Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 290
Filter
1.
Eur J Hum Genet ; 30(9): 1051-1059, 2022 09.
Article in English | MEDLINE | ID: mdl-35676339

ABSTRACT

Over 20% of the DNA mismatch repair (MMR) germline variants in suspected Lynch syndrome patients are classified as variants of uncertain significance (VUS). Well-established functional assays are pivotal for assessing the biological impact of these variants and provide relevant evidence for clinical classification. In our collaborative European Mismatch Repair Working Group (EMMR-WG) we compared three different experimental approaches for evaluating the effect of seven variants on mRNA splicing in MMR genes: (i) RT-PCR of full-length transcripts (FLT), (ii) RT-PCR of targeted transcript sections (TTS), both from patient biological samples and (iii) minigene splicing assays. An overall good concordance was observed between splicing patterns in TTS, FLT and minigene analyses for all variants. The FLT analysis depicted a higher number of different isoforms and mitigated PCR-bias towards shorter isoforms. TTS analyses may miss aberrant isoforms and minigene assays may under/overestimate the severity of certain splicing defects. The interpretation of the experimental findings must be cautious to adequately discriminate abnormal events from physiological complex alternative splicing patterns. A consensus strategy for investigating the impact of MMR variants on splicing was defined. First, RNA should be obtained from patient's cell cultures (such as fresh lymphocyte cultures) incubated with/without a nonsense-mediated decay inhibitor. Second, FLT RT-PCR analysis is recommended to oversee all generated isoforms. Third, TTS analysis and minigene assays are useful independent approaches for verifying and clarifying FLT results. The use of several methodologies is likely to increase the strength of the experimental evidence which contributes to improve variant interpretation.


Subject(s)
Alternative Splicing , Colorectal Neoplasms, Hereditary Nonpolyposis , DNA Mismatch Repair , DNA Mutational Analysis , DNA Repair Enzymes , Loss of Function Mutation , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Mismatch Repair/genetics , DNA Mutational Analysis/methods , DNA Mutational Analysis/standards , DNA Repair Enzymes/genetics , Humans , Protein Isoforms/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/standards , Transcription, Genetic
2.
Br J Haematol ; 196(1): 19-30, 2022 01.
Article in English | MEDLINE | ID: mdl-34124782

ABSTRACT

With the focus of leukaemia management shifting to the implications of low-level disease burden, increasing attention is being paid on the development of highly sensitive methodologies required for detection. There are various techniques capable of identification of measurable residual disease (MRD) either evidencing as relevant mutation detection [e.g. nucleophosmin 1 (NPM1) mutation] or trace levels of leukaemic clonal populations. The vast majority of these methods only permit detection of a single clone or mutation. However, mass spectrometry and next-generation sequencing enable the interrogation of multiple genes simultaneously, facilitating a more complete genomic profile. In the present review, we explore the methodologies of both techniques in conjunction with the important advantages and limitations associated with each assay. We also highlight the evidence and the various instances where either technique has been used and propose future strategies for MRD detection.


Subject(s)
Biomarkers, Tumor , DNA Mutational Analysis/methods , Leukemia/diagnosis , Leukemia/etiology , Mutation , Neoplasm, Residual/diagnosis , Cost-Benefit Analysis , DNA Mutational Analysis/economics , DNA Mutational Analysis/standards , High-Throughput Nucleotide Sequencing/economics , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/standards , Humans , Mass Spectrometry/methods , Mass Spectrometry/standards , Mutation Rate , Reproducibility of Results , Sensitivity and Specificity
3.
J Clin Lab Anal ; 36(1): e24139, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34811797

ABSTRACT

BACKGROUND: Quality control materials are necessary for assay development, test validation, and proficiency testing in cancer mutation analysis. Most of the existing controls for somatic mutations only harbor a single variant and are derived from unstable cell lines. This study aimed to establish a method to create stable multianalyte controls in a defined background by genome editing in GM12878 cells, which also can be applied for the reference of next-generation sequencing. METHODS: GM12878 cells were electroporated with a donor plasmid containing a mutant DNA sequence and a Cas9/sgRNA expressing vector. The genome-edited GM12878 cell was validated with Sanger sequencing, amplification refractory mutation system (ARMS), and next-generation sequencing (NGS). RESULTS: We have successfully generated a mutant GM12878 cell line harboring the defined variants including single-nucleotide variants (SNVs), small insertions and deletions (indels), and structural variants (SVs). The introduction of intended mutations in GM12878 cell line was confirmed by both ARMS and sequencing methods. CONCLUSIONS: We developed a method for the preparation of the multiplexed controls for reference mutations in cancer gene by genome editing in GM12878 cells. This methodology can be used to generate other stable cancer reference materials with an unlimited supply.


