Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.121
Filter
1.
Subcell Biochem ; 104: 73-100, 2024.
Article in English | MEDLINE | ID: mdl-38963484

ABSTRACT

Telomeres at the end of eukaryotic chromosomes are extended by a specialized set of enzymes and telomere-associated proteins, collectively termed here the telomere "replisome." The telomere replisome acts on a unique replicon at each chromosomal end of the telomeres, the 3' DNA overhang. This telomere replication process is distinct from the replisome mechanism deployed to duplicate the human genome. The G-rich overhang is first extended before the complementary C-strand is filled in. This overhang is extended by telomerase, a specialized ribonucleoprotein and reverse transcriptase. The overhang extension process is terminated when telomerase is displaced by CTC1-STN1-TEN1 (CST), a single-stranded DNA-binding protein complex. CST then recruits DNA polymerase α-primase to complete the telomere replication process by filling in the complementary C-strand. In this chapter, the recent structure-function insights into the human telomere C-strand fill-in machinery (DNA polymerase α-primase and CST) will be discussed.


Subject(s)
DNA Polymerase I , DNA Primase , DNA Replication , Telomere-Binding Proteins , Telomere , Humans , Telomere/metabolism , Telomere/genetics , DNA Polymerase I/metabolism , DNA Polymerase I/genetics , DNA Polymerase I/chemistry , DNA Primase/metabolism , DNA Primase/genetics , DNA Primase/chemistry , Telomere-Binding Proteins/metabolism , Telomere-Binding Proteins/genetics , Telomerase/metabolism , Telomerase/genetics
2.
Cell ; 187(14): 3638-3651.e18, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38838667

ABSTRACT

Telomere maintenance requires the extension of the G-rich telomeric repeat strand by telomerase and the fill-in synthesis of the C-rich strand by Polα/primase. At telomeres, Polα/primase is bound to Ctc1/Stn1/Ten1 (CST), a single-stranded DNA-binding complex. Like mutations in telomerase, mutations affecting CST-Polα/primase result in pathological telomere shortening and cause a telomere biology disorder, Coats plus (CP). We determined cryogenic electron microscopy structures of human CST bound to the shelterin heterodimer POT1/TPP1 that reveal how CST is recruited to telomeres by POT1. Our findings suggest that POT1 hinge phosphorylation is required for CST recruitment, and the complex is formed through conserved interactions involving several residues mutated in CP. Our structural and biochemical data suggest that phosphorylated POT1 holds CST-Polα/primase in an inactive, autoinhibited state until telomerase has extended the telomere ends. We propose that dephosphorylation of POT1 releases CST-Polα/primase into an active state that completes telomere replication through fill-in synthesis.


Subject(s)
DNA Polymerase I , DNA Primase , Shelterin Complex , Telomere-Binding Proteins , Telomere , Humans , Telomere-Binding Proteins/metabolism , Shelterin Complex/metabolism , Telomere/metabolism , Phosphorylation , DNA Primase/metabolism , DNA Primase/genetics , DNA Polymerase I/metabolism , Cryoelectron Microscopy , Telomerase/metabolism , Models, Molecular
3.
Int J Biol Macromol ; 269(Pt 2): 131965, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697428

ABSTRACT

In A-family DNA polymerases (dPols), a functional 3'-5' exonuclease activity is known to proofread newly synthesized DNA. The identification of a mismatch in substrate DNA leads to transfer of the primer strand from the polymerase active site to the exonuclease active site. To shed more light regarding the mechanism responsible for the detection of mismatches, we have utilized DNA polymerase 1 from Aquifex pyrophilus (ApPol1). The enzyme synthesized DNA with high fidelity and exhibited maximal exonuclease activity with DNA substrates bearing mismatches at the -2 and - 3 positions. The crystal structure of apo-ApPol1 was utilized to generate a computational model of the functional ternary complex of this enzyme. The analysis of the model showed that N332 forms interactions with minor groove atoms of the base pairs at the -2 and - 3 positions. The majority of known A-family dPols show the presence of Asn at a position equivalent to N332. The N332L mutation led to a decrease in the exonuclease activity for representative purine-pyrimidine, and pyrimidine-pyrimidine mismatches at -2 and - 3 positions, respectively. Overall, our findings suggest that conserved polar residues located towards the minor groove may facilitate the detection of position-specific mismatches to enhance the fidelity of DNA synthesis.


