Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.360
Filter
1.
Gulf J Oncolog ; 1(45): 35-41, 2024 May.
Article in English | MEDLINE | ID: mdl-38774931

ABSTRACT

BACKGROUND: Microsatellite instability (MSI) is a pattern of hyper mutation that occurs at microsatellite level in the genome and result due to error in the mismatch repair system. MSI is caused by defective mismatch repair (MMR) genes associated with either hyper methylation of MMR genes or BRAF mutations. Anti-MLH-1, anti-MSH-2, anti-MSH-6 and anti-PMS2 monoclonal antibodies are used for Immunohistochemical analysis. METHODS: The immunohistochemical expression of MSI proteins were assessed in 72 cases of colorectal carcinoma. These were classified based on the expression of MLH1, MSH2, MSH6 and PMS2 proteins. RESULTS: There were 57 percent of cases showing loss of at least one antibodies, and 43 percent cases showing intact expression of all antibodies (MLH1, MSH2, MSH6 and PMS2). CONCLUSION: In conclusion, our study provides valuable insights into the expression of mismatch repair in colorectal adenocarcinoma through immunohistochemistry analysis conducted at our tertiary care centre. These findings hold significant clinical implications, suggesting further testing for BRAF and MLH1 Promoter Hypermethylation to confirm possibility of Lynch syndrome. KEY WORDS: IHC, MMR, CRC.


Subject(s)
Adenocarcinoma , Colorectal Neoplasms , DNA Mismatch Repair , Immunohistochemistry , Tertiary Care Centers , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Male , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Immunohistochemistry/methods , Female , Middle Aged , Aged , Adult , MutL Protein Homolog 1/genetics
2.
Dermatol Online J ; 30(1)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38762859

ABSTRACT

Patients with Muir-Torre syndrome may have a systemic malignancy and a sebaceous neoplasm such as an adenoma, epithelioma, and/or carcinoma. The syndrome usually results from a germline mutation in one or more mismatch repair genes. Iatrogenic or acquired immunosuppression can promote the appearance of sebaceous tumors, either as an isolated event or as a feature of Muir-Torre syndrome and may unmask individuals genetically predisposed to the syndrome. Two iatrogenically immunosuppressed men with Muir-Torre syndrome features are described. Similar to these immunocompromised men, Muir-Torre syndrome-associated sebaceous neoplasms have occurred in solid organ transplant recipients, human immunodeficiency virus-infected individuals, and patients with chronic diseases who are treated with immunosuppressive agents. Muir-Torre syndrome-associated sebaceous neoplasms occur more frequently and earlier in kidney recipients, who are receiving more post-transplant immunosuppressive agents, than in liver recipients. The development of sebaceous neoplasms is decreased by replacing cyclosporine or tacrolimus with sirolimus or everolimus. Specific anti-cancer vaccines or checkpoint blockade immunotherapy may merit exploration for immune-interception of Muir-Torre syndrome-associated sebaceous neoplasms and syndrome-related visceral cancers. We suggest germline testing for genomic aberrations of mismatch repair genes should routinely be performed in all patients-both immunocompetent and immunosuppressed-who develop a Muir-Torre syndrome-associated sebaceous neoplasm.


Subject(s)
DNA Mismatch Repair , Germ-Line Mutation , Immunosuppressive Agents , Muir-Torre Syndrome , Sebaceous Gland Neoplasms , Humans , Muir-Torre Syndrome/genetics , Male , DNA Mismatch Repair/genetics , Immunosuppressive Agents/therapeutic use , Immunosuppressive Agents/adverse effects , Sebaceous Gland Neoplasms/genetics , Middle Aged , MutS Homolog 2 Protein/genetics , Immunocompromised Host , MutL Protein Homolog 1/genetics , Skin Neoplasms/genetics , DNA Mutational Analysis
3.
Cancer Med ; 13(9): e6910, 2024 May.
Article in English | MEDLINE | ID: mdl-38746969