Subject(s)
DNA Mutational Analysis , Gene Editing/methods , Neoplasms/genetics , CRISPR-Cas Systems/genetics , Cell Line, Tumor , DNA Mutational Analysis/methods , DNA Mutational Analysis/standards , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/standards , Humans , Mutation/genetics , Quality Control , Reference Standards
4.
Cancer Genomics Proteomics ; 19(1): 60-78, 2022.
Article in English | MEDLINE | ID: mdl-34949660

ABSTRACT

BACKGROUND/AIM: The use of multi-gene panels for germline testing in breast cancer enables the estimation of cancer risk and guides risk-reducing management options. The aim of this study was to present data that demonstrate the different levels of actionability for multi-gene panels used in genetic testing of breast cancer patients and their family members. MATERIALS AND METHODS: We performed an analysis in our clinical database to identify breast cancer patients undergoing genetic testing. We reviewed positive results in respect of risk estimation and management, cascade family testing, secondary findings and information for treatment decision-making. RESULTS: A total of 415 positive test reports were identified with 57.1%, 18.1%, 10.8% and 13.5% of individuals having pathogenic/likely pathogenic variants in high, moderate, low and with insufficient evidence for breast cancer risk genes, respectively. Six point seven percent of individuals were double heterozygotes. CONCLUSION: Germline findings in 92% of individuals are linked to evidence-based treatment information and risk estimates for predisposition to breast and/or other cancer types. The use of germline findings for treatment decision making expands the indication of genetic testing to include individuals that could benefit from targeted treatments.


Subject(s)
Breast Neoplasms, Male/epidemiology , Breast Neoplasms/epidemiology , DNA Mutational Analysis/standards , Genetic Testing/standards , Germ-Line Mutation , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/prevention & control , Breast Neoplasms, Male/drug therapy , Breast Neoplasms, Male/genetics , Breast Neoplasms, Male/prevention & control , Clinical Decision-Making/methods , Family , Female , Genetic Predisposition to Disease , Heterozygote , Humans , Male , Middle Aged , Molecular Targeted Therapy/methods , Precision Medicine/methods , Precision Medicine/standards , Retrospective Studies , Risk Assessment/methods , Risk Assessment/standards , Young Adult
5.
Sci Rep ; 11(1): 22384, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34789731

ABSTRACT

SuperSelective primers, by virtue of their unique design, enable the selective exponential amplification of rare DNA fragments containing somatic mutations in the presence of abundant closely related wild-type DNA fragments. However, when a SuperSelective primer is used in conjunction with a conventional reverse primer, linear amplification of the abundant wild-type fragments occurs, and this may lead to a late arising signal that can be confused with the late arising signal from the rare mutant fragments. We have discovered that the use of a pair of SuperSelective primers, one specific for the target mutation in a plus strand, and the other specific for the same mutation in the complementary minus strand, but both possessing 3'-terminal nucleotides that are complementary to the mutation, significantly suppresses the linear amplification of the related wild-type sequence, and prevents the generation of false mutant sequences due to mis-incorporation by the DNA polymerase. As a consequence, the absence of mutant fragments in a sample does not give rise to a false-positive signal, and the presence of mutant fragments in a sample is clearly distinguishable as a true-positive signal. The use of SuperSelective primer pairs should enhance the sensitivity of multiplex PCR assays that identify and quantitate somatic mutations in liquid biopsies obtained from patients with cancer, thereby enabling the choice of a targeted therapy, the determination of its effectiveness over time, and the substitution of a more appropriate therapy as new mutations arise.


