cell lung cancer (NSCLC). Although RET-positive tumors have been treated with multikinase inhibitors such as vandetanib or RET-selective inhibitors, ultimately resistance to them develops. Here we established vandetanib resistance (VR) clones from LC-2/ad cells harboring CCDC6-RET fusion and explored the molecular mechanism of the resistance. Each VR clone had a distinct phenotype, implying they had acquired resistance via different mechanisms. Consistently, whole exome-seq and RNA-seq revealed that the VR clones had unique mutational signatures and expression profiles, and shared only a few common remarkable events. AXL and IGF-1R were activated as bypass pathway in different VR clones, and sensitive to a combination of RET and AXL inhibitors or IGF-1R inhibitors, respectively. SMARCA4 loss was also found in a particular VR clone and 55 % of post-TKI lung tumor tissues, being correlated with higher sensitivity to SMARCA4/SMARCA2 dual inhibition and shorter PFS after subsequent treatments. Finally, we detected an increased number of damaged mitochondria in one VR clone, which conferred sensitivity to mitochondrial electron transfer chain inhibitors. Increased mitochondria were also observed in post-TKI biopsy specimens in 13/20 cases of NSCLC, suggesting a potential strategy targeting mitochondria to treat resistant tumors. Our data propose new promising therapeutic options to combat resistance to RET inhibitors in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , Lung Neoplasms , Mitochondria , Piperidines , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-ret , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Proto-Oncogene Proteins c-ret/antagonists & inhibitors , Proto-Oncogene Proteins c-ret/genetics , Proto-Oncogene Proteins c-ret/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Piperidines/pharmacology , Piperidines/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Quinazolines/pharmacology , Quinazolines/therapeutic use , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/antagonists & inhibitors , Signal Transduction/drug effects , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Oncogene Proteins, Fusion/antagonists & inhibitors , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Helicases/antagonists & inhibitors , Cytoskeletal Proteins
14.
Asian Pac J Cancer Prev ; 25(5): 1547-1558, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38809626

ABSTRACT

BACKGROUND: Several recent studies suggest that chromodomain-helicase -DNA-binding domains (CHDs) are linked with cancers. We explored the association between chromodomain-Helicase-DNA-binding domain proteins and breast cancer (BrCa) and introduced potential prognostic markers using various databases. MATERIALS AND METHODS: We analyzed the expression of the CHD family and their prognostic value in BrCa by mining UALCAN, TIMER, and Kaplan-Meier plotter databases. The association of CHD expression and immune infiltrating abundance was studied via the TIMER database. In addition, microRNAs related to the CHD family were identified by using the MirTarBase online database. RESULTS: The present study indicated that compared to normal tissues, BrCa tissues showed increased mRNA levels of CHD3/4/7 but decreased CHD2/5/9 expression. Interestingly, We also found a positive correlation between CHD gene expression and the infiltration of macrophage, neutrophil, and dendritic cells in BrCa, except CHD3/5. The Kaplan-Meier Plotter analysis suggested that high expression levels of CHD1/2/3/4/6/8/9 were significantly related to shorter relapse-free survival (RFS), while higher mRNA expression of CHD1, CHD2, CHD8, and CHD9 was significantly associated with longer overall survival of BrCa patients. The miRNAs of hsa-miR-615-3p and hsa-let-7b-5p were identified as being more correlated with the CHD family. CONCLUSION: The altered expression of some CHD members was significantly related to clinical cancer outcomes, and CHD1/2/8/9 could serve as potential prognostic biomarkers to improve the survival of BrCa patients. However, to evaluate the studied CHD members in detail are needed further investigations including experimental validation.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Humans , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , MicroRNAs/genetics , DNA Helicases/genetics , DNA Helicases/metabolism , Survival Rate , Gene Expression Regulation, Neoplastic
15.
J Mol Cell Cardiol ; 191: 76-87, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718920

ABSTRACT

The reactivated adult epicardium produces epicardium-derived cells (EPDCs) via epithelial-mesenchymal transition (EMT) to benefit the recovery of the heart after myocardial infarction (MI). SMARCA4 is the core catalytic subunit of the chromatin re-modeling complex, which has the potential to target some reactivated epicardial genes in MI. However, the effects of epicardial SMARCA4 on MI remain uncertain. This study found that SMARCA4 was activated over time in epicardial cells following MI, and some of activated cells belonged to downstream differentiation types of EPDCs. This study used tamoxifen to induce lineage tracing and SMARCA4 deletion from epicardial cells in Wt1-CreER;Smarca4fl/fl;Rosa26-RFP adult mice. Epicardial SMARCA4 deletion reduces the number of epicardial cells in adult mice, which was related to changes in the activation, proliferation, and apoptosis of epicardial cells. Epicardial SMARCA4 deletion reduced collagen deposition and angiogenesis in the infarcted area, exacerbated cardiac injury in MI. The exacerbation of cardiac injury was related to the inhibition of generation and differentiation of EPDCs. The alterations in EPDCs were associated with inhibited transition between E-CAD and N-CAD during the epicardial EMT, coupled with the down-regulation of WT1, SNAIL1, and PDGF signaling. In conclusion, this study suggests that Epicardial SMARCA4 plays a critical role in cardiac injury caused by MI, and its regulatory mechanism is related to epicardial EMT. Epicardial SMARCA4 holds potential as a novel molecular target for treating MI.