ABSTRACT

BACKGROUND: Microsatellite instability-high (MSI-H) colorectal cancer (CRC) is known for its heightened responsiveness to immunotherapy. However, establishing robust predictive markers for immunotherapy efficacy remains imperative. This retrospective study aimed to elucidate the genetic landscape of MSI-H CRC and correlate these genetic alterations with immunotherapy outcomes in a cohort of 121 patients. METHODS: We analyzed clinical and molecular data from 121 patients with MSI-H CRC. We conducted a thorough genetic analysis of MSI-H CRC patients, with a specific emphasis on the APC, TP53, RAS, and MMR genes. We further analyzed the relationship between gene mutations and immunotherapy efficacy. The primary endpoints analyzed were objective response rate (ORR) and progression-free survival (PFS). All statistical analysis was conducted using SPSS26.0 and R 4.2.0 software. RESULTS: Our findings underscored the complexity of the genetic landscape in MSI-H CRC, shedding light on the intricate interplay of these genes in CRC development. Notably, mutations in MMR genes exhibited a distinctive pattern, providing insights into the underlying mechanisms of MSI-H. Furthermore, our results revealed correlations between specific genetic alterations and immunotherapy outcomes, with a particular focus on treatment response rates and progression-free survival. CONCLUSION: This study represents a significant step toward unraveling the genetic nuances of MSI-H CRC. The distinctive pattern of MMR gene mutations not only adds depth to our understanding of MSI-H CRC but also hints at potential avenues for targeted therapies. This research sets the stage for future investigations aimed at refining therapeutic strategies and improving outcomes for patients with MSI-H CRC.


Subject(s)
Colorectal Neoplasms , Microsatellite Instability , Mutation , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , Colorectal Neoplasms/mortality , Colorectal Neoplasms/immunology , Retrospective Studies , Male , Female , Middle Aged , Aged , Adult , Immunotherapy/methods , Aged, 80 and over , Progression-Free Survival , Biomarkers, Tumor/genetics , DNA Mismatch Repair , Treatment Outcome
4.
EBioMedicine ; 103: 105142, 2024 May.
Article in English | MEDLINE | ID: mdl-38691939

ABSTRACT

BACKGROUND: Both defects in mismatch repair (dMMR) and high microsatellite instability (MSI-H) have been recognised as crucial biomarkers that guide treatment strategies and disease management in colorectal cancer (CRC). As MMR and MSI tests are being widely conducted, an increasing number of MSI-H tumours have been identified in CRCs with mismatch repair proficiency (pMMR). The objective of this study was to assess the clinical features of patients with pMMR/MSI-H CRC and elucidate the underlying molecular mechanism in these cases. METHODS: From January 2015 to December 2018, 1684 cases of pMMR and 401 dMMR CRCs were enrolled. Of those patients, 93 pMMR/MSI-H were identified. The clinical phenotypes and prognosis were analysed. Frozen and paraffin-embedded tissue were available in 35 patients with pMMR/MSI-H, for which comprehensive genomic and transcriptomic analyses were performed. FINDINGS: In comparison to pMMR/MSS CRCs, pMMR/MSI-H CRCs exhibited significantly less tumour progression and better long-term prognosis. The pMMR/MSI-H cohorts displayed a higher presence of CD8+ T cells and NK cells when compared to the pMMR/MSS group. Mutational signature analysis revealed that nearly all samples exhibited deficiencies in MMR genes, and we also identified deleterious mutations in MSH3-K383fs. INTERPRETATION: This study revealed pMMR/MSI-H CRC as a distinct subgroup within CRC, which manifests diverse clinicopathological features and long-term prognostic outcomes. Distinct features in the tumour immune-microenvironment were observed in pMMR/MSI-H CRCs. Pathogenic deleterious mutations in MSH3-K383fs were frequently detected, suggesting another potential biomarker for identifying MSI-H. FUNDING: This work was supported by the Science and Technology Commission of Shanghai Municipality (20DZ1100101).


Subject(s)
Colorectal Neoplasms , DNA Mismatch Repair , Microsatellite Instability , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/mortality , Female , Male , Middle Aged , Prognosis , Aged , Mutation , Biomarkers, Tumor/genetics , Adult , Gene Expression Profiling , MutS Homolog 3 Protein/genetics , MutS Homolog 3 Protein/metabolism , Neoplasm Staging
5.
Cells ; 13(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786078

ABSTRACT

Prime editing (PE), a recent progression in CRISPR-based technologies, holds promise for precise genome editing without the risks associated with double-strand breaks. It can introduce a wide range of changes, including single-nucleotide variants, insertions, and small deletions. Despite these advancements, there is a need for further optimization to overcome certain limitations to increase efficiency. One such approach to enhance PE efficiency involves the inhibition of the DNA mismatch repair (MMR) system, specifically MLH1. The rationale behind this approach lies in the MMR system's role in correcting mismatched nucleotides during DNA replication. Inhibiting this repair pathway creates a window of opportunity for the PE machinery to incorporate the desired edits before permanent DNA repair actions. However, as the MMR system plays a crucial role in various cellular processes, it is important to consider the potential risks associated with manipulating this system. The new versions of PE with enhanced efficiency while blocking MLH1 are called PE4 and PE5. Here, we explore the potential risks associated with manipulating the MMR system. We pay special attention to the possible implications for human health, particularly the development of cancer.