Subject(s)
DNA Mutational Analysis/methods , DNA Primers , Mutation , Polymerase Chain Reaction , Alleles , DNA Mutational Analysis/standards , Gene Frequency , Humans , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/standards , Sensitivity and Specificity
6.
Technol Cancer Res Treat ; 20: 15330338211057982, 2021.
Article in English | MEDLINE | ID: mdl-34806478

ABSTRACT

Objectives: Thyroid nodules are common in adults, but only some of them are malignant. Ultrasound-guided fine-needle aspiration (FNA) is widely applied as a reliable and minimally invasive technique for evaluating thyroid nodules. However, the scarcity of FNA biopsy specimens poses a challenge to molecular diagnosis. This study aimed to evaluate the feasibility of FNA washout precipitation specimens as an effective supplement to the thyroid genetic test. Methods: A total of 115 patients with thyroid nodules were enrolled in our study. The BRAF V600E mutation status was detected in all FNA washout precipitation specimens and biopsy formalin-fixed paraffin-embedded (FFPE) specimens using an amplification refractory mutation system PCR (ARMS-PCR). All patients underwent cytological diagnoses; 79 patients also underwent surgery for histopathological analysis. Results: All the 115 samples were successfully analyzed using both FNA washout precipitation and biopsy FFPE specimens. The results showed that the BRAF V600E status detected in 96 FNA washout precipitation specimens were consistent with that in FNA biopsy FFPE specimens, including 41 BRAF V600E positive and 55 BRAF V600E negative, achieving a concordance rate of 84.4% (kappa = 0.689). Furthermore, the BRAF V600E mutation status using FNA washout precipitation specimens provided a 100.0% positive predictive value for diagnosing papillary thyroid carcinoma in patients with The Bethesda system for reporting thyroid cytopathology (TBSRTC) V. Besides, the BRAF V600E mutation status was positive in 90.9% (10/11) FNA washout precipitation specimens from patients with capsule invasion, achieving a higher overall sensitivity of 100.0%, compared with 57.1% of FNA washout precipitation specimens from patients without capsule invasion. Conclusion: These results suggested that FNA washout precipitation specimens might be a valuable supplementary sample type for detecting the BRAF V600E mutation in patients with thyroid nodules, especially with thyroid capsule invasion.


Subject(s)
Biopsy, Fine-Needle/methods , Biopsy, Fine-Needle/standards , Thyroid Nodule/diagnosis , Adult , Aged , Biomarkers, Tumor , DNA Mutational Analysis/methods , DNA Mutational Analysis/standards , Diagnosis, Differential , Disease Management , Female , Genetic Testing/methods , Genetic Testing/standards , Humans , Male , Middle Aged , Mutation , Neoplasm Grading , Neoplasm Staging , Prognosis , Proto-Oncogene Proteins B-raf/genetics , Sensitivity and Specificity , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/etiology , Thyroid Nodule/etiology , Thyroid Nodule/pathology
7.
JCO Precis Oncol ; 52021 07.
Article in English | MEDLINE | ID: mdl-34632252

ABSTRACT

We conducted this systematic review to evaluate the clinical outcomes associated with molecular tumor board (MTB) review in patients with cancer. METHODS: A systematic search of PubMed was performed to identify studies reporting clinical outcomes in patients with cancer who were reviewed by an MTB. To be included, studies had to report clinical outcomes, including clinical benefit, response, progression-free survival, or overall survival. Two reviewers independently selected studies and assessed quality with the Quality Assessment Tool for Before-After (Pre-Post) Studies with No Control Group or the Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies depending on the type of study being reviewed. RESULTS: Fourteen studies were included with a total of 3,328 patients with cancer. All studies included patients without standard-of-care treatment options and usually with multiple prior lines of therapy. In studies reporting response rates, patients receiving MTB-recommended therapy had overall response rates ranging from 0% to 67%. In the only trial powered on clinical outcome and including a control group, the group receiving MTB-recommended therapy had significantly improved rate of progression-free survival compared with those receiving conventional therapy. CONCLUSION: Although data quality is limited by a lack of prospective randomized controlled trials, MTBs appear to improve clinical outcomes for patients with cancer. Future research should concentrate on prospective trials and standardization of approach and outcomes.