Subject(s)
DNA Helicases , Epithelial-Mesenchymal Transition , Gene Deletion , Myocardial Infarction , Pericardium , Transcription Factors , Animals , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Epithelial-Mesenchymal Transition/genetics , Pericardium/pathology , Pericardium/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , DNA Helicases/genetics , DNA Helicases/metabolism , Mice , Cell Differentiation , Apoptosis/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/deficiency , Cell Proliferation , Disease Models, Animal
16.
PLoS Genet ; 20(5): e1011148, 2024 May.
Article in English | MEDLINE | ID: mdl-38776358

ABSTRACT

The helicase MCM and the ribonucleotide reductase RNR are the complexes that provide the substrates (ssDNA templates and dNTPs, respectively) for DNA replication. Here, we demonstrate that MCM interacts physically with RNR and some of its regulators, including the kinase Dun1. These physical interactions encompass small subpopulations of MCM and RNR, are independent of the major subcellular locations of these two complexes, augment in response to DNA damage and, in the case of the Rnr2 and Rnr4 subunits of RNR, depend on Dun1. Partial disruption of the MCM/RNR interactions impairs the release of Rad52 -but not RPA-from the DNA repair centers despite the lesions are repaired, a phenotype that is associated with hypermutagenesis but not with alterations in the levels of dNTPs. These results suggest that a specifically regulated pool of MCM and RNR complexes plays non-canonical roles in genetic stability preventing persistent Rad52 centers and hypermutagenesis.


Subject(s)
Cell Cycle Proteins , DNA Damage , DNA Repair , DNA Replication , Genomic Instability , Rad52 DNA Repair and Recombination Protein , Ribonucleotide Reductases , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , DNA Replication/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , DNA Damage/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Rad52 DNA Repair and Recombination Protein/genetics , Ribonucleotide Reductases/genetics , Ribonucleotide Reductases/metabolism , DNA Repair/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , Minichromosome Maintenance Proteins/metabolism , Minichromosome Maintenance Proteins/genetics , Replication Protein A/metabolism , Replication Protein A/genetics , Ribonucleoside Diphosphate Reductase/genetics , Ribonucleoside Diphosphate Reductase/metabolism
17.
Front Immunol ; 15: 1358036, 2024.
Article in English | MEDLINE | ID: mdl-38690262

ABSTRACT

Background: It remains unclear whether BPIV3 infection leads to stress granules formation and whether G3BP1 plays a role in this process and in viral replication. This study aims to clarify the association between BPIV3 and stress granules, explore the effect of G3BP1 on BPIV3 replication, and provide significant insights into the mechanisms by which BPIV3 evades the host's antiviral immunity to support its own survival. Methods: Here, we use Immunofluorescence staining to observe the effect of BPIV3 infection on the assembly of stress granules. Meanwhile, the expression changes of eIF2α and G3BP1 were determined. Overexpression or siRNA silencing of intracellular G3BP1 levels was examined for its regulatory control of BPIV3 replication. Results: We identify that the BPIV3 infection elicited phosphorylation of the eIF2α protein. However, it did not induce the assembly of stress granules; rather, it inhibited the formation of stress granules and downregulated the expression of G3BP1. G3BP1 overexpression facilitated the formation of stress granules within cells and hindered viral replication, while G3BP1 knockdown enhanced BPIV3 expression. Conclusion: This study suggest that G3BP1 plays a crucial role in BPIV3 suppressing stress granule formation and viral replication.