Subject(s)
CRISPR-Cas Systems , DNA Mismatch Repair , Gene Editing , Humans , Gene Editing/methods , CRISPR-Cas Systems/genetics , DNA Repair , MutL Protein Homolog 1/genetics , MutL Protein Homolog 1/metabolism , Animals
7.
Surg Pathol Clin ; 17(2): 295-305, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692812

ABSTRACT

Since US Food and Drug Administration approval of programmed death ligand 1 (PD-L1) as the first companion diagnostic for immune checkpoint inhibitors (ICIs) in non-small cell lung cancer, many patients have experienced increased overall survival. To improve selection of ICI responders versus nonresponders, microsatellite instability/mismatch repair deficiency (MSI/MMR) and tumor mutation burden (TMB) came into play. Clinical data show PD-L1, MSI/MMR, and TMB are independent predictive immunotherapy biomarkers. Harmonization of testing methodologies, optimization of assay design, and results analysis are ongoing. Future algorithms to determine immunotherapy eligibility might involve complementary use of current and novel biomarkers. Artificial intelligence could facilitate algorithm implementation to convert complex genetic data into recommendations for specific ICIs.


Subject(s)
Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung , DNA Mismatch Repair , Immune Checkpoint Inhibitors , Lung Neoplasms , Microsatellite Instability , Mutation , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , DNA Mismatch Repair/genetics , Biomarkers, Tumor/genetics , Immune Checkpoint Inhibitors/therapeutic use , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , B7-H1 Antigen/genetics
8.
Cancer Res Commun ; 4(5): 1344-1350, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38709069

ABSTRACT

Deep learning may detect biologically important signals embedded in tumor morphologic features that confer distinct prognoses. Tumor morphologic features were quantified to enhance patient risk stratification within DNA mismatch repair (MMR) groups using deep learning. Using a quantitative segmentation algorithm (QuantCRC) that identifies 15 distinct morphologic features, we analyzed 402 resected stage III colon carcinomas [191 deficient (d)-MMR; 189 proficient (p)-MMR] from participants in a phase III trial of FOLFOX-based adjuvant chemotherapy. Results were validated in an independent cohort (176 d-MMR; 1,094 p-MMR). Association of morphologic features with clinicopathologic variables, MMR, KRAS, BRAFV600E, and time-to-recurrence (TTR) was determined. Multivariable Cox proportional hazards models were developed to predict TTR. Tumor morphologic features differed significantly by MMR status. Cancers with p-MMR had more immature desmoplastic stroma. Tumors with d-MMR had increased inflammatory stroma, epithelial tumor-infiltrating lymphocytes (TIL), high-grade histology, mucin, and signet ring cells. Stromal subtype did not differ by BRAFV600E or KRAS status. In p-MMR tumors, multivariable analysis identified tumor-stroma ratio (TSR) as the strongest feature associated with TTR [HRadj 2.02; 95% confidence interval (CI), 1.14-3.57; P = 0.018; 3-year recurrence: 40.2% vs. 20.4%; Q1 vs. Q2-4]. Among d-MMR tumors, extent of inflammatory stroma (continuous HRadj 0.98; 95% CI, 0.96-0.99; P = 0.028; 3-year recurrence: 13.3% vs. 33.4%, Q4 vs. Q1) and N stage were the most robust prognostically. Association of TSR with TTR was independently validated. In conclusion, QuantCRC can quantify morphologic differences within MMR groups in routine tumor sections to determine their relative contributions to patient prognosis, and may elucidate relevant pathophysiologic mechanisms driving prognosis. SIGNIFICANCE: A deep learning algorithm can quantify tumor morphologic features that may reflect underlying mechanisms driving prognosis within MMR groups. TSR was the most robust morphologic feature associated with TTR in p-MMR colon cancers. Extent of inflammatory stroma and N stage were the strongest prognostic features in d-MMR tumors. TIL density was not independently prognostic in either MMR group.