Subject(s)
Biomarkers, Tumor/genetics , Medical Oncology/methods , Neoplasms/drug therapy , Patient Care Team/organization & administration , Precision Medicine/methods , Antineoplastic Agents/pharmacology , Clinical Decision-Making , DNA Mutational Analysis/standards , Genetic Testing/standards , Genetic Testing/trends , High-Throughput Nucleotide Sequencing/standards , Humans , Medical Oncology/organization & administration , Molecular Targeted Therapy , Mutation , Neoplasms/diagnosis , Neoplasms/genetics
8.
Nat Biotechnol ; 39(9): 1151-1160, 2021 09.
Article in English | MEDLINE | ID: mdl-34504347

ABSTRACT

The lack of samples for generating standardized DNA datasets for setting up a sequencing pipeline or benchmarking the performance of different algorithms limits the implementation and uptake of cancer genomics. Here, we describe reference call sets obtained from paired tumor-normal genomic DNA (gDNA) samples derived from a breast cancer cell line-which is highly heterogeneous, with an aneuploid genome, and enriched in somatic alterations-and a matched lymphoblastoid cell line. We partially validated both somatic mutations and germline variants in these call sets via whole-exome sequencing (WES) with different sequencing platforms and targeted sequencing with >2,000-fold coverage, spanning 82% of genomic regions with high confidence. Although the gDNA reference samples are not representative of primary cancer cells from a clinical sample, when setting up a sequencing pipeline, they not only minimize potential biases from technologies, assays and informatics but also provide a unique resource for benchmarking 'tumor-only' or 'matched tumor-normal' analyses.


Subject(s)
Benchmarking , Breast Neoplasms/genetics , DNA Mutational Analysis/standards , High-Throughput Nucleotide Sequencing/standards , Whole Genome Sequencing/standards , Cell Line, Tumor , Datasets as Topic , Germ Cells , Humans , Mutation , Reference Standards , Reproducibility of Results
10.
Am J Hum Genet ; 108(4): 656-668, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33770507

ABSTRACT

Genetic studies in underrepresented populations identify disproportionate numbers of novel associations. However, most genetic studies use genotyping arrays and sequenced reference panels that best capture variation most common in European ancestry populations. To compare data generation strategies best suited for underrepresented populations, we sequenced the whole genomes of 91 individuals to high coverage as part of the Neuropsychiatric Genetics of African Population-Psychosis (NeuroGAP-Psychosis) study with participants from Ethiopia, Kenya, South Africa, and Uganda. We used a downsampling approach to evaluate the quality of two cost-effective data generation strategies, GWAS arrays versus low-coverage sequencing, by calculating the concordance of imputed variants from these technologies with those from deep whole-genome sequencing data. We show that low-coverage sequencing at a depth of ≥4× captures variants of all frequencies more accurately than all commonly used GWAS arrays investigated and at a comparable cost. Lower depths of sequencing (0.5-1×) performed comparably to commonly used low-density GWAS arrays. Low-coverage sequencing is also sensitive to novel variation; 4× sequencing detects 45% of singletons and 95% of common variants identified in high-coverage African whole genomes. Low-coverage sequencing approaches surmount the problems induced by the ascertainment of common genotyping arrays, effectively identify novel variation particularly in underrepresented populations, and present opportunities to enhance variant discovery at a cost similar to traditional approaches.


Subject(s)
DNA Mutational Analysis/economics , DNA Mutational Analysis/standards , Genetic Variation/genetics , Genetics, Population/economics , Africa , DNA Mutational Analysis/methods , Genetics, Population/methods , Genome, Human/genetics , Genome-Wide Association Study , Health Equity , Humans , Microbiota , Whole Genome Sequencing/economics , Whole Genome Sequencing/standards
12.
BMC Genom Data ; 22(1): 8, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33602132