Subject(s)
DNA Helicases , Poly-ADP-Ribose Binding Proteins , RNA Helicases , RNA Recognition Motif Proteins , Stress Granules , Virus Replication , Animals , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , RNA Recognition Motif Proteins/metabolism , DNA Helicases/metabolism , DNA Helicases/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , Stress Granules/metabolism , Cattle , Eukaryotic Initiation Factor-2/metabolism , Respirovirus Infections/immunology , Respirovirus Infections/metabolism , Host-Pathogen Interactions/immunology , Phosphorylation , Cell Line , Cytoplasmic Granules/metabolism
18.
Nat Commun ; 15(1): 4127, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750080

ABSTRACT

Stress granules (SGs) are induced by various environmental stressors, resulting in their compositional and functional heterogeneity. SGs play a crucial role in the antiviral process, owing to their potent translational repressive effects and ability to trigger signal transduction; however, it is poorly understood how these antiviral SGs differ from SGs induced by other environmental stressors. Here we identify that TRIM25, a known driver of the ubiquitination-dependent antiviral innate immune response, is a potent and critical marker of the antiviral SGs. TRIM25 undergoes liquid-liquid phase separation (LLPS) and co-condenses with the SG core protein G3BP1 in a dsRNA-dependent manner. The co-condensation of TRIM25 and G3BP1 results in a significant enhancement of TRIM25's ubiquitination activity towards multiple antiviral proteins, which are mainly located in SGs. This co-condensation is critical in activating the RIG-I signaling pathway, thus restraining RNA virus infection. Our studies provide a conceptual framework for better understanding the heterogeneity of stress granule components and their response to distinct environmental stressors.


Subject(s)
DNA Helicases , Poly-ADP-Ribose Binding Proteins , RNA Helicases , RNA Recognition Motif Proteins , Signal Transduction , Stress Granules , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Ubiquitination , Humans , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , RNA Recognition Motif Proteins/metabolism , RNA Recognition Motif Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Stress Granules/metabolism , RNA Helicases/metabolism , DNA Helicases/metabolism , DEAD Box Protein 58/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Immunity, Innate , RNA, Double-Stranded/metabolism , HEK293 Cells , HeLa Cells , Cytoplasmic Granules/metabolism , RNA Virus Infections/virology , RNA Virus Infections/metabolism , RNA Virus Infections/immunology , Receptors, Immunologic/metabolism
19.
J Cell Biol ; 223(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38717338

ABSTRACT

Senataxin is an evolutionarily conserved RNA-DNA helicase involved in DNA repair and transcription termination that is associated with human neurodegenerative disorders. Here, we investigated whether Senataxin loss affects protein homeostasis based on previous work showing R-loop-driven accumulation of DNA damage and protein aggregates in human cells. We find that Senataxin loss results in the accumulation of insoluble proteins, including many factors known to be prone to aggregation in neurodegenerative disorders. These aggregates are located primarily in the nucleolus and are promoted by upregulation of non-coding RNAs expressed from the intergenic spacer region of ribosomal DNA. We also map sites of R-loop accumulation in human cells lacking Senataxin and find higher RNA-DNA hybrids within the ribosomal DNA, peri-centromeric regions, and other intergenic sites but not at annotated protein-coding genes. These findings indicate that Senataxin loss affects the solubility of the proteome through the regulation of transcription-dependent lesions in the nucleus and the nucleolus.


Subject(s)
DNA Helicases , Multifunctional Enzymes , RNA Helicases , RNA, Untranslated , Humans , Cell Nucleolus/metabolism , Cell Nucleolus/genetics , DNA Damage , DNA Helicases/metabolism , DNA Helicases/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , Multifunctional Enzymes/metabolism , Multifunctional Enzymes/genetics , Protein Aggregates , Proteostasis , R-Loop Structures/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , RNA, Untranslated/genetics , RNA, Untranslated/metabolism
20.
Mol Cell ; 84(10): 1855-1869.e5, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38593804

ABSTRACT

RNA transcribed from enhancers, i.e., eRNA, has been suggested to directly activate transcription by recruiting transcription factors and co-activators. Although there have been specific examples of eRNA functioning in this way, it is not clear how general this may be. We find that the AT-hook of SWI/SNF preferentially binds RNA and, as part of the esBAF complex, associates with eRNA transcribed from intronic and intergenic regions. Our data suggest that SWI/SNF is globally recruited in cis by eRNA to cell-type-specific enhancers, representative of two distinct stages that mimic early mammalian development, and not at enhancers that are shared between the two stages. In this manner, SWI/SNF facilitates recruitment and/or activation of MLL3/4, p300/CBP, and Mediator to stage-specific enhancers and super-enhancers that regulate the transcription of metabolic and cell lineage priming-related genes. These findings highlight a connection between ATP-dependent chromatin remodeling and eRNA in cell identity and typical- and super-enhancer activation.


Subject(s)
Cell Lineage , DNA Helicases , Enhancer Elements, Genetic , Nuclear Proteins , Transcription Factors , Transcription Factors/metabolism , Transcription Factors/genetics , DNA Helicases/metabolism , DNA Helicases/genetics , Cell Lineage/genetics , Animals , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Humans , Mice , Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...