Subject(s)
Colonic Neoplasms , DNA Mismatch Repair , Deep Learning , Neoplasm Recurrence, Local , Tumor Microenvironment , Humans , Colonic Neoplasms/pathology , Colonic Neoplasms/genetics , Male , Neoplasm Recurrence, Local/pathology , Female , Middle Aged , Aged , Prognosis , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Fluorouracil/therapeutic use , Leucovorin/therapeutic use , Organoplatinum Compounds/therapeutic use , Chemotherapy, Adjuvant
9.
Chirurgia (Bucur) ; 119(2): 136-155, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38743828

ABSTRACT

Background: Colorectal cancer (CRC) exhibits molecular and morphological diversity, involving genetic, epigenetic alterations, and disruptions in signaling pathways. This necessitates a comprehensive review synthesizing recent advancements in molecular mechanisms, established biomarkers, as well as emerging ones like CDX2 for enhanced CRC assessment. Material and Methods: This review analyzes the last decade's literature and current guidelines to study CRC's molecular intricacies. It extends the analysis beyond traditional biomarkers to include emerging ones like CDX2, examining their interaction with carcinogenic mechanisms and molecular pathways, alongside reviewing current testing methodologies. Results: A multi-biomarker strategy, incorporating both traditional and emerging biomarkers like CDX2, is crucial for optimizing CRC management. This strategy elucidates the complex interaction between biomarkers and the tumor's molecular pathways, significantly influencing prognostic evaluations, therapeutic decision-making, and paving the way for personalized medicine in CRC. Conclusions: This review proposes CDX2 as an emerging prognostic biomarker and emphasizes the necessity of thorough molecular profiling for individualized treatment strategies. By enhancing CRC treatment approaches and prognostic evaluation, this effort marks a step forward in precision oncology, leveraging an enriched understanding of tumor behavior.


Subject(s)
Biomarkers, Tumor , CDX2 Transcription Factor , Colorectal Neoplasms , Membrane Proteins , Microsatellite Instability , Proto-Oncogene Proteins B-raf , Proto-Oncogene Proteins p21(ras) , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/classification , CDX2 Transcription Factor/metabolism , CDX2 Transcription Factor/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins B-raf/genetics , Prognosis , Membrane Proteins/genetics , Membrane Proteins/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , DNA Mismatch Repair , Predictive Value of Tests , Precision Medicine
10.
J Exp Clin Cancer Res ; 43(1): 114, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627815

ABSTRACT

BACKGROUND: The efficacy of anti-PD-1 therapy is primarily hindered by the limited T-cell immune response rate and immune evasion capacity of tumor cells. Autophagy-related protein 7 (ATG7) plays an important role in autophagy and it has been linked to cancer. However, the role of ATG7 in the effect of immune checkpoint blockade (ICB) treatment on high microsatellite instability (MSI-H)/mismatch repair deficiency (dMMR) CRC is still poorly understood. METHODS: In this study, patients from the cancer genome altas (TCGA) COAD/READ cohorts were used to investigate the biological mechanism driving ATG7 development. Several assays were conducted including the colony formation, cell viability, qRT-PCR, western blot, immunofluorescence, flow cytometry, ELISA, immunohistochemistry staining and in vivo tumorigenicity tests. RESULTS: We found that ATG7 plays a crucial role in MSI-H CRC. Its knockdown decreased tumor growth and caused an infiltration of CD8+ T effector cells in vivo. ATG7 inhibition restored surface major histocompatibility complex I (MHC-I) levels, causing improved antigen presentation and anti-tumor T cell response by activating reactive oxygen species (ROS)/NF-κB pathway. Meanwhile, ATG7 inhibition also suppressed cholesterol accumulation and augmentation of anti-tumor immune responses. Combining ATG7 inhibition and statins improved the therapeutic benefit of anti-PD-1 in MSI-H CRC. Importantly, CRC patients with high expression of both ATG7 and recombinant 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) experienced worse prognosis compared to those with low ATG7 and HMGCR expression. CONCLUSIONS: Inhibition of ATG7 leads to upregulation of MHC-I expression, augments immune response and suppresses cholesterol accumulation. These findings demonstrate that ATG7 inhibition has therapeutic potential and application of statins can increase the sensitivity to immune checkpoint inhibitors.