ABSTRACT

BACKGROUND: Next-generation sequencing (NGS) has profoundly changed the approach to genetic/genomic research. Particularly, the clinical utility of NGS in detecting mutations associated with disease risk has contributed to the development of effective therapeutic strategies. Recently, comprehensive analysis of somatic genetic mutations by NGS has also been used as a new approach for controlling the quality of cell substrates for manufacturing biopharmaceuticals. However, the quality evaluation of cell substrates by NGS largely depends on the limit of detection (LOD) for rare somatic mutations. The purpose of this study was to develop a simple method for evaluating the ability of whole-exome sequencing (WES) by NGS to detect mutations with low allele frequency. To estimate the LOD of WES for low-frequency somatic mutations, we repeatedly and independently performed WES of a reference genomic DNA using the same NGS platform and assay design. LOD was defined as the allele frequency with a relative standard deviation (RSD) value of 30% and was estimated by a moving average curve of the relation between RSD and allele frequency. RESULTS: Allele frequencies of 20 mutations in the reference material that had been pre-validated by droplet digital PCR (ddPCR) were obtained from 5, 15, 30, or 40 G base pair (Gbp) sequencing data per run. There was a significant association between the allele frequencies measured by WES and those pre-validated by ddPCR, whose p-value decreased as the sequencing data size increased. By this method, the LOD of allele frequency in WES with the sequencing data of 15 Gbp or more was estimated to be between 5 and 10%. CONCLUSIONS: For properly interpreting the WES data of somatic genetic mutations, it is necessary to have a cutoff threshold of low allele frequencies. The in-house LOD estimated by the simple method shown in this study provides a rationale for setting the cutoff.


Subject(s)
DNA Mutational Analysis , Exome Sequencing , Gene Frequency , High-Throughput Nucleotide Sequencing , Limit of Detection , Mutation , DNA Mutational Analysis/methods , DNA Mutational Analysis/standards , Humans
13.
J Mol Diagn ; 23(3): 310-322, 2021 03.
Article in English | MEDLINE | ID: mdl-33346146

ABSTRACT

Mutations in the epidermal growth factor receptor (EGFR) are the most common targetable alterations in lung adenocarcinoma. To facilitate rapid testing, the Idylla EGFR assay was incorporated as a screening method before next-generation sequencing (NGS). Validation and experience using an in-house developed analysis pipeline, enhanced with a manual review algorithm is described. Results are compared with corresponding NGS results. In all, 1249 samples were studied. Validation demonstrated 98.57% (69/70) concordance with the reference methods. The limit of detection varied from 2% to 5% variant allele frequency for total EGFR quantitation cycle between 20 and 23. Of the 1179 clinical cases, 23.41% were EGFR-positive by Idylla. Concurrent NGS was successfully performed on 94.9% (799/842) requests. Concordance of Idylla with NGS was 98.62% (788/799) and 98.50% (787/799) using our in-house and Idylla analysis pipelines, respectively. Discordances involved missed mutations by both assays associated with low tumor/low input. Incorporating a manual review algorithm to supplement automated calls improved accuracy from 98.62% to 99.37% and sensitivity from 94.68% to 97.58%. Overall reporting time, from receipt of material to official clinical report, ranged from 1 to 3 days. Therefore, Idylla EGFR testing enables rapid and sensitive screening without compromising subsequent comprehensive NGS, when required. Automated calling, enhanced with a manual review algorithm, reduces false-negative calls associated with low tumor/low input samples.


Subject(s)
DNA Mutational Analysis/methods , Mutation , Biomarkers, Tumor , DNA Mutational Analysis/standards , Data Analysis , ErbB Receptors/genetics , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/standards , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/standards , Reproducibility of Results , Sensitivity and Specificity , Workflow
14.
Future Oncol ; 17(7): 853-864, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33263430

ABSTRACT

Background: Ongoing clinical trials are investigating PARP inhibitors to target the DNA damage repair (DDR) pathway in prostate cancer. DDR mutation screening will guide treatment strategy and assess eligibility for clinical trials. Materials & methods: This systematic review estimated the rate of DDR mutation testing or genetic counseling among men with or at risk of prostate cancer. Results: From 6856 records, one study fulfilled the inclusion criteria and described men undiagnosed with prostate cancer with a family history of BRCA1/2 mutation who received DDR mutation testing. Conclusion: With only one study included in this first systematic review of DDR mutation testing or genetic counseling in men with or at risk of prostate cancer, more research is warranted.