Subject(s)
Base Pair Mismatch , Models, Molecular , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , DNA/chemistry , DNA/metabolism , DNA/genetics , Catalytic Domain , Conserved Sequence , Amino Acid Sequence , Mutation , DNA Polymerase I/chemistry , DNA Polymerase I/metabolism , DNA Polymerase I/genetics , Substrate Specificity
4.
FEBS J ; 291(9): 1889-1891, 2024 May.
Article in English | MEDLINE | ID: mdl-38581152

ABSTRACT

Several recent cryo-electron microscopy (cryo-EM) studies about the eukaryotic primosome, including the human primosome described by Yin et al. in this issue, have uncovered the structural intricacies between the RNA primase and the DNA polymerase. These studies show that these two partners tango on DNA to synthesize a hybrid primer composed of ~ 10 nucleotide (nt) RNA and ~ 10-nt DNA. They reveal key intermediate steps involved in this process; from the self-inhibited apo state to the initiation of RNA primer synthesis, RNA primer handover to the polymerase, primer elongation by polymerase, and finally, primer termination and release. Remarkably, the polymerase domain orchestrates all major steps during primer synthesis.


Subject(s)
DNA Polymerase I , DNA , RNA , Humans , Cryoelectron Microscopy , DNA/chemistry , DNA/metabolism , DNA/genetics , DNA Polymerase I/metabolism , DNA Polymerase I/chemistry , DNA Primase/metabolism , DNA Primase/chemistry , DNA Primase/genetics , DNA Primers/genetics , DNA Replication , RNA/chemistry , RNA/metabolism , RNA/genetics
5.
Virology ; 594: 110035, 2024 06.
Article in English | MEDLINE | ID: mdl-38554655

ABSTRACT

The herpes simplex virus 1 DNA polymerase contains a highly conserved structural motif found in most family B polymerases and certain RNA-binding proteins. To investigate its importance within cells, we constructed a mutant virus with substitutions in two residues of the motif and a rescued derivative. The substitutions resulted in severe impairment of plaque formation, yields of infectious virus, and viral DNA synthesis while not meaningfully affecting expression of the mutant enzyme, its co-localization with the viral single-stranded DNA binding protein at intranuclear punctate sites in non-complementing cells or in replication compartments in complementing cells, or viral DNA polymerase activity. Taken together, our results indicate that the RNA binding motif plays a crucial role in herpes simplex virus 1 DNA synthesis through a mechanism separate from effects on polymerase activity, thus identifying a distinct essential function of this motif with implications for hypotheses regarding its biochemical functions.


Subject(s)
Herpesvirus 1, Human , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/metabolism , DNA, Viral/genetics , DNA Polymerase I/genetics , DNA Polymerase I/metabolism , Virus Replication , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/metabolism , DNA Replication
6.
Nat Struct Mol Biol ; 31(5): 777-790, 2024 May.
Article in English | MEDLINE | ID: mdl-38491139

ABSTRACT

The mechanism by which polymerase α-primase (polα-primase) synthesizes chimeric RNA-DNA primers of defined length and composition, necessary for replication fidelity and genome stability, is unknown. Here, we report cryo-EM structures of Xenopus laevis polα-primase in complex with primed templates representing various stages of DNA synthesis. Our data show how interaction of the primase regulatory subunit with the primer 5' end facilitates handoff of the primer to polα and increases polα processivity, thereby regulating both RNA and DNA composition. The structures detail how flexibility within the heterotetramer enables synthesis across two active sites and provide evidence that termination of DNA synthesis is facilitated by reduction of polα and primase affinities for the varied conformations along the chimeric primer-template duplex. Together, these findings elucidate a critical catalytic step in replication initiation and provide a comprehensive model for primer synthesis by polα-primase.