Subject(s)
Brain Neoplasms , Colorectal Neoplasms , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Neoplastic Syndromes, Hereditary , Humans , Autophagy-Related Protein 7/genetics , Cholesterol , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , DNA Mismatch Repair , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immunity , Microsatellite Instability
11.
Nat Med ; 30(5): 1330-1338, 2024 May.
Article in English | MEDLINE | ID: mdl-38653864

ABSTRACT

Programmed death-1 (PD-1) inhibitors are approved for therapy of gynecologic cancers with DNA mismatch repair deficiency (dMMR), although predictors of response remain elusive. We conducted a single-arm phase 2 study of nivolumab in 35 patients with dMMR uterine or ovarian cancers. Co-primary endpoints included objective response rate (ORR) and progression-free survival at 24 weeks (PFS24). Secondary endpoints included overall survival (OS), disease control rate (DCR), duration of response (DOR) and safety. Exploratory endpoints included biomarkers and molecular correlates of response. The ORR was 58.8% (97.5% confidence interval (CI): 40.7-100%), and the PFS24 rate was 64.7% (97.5% one-sided CI: 46.5-100%), meeting the pre-specified endpoints. The DCR was 73.5% (95% CI: 55.6-87.1%). At the median follow-up of 42.1 months (range, 8.9-59.8 months), median OS was not reached. One-year OS rate was 79% (95% CI: 60.9-89.4%). Thirty-two patients (91%) had a treatment-related adverse event (TRAE), including arthralgia (n = 10, 29%), fatigue (n = 10, 29%), pain (n = 10, 29%) and pruritis (n = 10, 29%); most were grade 1 or grade 2. Ten patients (29%) reported a grade 3 or grade 4 TRAE; no grade 5 events occurred. Exploratory analyses show that the presence of dysfunctional (CD8+PD-1+) or terminally dysfunctional (CD8+PD-1+TOX+) T cells and their interaction with programmed death ligand-1 (PD-L1)+ cells were independently associated with PFS24. PFS24 was associated with presence of MEGF8 or SETD1B somatic mutations. This trial met its co-primary endpoints (ORR and PFS24) early, and our findings highlight several genetic and tumor microenvironment parameters associated with response to PD-1 blockade in dMMR cancers, generating rationale for their validation in larger cohorts.ClinicalTrials.gov identifier: NCT03241745 .


Subject(s)
Biomarkers, Tumor , DNA Mismatch Repair , Nivolumab , Humans , Female , Middle Aged , Nivolumab/therapeutic use , Nivolumab/adverse effects , Aged , Adult , Biomarkers, Tumor/genetics , DNA Mismatch Repair/genetics , Genital Neoplasms, Female/drug therapy , Genital Neoplasms, Female/genetics , Genital Neoplasms, Female/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Progression-Free Survival , Aged, 80 and over , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Mutation , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/genetics , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Agents, Immunological/adverse effects
12.
BMJ Open ; 14(4): e084496, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38670615

ABSTRACT

INTRODUCTION: Whether gastric cancer (GC) patients with deficient mismatch repair or microsatellite instability-high (dMMR/MSI-H) benefit from perioperative (neoadjuvant and/or adjuvant) chemotherapy is controversial. This protocol delineates the planned scope and methods for a systematic review and meta-analysis that aims to compare the efficacy of perioperative chemotherapy with surgery alone in resectable dMMR/MSI-H GC patients. METHODS AND ANALYSIS: This study protocol is reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Protocols-P guideline. PubMed, Embase, Cochrane (CENTRAL), and the Web of Science databases will be searched, supplemented by a secondary screening of relevant records. Both randomised controlled trials and non-randomised studies will be included in this study. The primary and secondary outcomes under scrutiny will be overall survival, disease-free survival and progression-free survival. Two reviewers will independently screen studies, extract data and assess the risk of bias. We will analyse different treatment settings (eg, neoadjuvant or adjuvant or combined as perioperative chemotherapies) separately and conduct sensitivity analyses. ETHICS AND DISSEMINATION: No ethics approval is required for this systematic review and meta-analysis, as no individual patient data will be collected. The findings of our study will be published in a peer-reviewed journal. PROSPERO REGISTRATION NUMBER: CRD42023494276.