Subject(s)
DNA Mutational Analysis/statistics & numerical data , DNA Repair , Genetic Counseling/statistics & numerical data , Genetic Testing/statistics & numerical data , Prostatic Neoplasms/diagnosis , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Consensus , DNA Mutational Analysis/standards , Drug Resistance, Neoplasm/genetics , Genetic Counseling/standards , Genetic Testing/standards , Humans , Male , Medical History Taking , Mutation , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Practice Guidelines as Topic , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics
15.
J Clin Pathol ; 74(5): 314-320, 2021 May.
Article in English | MEDLINE | ID: mdl-32817175

ABSTRACT

BACKGROUND: The absence of high-quality next-generation sequencing (NGS) reference material (RM) has impeded the clinical use of liquid biopsies with plasma cell-free DNA (cfDNA) in China. OBJECTIVE: This study aimed to develop a national RM panel for external quality assessment and performance evaluation during kit registration of non-small-cell lung cancer (NSCLC)-related Kirsten rat sarcoma viral oncogene (KRAS)/neuroblastoma ras oncogene (NRAS)/epidermal growth factor receptor (EGFR)/B-type Raf kinase (BRAF)/mesenchymal-epithelial transition factor (MET) genetic assays using plasma circulating tumor DNA (ctDNA). METHODS: Mutation cell lines detected by NGS and validated by Sanger sequencing were selected to establish the RM. Cell line genomic DNA was sheared and used to spike basal plasma cfDNA at 10% concentration. Then, the calibration accuracy was determined by four sequencing platforms. Average values were adopted and diluted to 0.1%, 0.3%, 1% and 3% concentrations with basal plasma as the RM panel. Then, five manufacturers were invited to evaluate the performance of the RM panel. RESULTS: 20 cell lines with 23 clinically important mutations were selected, including six mutations in KRAS, two mutations in NRAS, three in BRAF, four in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), six in EGFR, one EGFR Gain (4-5 copy) and one MET Gain (2-5 copy). The RM panel consisted of 87 samples, including these 21 mutations at four concentrations (0.1%, 0.3%, 1% and 3%), one MET gain, one EGFR gain and one wild type. The detection rate was 100% for the 3%, 1% and 0.3% samples at all five companies. For the 0.1% concentration, 15 samples had inconsistent results, but at least three companies had correct results for each mutation. CONCLUSION: RM for a KRAS/NRAS/EGFR/BRAF/MET mutation panel for plasma ctDNA was developed, which will be essential for quality control of the performance of independent laboratories.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Circulating Tumor DNA/genetics , DNA Mutational Analysis/standards , GTP Phosphohydrolases/genetics , High-Throughput Nucleotide Sequencing/standards , Lung Neoplasms/genetics , Membrane Proteins/genetics , Mutation , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Adult , Beijing , Biomarkers, Tumor/blood , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/diagnosis , Cell Line, Tumor , Circulating Tumor DNA/blood , ErbB Receptors/blood , ErbB Receptors/genetics , Female , GTP Phosphohydrolases/blood , Humans , Liquid Biopsy/standards , Lung Neoplasms/blood , Lung Neoplasms/diagnosis , Male , Membrane Proteins/blood , Middle Aged , Predictive Value of Tests , Proto-Oncogene Proteins B-raf/blood , Proto-Oncogene Proteins c-met/blood , Proto-Oncogene Proteins p21(ras)/blood , Reference Standards , Young Adult
16.
Diagn Pathol ; 15(1): 143, 2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33317587

ABSTRACT

BACKGROUND: Identification of somatic mutations in key oncogenes in melanoma is important to lead the effective and efficient use of personalized anticancer treatment. Conventional methods focus on few genes per run and, therefore, are unable to screen for multiple genes simultaneously. The use of Next-Generation Sequencing (NGS) technologies enables sequencing of multiple cancer-driving genes in a single assay, with reduced costs and DNA quantity needed and increased mutation detection sensitivity. METHODS: We designed a customized IMI somatic gene panel for targeted sequencing of actionable melanoma mutations; this panel was tested on three different NGS platforms using 11 metastatic melanoma tissue samples in blinded manner between two EMQN quality certificated laboratory. RESULTS: The detection limit of our assay was set-up to a Variant Allele Frequency (VAF) of 10% with a coverage of at least 200x. All somatic variants detected by all NGS platforms with a VAF ≥ 10%, were also validated by an independent method. The IMI panel achieved a very good concordance among the three NGS platforms. CONCLUSION: This study demonstrated that, using the main sequencing platforms currently available in the diagnostic setting, the IMI panel can be adopted among different centers providing comparable results.