Subject(s)
Cryoelectron Microscopy , DNA Polymerase I , DNA Primase , DNA Replication , Models, Molecular , Xenopus laevis , DNA Primase/chemistry , DNA Primase/metabolism , DNA Primase/genetics , DNA Polymerase I/metabolism , DNA Polymerase I/chemistry , Animals , Catalytic Domain , DNA/metabolism , DNA/chemistry , DNA/biosynthesis , DNA Primers/metabolism , DNA Primers/genetics , RNA/metabolism , RNA/chemistry , Protein Conformation
7.
Int J Mol Sci ; 25(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38338670

ABSTRACT

In recent years, the loop-mediated isothermal amplification (LAMP) technique, designed for microbial pathogen detection, has acquired fundamental importance in the biomedical field, providing rapid and precise responses. However, it still has some drawbacks, mainly due to the need for a thermostatic block, necessary to reach 63 °C, which is the BstI DNA polymerase working temperature. Here, we report the identification and characterization of the DNA polymerase I Large Fragment from Deinococcus radiodurans (DraLF-PolI) that functions at room temperature and is resistant to various environmental stress conditions. We demonstrated that DraLF-PolI displays efficient catalytic activity over a wide range of temperatures and pH, maintains its activity even after storage under various stress conditions, including desiccation, and retains its strand-displacement activity required for isothermal amplification technology. All of these characteristics make DraLF-PolI an excellent candidate for a cutting-edge room-temperature LAMP that promises to be very useful for the rapid and simple detection of pathogens at the point of care.


Subject(s)
DNA Polymerase I , Deinococcus , DNA Polymerase I/genetics , Deinococcus/genetics , Temperature , DNA-Directed DNA Polymerase/genetics , Nucleic Acid Amplification Techniques , DNA Replication
8.
FEBS J ; 291(8): 1813-1829, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38335062

ABSTRACT

Eukaryotic DNA replication depends on the primosome - a complex of DNA polymerase alpha (Pol α) and primase - to initiate DNA synthesis by polymerisation of an RNA-DNA primer. Primer synthesis requires the tight coordination of primase and polymerase activities. Recent cryo-electron microscopy (cryoEM) analyses have elucidated the extensive conformational transitions required for RNA primer handover between primase and Pol α and primer elongation by Pol α. Because of the intrinsic flexibility of the primosome, however, structural information about the initiation of RNA primer synthesis is still lacking. Here, we capture cryoEM snapshots of the priming reaction to reveal the conformational trajectory of the human primosome that brings DNA primase subunits 1 and 2 (PRIM1 and PRIM2, respectively) together, poised for RNA synthesis. Furthermore, we provide experimental evidence for the continuous association of primase subunit PRIM2 with the RNA primer during primer synthesis, and for how both initiation and termination of RNA primer polymerisation are licenced by specific rearrangements of DNA polymerase alpha catalytic subunit (POLA1), the polymerase subunit of Pol α. Our findings fill a critical gap in our understanding of the conformational changes that underpin the synthesis of the RNA primer by the primosome. Together with existing evidence, they provide a complete description of the structural dynamics of the human primosome during DNA replication initiation.


Subject(s)
DNA Polymerase I , DNA Primase , Humans , DNA Primase/genetics , DNA Primase/metabolism , Cryoelectron Microscopy , DNA Polymerase I/genetics , RNA , DNA Replication
9.
Nature ; 627(8004): 664-670, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38418884