Subject(s)
DNA Mismatch Repair , Microsatellite Instability , Neoadjuvant Therapy , Stomach Neoplasms , Systematic Reviews as Topic , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Chemotherapy, Adjuvant , Neoadjuvant Therapy/methods , Meta-Analysis as Topic , Research Design
14.
Cancer Treat Rev ; 127: 102737, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38669788

ABSTRACT

BACKGROUND: Gastric cancer (GC), known for its unfavorable prognosis, has been classified in four distinct molecular subtypes. These subtypes not only exhibit differences in their genome and transcriptome but also in the composition of their tumor immune microenvironment. The microsatellite instable (MSI) and Epstein-Barr virus (EBV) positive GC subtypes show clear clinical benefits from immune checkpoint blockade, likely due to a neoantigen-driven and virus-driven antitumor immune response and high expression of immune checkpoint molecule PD-L1. However, even within these subtypes response to checkpoint inhibition is variable, which is potentially related to heterogeneity in the tumor immune microenvironment (TIME) and expression of co-inhibitory molecules. We conducted a systematic review to outline the current knowledge about the immunological features on the TIME of MSI and EBV + GCs. METHODS: A systematic search was performed in PubMed, EMBASE and Cochrane Library. All articles from the year 1990 and onwards addressing immune features of gastric adenocarcinoma were reviewed and included based on predefined in- and exclusion criteria. RESULTS: In total 5962 records were screened, of which 139 were included that reported immunological data on molecular GC subtypes. MSI and EBV + GCs were reported to have a more inflamed TIME compared to non-MSI and EBV- GC subtypes. Compared to microsatellite stable (MSS) tumors, MSI tumors were characterized by higher numbers of CD8 + and FoxP3 + T cells, and tumor infiltrating pro- and anti-inflammatory macrophages. HLA-deficiency was most common in MSI tumors compared to other molecular GC subtypes and associated with lower T and B cell infiltrates compared to HLA-proficient tumors. EBV + was associated with a high number of CD8 + T cells, Tregs, NK cells and macrophages. Expression of PD-L1, CTLA-4, Granzyme A and B, Perforin and interferon-gamma was enriched in EBV + tumors. Overall, MSI tumors harbored a more heterogeneous TIME in terms of immune cell composition and immune checkpoints compared to the EBV + tumors. DISCUSSION AND CONCLUSION: MSI and EBV + GCs are highly Handbook for Conducting a Literature-Based Health Assessment Using OHAT Approach for Systematic Review and Evidence Integration.; 2019pro-inflammatory immune cell populations. Although studies on the direct comparison of EBV + and MSI tumors are limited, EBV + tumors show less intra-subgroup heterogeneity compared to MSI tumors. More studies are needed to identify how Intra-subgroup heterogeneity impacts response to immunotherapy efficacy.


Subject(s)
DNA Mismatch Repair , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Stomach Neoplasms , Tumor Microenvironment , Humans , Stomach Neoplasms/immunology , Stomach Neoplasms/virology , Stomach Neoplasms/genetics , Tumor Microenvironment/immunology , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/virology , Herpesvirus 4, Human/immunology , Microsatellite Instability
15.
Pathol Oncol Res ; 30: 1611719, 2024.
Article in English | MEDLINE | ID: mdl-38655493

ABSTRACT

Current clinical guidelines recommend mismatch repair (MMR) protein immunohistochemistry (IHC) or molecular microsatellite instability (MSI) tests as predictive markers of immunotherapies. Most of the pathological guidelines consider MMR protein IHC as the gold standard test to identify cancers with MMR deficiency and recommend molecular MSI tests only in special circumstances or to screen for Lynch syndrome. However, there are data in the literature which suggest that the two test types may not be equal. For example, molecular epidemiology studies reported different rates of deficient MMR (dMMR) and MSI in various cancer types. Additionally, direct comparisons of the two tests revealed relatively frequent discrepancies between MMR IHC and MSI tests, especially in non-colorectal and non-endometrial cancers and in cases with unusual dMMR phenotypes. There are also scattered clinical data showing that the efficacy of immune checkpoint inhibitors is different if the patient selection was based on dMMR versus MSI status of the cancers. All these observations question the current dogma that dMMR phenotype and genetic MSI status are equal predictive markers of the immunotherapies.