Subject(s)
High-Throughput Nucleotide Sequencing/standards , Melanoma/genetics , Quality Assurance, Health Care , Sequence Analysis, DNA/standards , Skin Neoplasms/genetics , DNA Mutational Analysis/methods , DNA Mutational Analysis/standards , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Italy , Male , Sequence Analysis, DNA/methods , Melanoma, Cutaneous Malignant
17.
Nat Commun ; 11(1): 5040, 2020 10 07.
Article in English | MEDLINE | ID: mdl-33028839

ABSTRACT

Bringing together cancer genomes from different projects increases power and allows the investigation of pan-cancer, molecular mechanisms. However, working with whole genomes sequenced over several years in different sequencing centres requires a framework to compare the quality of these sequences. We used the Pan-Cancer Analysis of Whole Genomes cohort as a test case to construct such a framework. This cohort contains whole cancer genomes of 2832 donors from 18 sequencing centres. We developed a non-redundant set of five quality control (QC) measurements to establish a star rating system. These QC measures reflect known differences in sequencing protocol and provide a guide to downstream analyses and allow for exclusion of samples of poor quality. We have found that this is an effective framework of quality measures. The implementation of the framework is available at: https://dockstore.org/containers/quay.io/jwerner_dkfz/pancanqc:1.2.2 .


Subject(s)
Genome, Human/genetics , Genomics/standards , Neoplasms/genetics , Quality Control , Chromosome Mapping/standards , Chromosomes, Human/genetics , DNA Mutational Analysis/standards , Female , Genomics/methods , High-Throughput Nucleotide Sequencing/standards , Humans , Male , Mutation , Software , Whole Genome Sequencing/standards
18.
Genome Med ; 12(1): 91, 2020 10 26.
Article in English | MEDLINE | ID: mdl-33106175

ABSTRACT

Next-generation sequencing technologies have enabled a dramatic expansion of clinical genetic testing both for inherited conditions and diseases such as cancer. Accurate variant calling in NGS data is a critical step upon which virtually all downstream analysis and interpretation processes rely. Just as NGS technologies have evolved considerably over the past 10 years, so too have the software tools and approaches for detecting sequence variants in clinical samples. In this review, I discuss the current best practices for variant calling in clinical sequencing studies, with a particular emphasis on trio sequencing for inherited disorders and somatic mutation detection in cancer patients. I describe the relative strengths and weaknesses of panel, exome, and whole-genome sequencing for variant detection. Recommended tools and strategies for calling variants of different classes are also provided, along with guidance on variant review, validation, and benchmarking to ensure optimal performance. Although NGS technologies are continually evolving, and new capabilities (such as long-read single-molecule sequencing) are emerging, the "best practice" principles in this review should be relevant to clinical variant calling in the long term.


Subject(s)
DNA Mutational Analysis , Genetic Testing , Genetic Variation , Molecular Diagnostic Techniques/methods , Sequence Analysis, DNA , Clinical Decision-Making , Computational Biology/methods , DNA Copy Number Variations , DNA Mutational Analysis/methods , DNA Mutational Analysis/standards , Disease Management , Genetic Testing/methods , Genetic Testing/standards , Germ-Line Mutation , High-Throughput Nucleotide Sequencing/methods , Humans , Molecular Diagnostic Techniques/standards , Mutation , Sequence Analysis, DNA/methods
19.
Rev Mal Respir ; 37(8): 633-643, 2020 Oct.
Article in French | MEDLINE | ID: mdl-32859429