ABSTRACT

Telomerase adds G-rich telomeric repeats to the 3' ends of telomeres1, counteracting telomere shortening caused by loss of telomeric 3' overhangs during leading-strand DNA synthesis ('the end-replication problem'2). Here we report a second end-replication problem that originates from the incomplete duplication of the C-rich telomeric repeat strand (C-strand) by lagging-strand DNA synthesis. This problem is resolved by fill-in synthesis mediated by polymerase α-primase bound to Ctc1-Stn1-Ten1 (CST-Polα-primase). In vitro, priming for lagging-strand DNA replication does not occur on the 3' overhang and lagging-strand synthesis stops in a zone of approximately 150 nucleotides (nt) more than 26 nt from the end of the template. Consistent with the in vitro data, lagging-end telomeres of cells lacking CST-Polα-primase lost 50-60 nt of telomeric CCCTAA repeats per population doubling. The C-strands of leading-end telomeres shortened by around 100 nt per population doubling, reflecting the generation of 3' overhangs through resection. The measured overall C-strand shortening in the absence of CST-Polα-primase fill-in is consistent with the combined effects of incomplete lagging-strand synthesis and 5' resection at the leading ends. We conclude that canonical DNA replication creates two telomere end-replication problems that require telomerase to maintain the G-rich strand and CST-Polα-primase to maintain the C-strand.


Subject(s)
DNA Polymerase I , DNA Primase , DNA Replication , Telomere-Binding Proteins , Telomere , Humans , DNA Polymerase I/metabolism , DNA Primase/metabolism , Telomerase/metabolism , Telomere/genetics , Telomere/metabolism , Telomere-Binding Proteins/metabolism
10.
Anal Chem ; 95(42): 15755-15762, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37824574

ABSTRACT

In this study, we developed an innovative highly specific nucleic acid isothermal detection assay based on prokaryotic DNA polymerase I with exquisitely designed fluorescent probes, achieving high sensitivity and 100% specificity within 30 min. The fluorescent nucleic acid probe was designed and constructed based on the specific flap cleavage endonuclease activity of prokaryotic DNA polymerase I (including the Bst, Bsu, Bsm, and Klenow DNA polymerases). The flap endonuclease activity depends on the length of the flap DNA and polymerization activity, which greatly reduces the false-positive rate caused by primer dimerization. This robust assay was also validated by the detection of rotavirus with great specificity and sensitivity. It could be a great alternative to qPCR in the field of point-of-care detection of pathogens.


Subject(s)
DNA Polymerase I , Nucleic Acid Amplification Techniques , Polymerization , DNA , Endonucleases , Sensitivity and Specificity
11.
ACS Synth Biol ; 12(9): 2691-2706, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37672623

ABSTRACT

The genetic alphabet of life has been dramatically expanded via the development of unnatural base pairs (UBPs) that work as efficiently as natural base pairs in the storage and retrieval of genetic information. Among the most predominant UBPs, dNaM-dTPT3 and its analogues have been successfully employed to build semisynthetic cells with a functional six-letter genome. With the rapidly growing applications of UBPs in vitro and in vivo, there is an ever-increasing demand for DNA oligonucleotides containing unnatural bases (UBs) at desired positions. Conventional solid-phase synthesis of oligonucleotides has intrinsic limitations and needs to use unstable unnatural phosphoramidites and a DNA synthesizer, so it does not meet the daily urgent requirement for a few UB-containing DNA oligonucleotides in the laboratory. In this work, we develop a one-pot enzymatic method for preparing dNaM- or dTPT3-containing DNA oligonucleotides via controlled pause and restart of primer extension mediated by Klenow fragment (exo-). By systematic optimization of the reaction conditions, high efficiencies and product purities have been achieved. The universality of this method for preparing DNA oligonucleotides containing dNaM or dTPT3 in different sequence contexts is also demonstrated. This method allows convenient production of an arbitrary UB-containing DNA oligonucleotide in a single test tube with only two natural DNA oligonucleotides, stable nucleoside triphosphates, Klenow fragment (exo-), and other common reagents in the laboratory, providing the lowest cost and the highest simplicity for the enzymatic preparation of UB-containing oligonucleotides. Clearly, this method has great potential to facilitate the in vitro and in vivo applications of the UBPs.