Subject(s)
Biomarkers, Tumor , DNA Mismatch Repair , Microsatellite Instability , Humans , DNA Mismatch Repair/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Neoplasms/genetics , Prognosis
16.
Cells ; 13(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38667294

ABSTRACT

Colorectal cancer is the second most common cause of cancer death in the United States, and up to half of patients develop colorectal liver metastases (CRLMs). Notably, somatic genetic mutations, such as mutations in RAS, BRAF, mismatch repair (MMR) genes, TP53, and SMAD4, have been shown to play a prognostic role in patients with CRLM. This review summarizes and appraises the current literature regarding the most relevant somatic mutations in surgically treated CRLM by not only reviewing representative studies, but also providing recommendations for areas of future research. In addition, advancements in genetic testing and an increasing emphasis on precision medicine have led to a more nuanced understanding of these mutations; thus, more granular data for each mutation are reviewed when available. Importantly, such knowledge can pave the way for precision medicine with the ultimate goal of improving patient outcomes.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Mutation , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , DNA Mismatch Repair/genetics , Liver Neoplasms/secondary , Liver Neoplasms/surgery , Mutation/genetics , Precision Medicine
17.
EBioMedicine ; 103: 105111, 2024 May.
Article in English | MEDLINE | ID: mdl-38583260

ABSTRACT

BACKGROUND: Lynch syndrome (LS) is one of the most common hereditary cancer syndromes worldwide. Dominantly inherited mutation in one of four DNA mismatch repair genes combined with somatic events leads to mismatch repair deficiency and microsatellite instability (MSI) in tumours. Due to a high lifetime risk of cancer, regular surveillance plays a key role in cancer prevention; yet the observation of frequent interval cancers points to insufficient cancer prevention by colonoscopy-based methods alone. This study aimed to identify precancerous functional changes in colonic mucosa that could facilitate the monitoring and prevention of cancer development in LS. METHODS: The study material comprised colon biopsy specimens (n = 71) collected during colonoscopy examinations from LS carriers (tumour-free, or diagnosed with adenoma, or diagnosed with carcinoma) and a control group, which included sporadic cases without LS or neoplasia. The majority (80%) of LS carriers had an inherited genetic MLH1 mutation. The remaining 20% included MSH2 mutation carriers (13%) and MSH6 mutation carriers (7%). The transcriptomes were first analysed with RNA-sequencing and followed up with Gorilla Ontology analysis and Reactome Knowledgebase and Ingenuity Pathway Analyses to detect functional changes that might be associated with the initiation of the neoplastic process in LS individuals. FINDINGS: With pathway and gene ontology analyses combined with measurement of mitotic perimeters from colonic mucosa and tumours, we found an increased tendency to chromosomal instability (CIN), already present in macroscopically normal LS mucosa. Our results suggest that CIN is an earlier aberration than MSI and may be the initial cancer driving aberration, whereas MSI accelerates tumour formation. Furthermore, our results suggest that MLH1 deficiency plays a significant role in the development of CIN. INTERPRETATION: The results validate our previous findings from mice and highlight early mitotic abnormalities as an important contributor and precancerous marker of colorectal tumourigenesis in LS. FUNDING: This work was supported by grants from the Jane and Aatos Erkko Foundation, the Academy of Finland (330606 and 331284), Cancer Foundation Finland sr, and the Sigrid Jusélius Foundation. Open access is funded by Helsinki University Library.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Microsatellite Instability , Mitosis , Humans , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , Colorectal Neoplasms, Hereditary Nonpolyposis/complications , Female , Male , Mitosis/genetics , Middle Aged , Mutation , Adult , Aged , MutL Protein Homolog 1/genetics , Gene Expression Profiling , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/etiology , Carcinogenesis/genetics , DNA Mismatch Repair/genetics , Transcriptome
18.
Cancer Med ; 13(7): e7041, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38558366

ABSTRACT

BACKGROUND: Up to 70% of suspected Lynch syndrome patients harboring MMR deficient tumors lack identifiable germline pathogenic variants in MMR genes, being referred to as Lynch-like syndrome (LLS). Previous studies have reported biallelic somatic MMR inactivation in a variable range of LLS-associated tumors. Moreover, translating tumor testing results into patient management remains controversial. Our aim is to assess the challenges associated with the implementation of tumoral MMR gene testing in routine workflows. METHODS: Here, we present the clinical characterization of 229 LLS patients. MMR gene testing was performed in 39 available tumors, and results were analyzed using two variant allele frequency (VAF) thresholds (≥5% and ≥10%). RESULTS AND DISCUSSION: More biallelic somatic events were identified at VAF ≥ 5% than ≥10% (35.9% vs. 25.6%), although the rate of nonconcordant results regarding immunohistochemical pattern increased (30.8% vs. 20.5%). Interpretation difficulties question the current utility of the identification of MMR somatic hits in the diagnostic algorithm of suspected LS cases.