ABSTRACT

INTRODUCTION: Alpha1-antitrypsin deficiency is a predisposing factor for pulmonary disease and under-diagnosis is a significant problem. The results of a targeted screening in patients with respiratory symptoms possibly indicative of severe deficiency are reported here. METHODS: Data were collected from March 2016 to October 2017 on patients who had a capillary blood sample collected during a consultation with a pulmonologist and sent to the laboratory for processing to determine alpha1-antitrypsin concentration, phenotype and possibly genotype. RESULTS: In 20 months, 3728 test kits were requested by 566 pulmonologists and 718 (19 %) specimens sent: among these, 708 were analyzable and 613 were accompanied by clinical information. Of the 708 samples, 70 % had no phenotype associated with quantitative alpha1- antitrypsin deficiency, 7 % had a phenotype associated with a severe deficiency and 23 % had a phenotype associated with an intermediate deficiency. One hundred and eight patients carried at least one PI*Z allele which is considered to be a risk factor for liver disease. CONCLUSIONS: The results of this targeted screening program for alpha1- antitrypsin deficiency using a dried capillary blood sample reflect improvement in early diagnosis of this deficiency in lung disease with good adherence of the pulmonologists to this awareness campaign.


Subject(s)
Dried Blood Spot Testing/methods , Mass Screening/methods , alpha 1-Antitrypsin Deficiency/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , Bronchiectasis/blood , Bronchiectasis/diagnosis , Bronchiectasis/genetics , Child , DNA Mutational Analysis/methods , DNA Mutational Analysis/standards , Dried Blood Spot Testing/standards , Female , France/epidemiology , Genetic Predisposition to Disease , Genotype , Humans , Longitudinal Studies , Male , Mass Screening/organization & administration , Middle Aged , Phenotype , Program Evaluation , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Emphysema/blood , Pulmonary Emphysema/diagnosis , Pulmonary Emphysema/genetics , Young Adult , alpha 1-Antitrypsin/analysis , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin Deficiency/blood , alpha 1-Antitrypsin Deficiency/epidemiology , alpha 1-Antitrypsin Deficiency/genetics
20.
J Clin Lab Anal ; 34(11): e23458, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32671901

ABSTRACT

OBJECTIVES: Droplet digital PCR (ddPCR) has been reported to have a superior validity over PCR with amplification-refractory mutation system (ARMS-PCR) for detecting the BRAF V600E mutation in thyroid nodule fine-needle aspiration (FNA) samples using cytological diagnosis as the reference. However, the added value of ddPCR on surgical decision-making remains to be illustrated when the technique is combined with FNA cytology. METHODS: A total of 277 consecutive patients with thyroid nodules were subjected to FNA cytology and BRAF V600E testing with ARMS-PCR. Within this patient cohort, 90 patients underwent surgical intervention with pathological diagnosis available. BRAF V600E testing with ddPCR was performed retrospectively using FNA frozen DNA specimens. The clinical validity and utility of ddPCR in comparison with ARMS-PCR were compared using surgical pathology as the reference. RESULTS: Overall, 101 BRAF V600E mutations were detected by ddPCR, including five ARMS negative patients, four of whom were confirmed to have papillary thyroid cancer (PTC) by surgical pathology. Of the 90 patients with surgical pathology, which is considered the gold standard, ddPCR BRAF V600E testing yielded a sensitivity of 91.3% and specificity of 100% for PTC diagnosis, higher than that of ARMS (sensitivity 83.1%, specificity 100%). However, ddPCR only identified one more candidate patient for surgical intervention than ARMS when the techniques were combined with cytology. CONCLUSIONS: This study highlighted the superior performance of ddPCR over ARMS in BRAF V600E detection from thyroid nodule FNA samples. Further studies are needed to evaluate the cost-effectiveness of replacing ARMS-PCR with ddPCR for surgical decision-making.


Subject(s)
DNA Mutational Analysis , Polymerase Chain Reaction , Proto-Oncogene Proteins B-raf/genetics , Thyroid Nodule/genetics , Thyroid Nodule/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Biopsy, Fine-Needle , DNA Mutational Analysis/methods , DNA Mutational Analysis/standards , Female , Humans , Male , Middle Aged , Mutation/genetics , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/standards , Predictive Value of Tests , Reproducibility of Results , Retrospective Studies , Thyroid Gland/pathology , Thyroid Nodule/diagnosis , Thyroid Nodule/therapy , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...