Subject(s)
Brain Neoplasms , Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Neoplastic Syndromes, Hereditary , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , Germ-Line Mutation , DNA Mismatch Repair/genetics
19.
PLoS One ; 19(4): e0302274, 2024.
Article in English | MEDLINE | ID: mdl-38662796

ABSTRACT

In recent years, immune checkpoint inhibitors have proved immense clinical progression in the treatment of certain cancers. The efficacy of immune checkpoint inhibitors is correlated with mismatch repair system deficiency and is exceptionally administered based exclusively on this biological mechanism independent of the cancer type. The promising effect of immune checkpoint inhibitors has left an increasing demand for analytical tools evaluating the mismatch repair status. The analysis of microsatellite instability (MSI), reflecting an indirect but objective manner the inactivation of the mismatch repair system, plays several roles in clinical practice and, therefore, its evaluation is of high relevance. Analysis of MSI by PCR followed by fragment analysis on capillary electrophoresis remains the gold standard method for detection of a deficient mismatch repair system and thereby treatment with immune checkpoint inhibitors. Novel technologies have been applied and concepts such as tumor mutation burden have been introduced. However, to date, most of these technologies require high costs or the need of matched non-tumor tissue as internal comparator. In this study, we present a novel, one-instrument, fast, and objective method for the detection of MSI (MicroSight® MSI 1-step HRM Analysis), which does not depend on the use of matched non-tumor tissue. The assay analyzes five well-described mononucleotide microsatellite sequences by real-time PCR followed by high-resolution melt and evaluates microsatellite length variations via PCR product melting profiles. The assay was evaluated using two different patient cohorts and evaluation included several DNA extraction methodologies, two different PCR platforms, and an inter-laboratory ring study. The MicroSight® MSI assay showed a high repeatability regardless of DNA extraction method and PCR platform, and a 100% agreement of the MSI status with PCR fragment analysis methods applied as clinical comparator.


Subject(s)
Microsatellite Instability , Humans , DNA Mismatch Repair/genetics , Real-Time Polymerase Chain Reaction/methods , Female , Male , Microsatellite Repeats/genetics
20.
Cell Mol Biol Lett ; 29(1): 37, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38486171

ABSTRACT

BACKGROUND: DNA mismatch repair (MMR) is a highly conserved pathway that corrects DNA replication errors, the loss of which is attributed to the development of various types of cancers. Although well characterized, MMR factors remain to be identified. As a 3'-5' exonuclease and endonuclease, meiotic recombination 11 homolog A (MRE11A) is implicated in multiple DNA repair pathways. However, the role of MRE11A in MMR is unclear. METHODS: Initially, short-term and long-term survival assays were used to measure the cells' sensitivity to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Meanwhile, the level of apoptosis was also determined by flow cytometry after MNNG treatment. Western blotting and immunofluorescence assays were used to evaluate the DNA damage within one cell cycle after MNNG treatment. Next, a GFP-heteroduplex repair assay and microsatellite stability test were used to measure the MMR activities in cells. To investigate the mechanisms, western blotting, the GFP-heteroduplex repair assay, and chromatin immunoprecipitation were used. RESULTS: We show that knockdown of MRE11A increased the sensitivity of HeLa cells to MNNG treatment, as well as the MNNG-induced DNA damage and apoptosis, implying a potential role of MRE11 in MMR. Moreover, we found that MRE11A was largely recruited to chromatin and negatively regulated the DNA damage signals within the first cell cycle after MNNG treatment. We also showed that knockdown of MRE11A increased, while overexpressing MRE11A decreased, MMR activity in HeLa cells, suggesting that MRE11A negatively regulates MMR activity. Furthermore, we show that recruitment of MRE11A to chromatin requires MLH1 and that MRE11A competes with PMS2 for binding to MLH1. This decreases PMS2 levels in whole cells and on chromatin, and consequently comprises MMR activity. CONCLUSIONS: Our findings reveal that MRE11A is a negative regulator of human MMR.


Subject(s)
DNA Mismatch Repair , Methylnitronitrosoguanidine , Humans , Chromatin , HeLa Cells , Methylnitronitrosoguanidine/pharmacology , Mismatch Repair Endonuclease PMS2
SELECTION OF CITATIONS
SEARCH DETAIL
...