Subject(s)
DNA Polymerase I , Oligonucleotides , Oligonucleotides/genetics , Nucleotides , Genomics , Laboratories
12.
Int J Mol Sci ; 24(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37762371

ABSTRACT

Glioblastoma Multiforme (GBM) is the most aggressive form of malignant brain tumor. The median survival rate does not exceed two years, indicating an imminent need to develop novel therapies. The atypical adamantyl retinoid ST1926 induces apoptosis and growth inhibition in different cancer types. We have shown that ST1926 is an inhibitor of the catalytic subunit of DNA polymerase alpha (POLA1), which is involved in initiating DNA synthesis in eukaryotic cells. POLA1 levels are elevated in GBM versus normal brain tissues. Therefore, we studied the antitumor effects of ST1926 in several human GBM cell lines. We further explored the global protein expression profiles in GBM cell lines using liquid chromatography coupled with tandem mass spectrometry to identify new targets of ST1926. Low sub-micromolar concentrations of ST1926 potently decreased cell viability, induced cell damage and apoptosis, and reduced POLA1 protein levels in GBM cells. The proteomics profiles revealed 197 proteins significantly differentially altered upon ST1926 treatment of GBM cells involved in various cellular processes. We explored the differential gene and protein expression of significantly altered proteins in GBM compared to normal brain tissues.


Subject(s)
Glioblastoma , Humans , Glioblastoma/drug therapy , DNA Polymerase I , Proteomics , Cinnamates , Nucleic Acid Synthesis Inhibitors , Nucleotidyltransferases
13.
IUBMB Life ; 75(12): 983-1002, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37470284

ABSTRACT

Most eukaryotes possess a mitochondrial genome, called mtDNA. In animals and fungi, the replication of mtDNA is entrusted by the DNA polymerase γ, or Pol γ. The yeast Pol γ is composed only of a catalytic subunit encoded by MIP1. In humans, Pol γ is a heterotrimer composed of a catalytic subunit homolog to Mip1, encoded by POLG, and two accessory subunits. In the last 25 years, more than 300 pathological mutations in POLG have been identified as the cause of several mitochondrial diseases, called POLG-related disorders, which are characterized by multiple mtDNA deletions and/or depletion in affected tissues. In this review, at first, we summarize the biochemical properties of yeast Mip1, and how mutations, especially those introduced recently in the N-terminal and C-terminal regions of the enzyme, affect the in vitro activity of the enzyme and the in vivo phenotype connected to the mtDNA stability and to the mtDNA extended and point mutability. Then, we focus on the use of yeast harboring Mip1 mutations equivalent to the human ones to confirm their pathogenicity, identify the phenotypic defects caused by these mutations, and find both mechanisms and molecular compounds able to rescue the detrimental phenotype. A closing chapter will be dedicated to other polymerases found in yeast mitochondria, namely Pol ζ, Rev1 and Pol η, and to their genetic interactions with Mip1 necessary to maintain mtDNA stability and to avoid the accumulation of spontaneous or induced point mutations.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Animals , Humans , DNA Polymerase gamma/genetics , DNA Polymerase I/genetics , DNA Polymerase I/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , DNA, Mitochondrial/genetics , Mutation , DNA Replication/genetics
14.
Prog Biophys Mol Biol ; 182: 15-25, 2023 09.
Article in English | MEDLINE | ID: mdl-37187447

ABSTRACT

DNA polymerases create complementary DNA strands in living cells and are crucial to genome transmission and maintenance. These enzymes possess similar human right-handed folds which contain thumb, fingers, and palm subdomains and contribute to polymerization activities. These enzymes are classified into seven evolutionary families, A, B, C, D, X, Y, and RT, based on amino acid sequence analysis and biochemical characteristics. Family A DNA polymerases exist in an extended range of organisms including mesophilic, thermophilic, and hyper-thermophilic bacteria, participate in DNA replication and repair, and have a broad application in molecular biology and biotechnology. In this study, we attempted to detect factors that play a role in the thermostability properties of this family member despite their remarkable similarities in structure and function. For this purpose, similarities and differences in amino acid sequences, structure, and dynamics of these enzymes have been inspected. Our results demonstrated that thermophilic and hyper-thermophilic enzymes have more charged, aromatic, and polar residues than mesophilic ones and consequently show further electrostatic and cation-pi interactions. In addition, in thermophilic enzymes, aliphatic residues tend to position in buried states more than mesophilic enzymes. These residues within their aliphatic parts increase hydrophobic core packing and therefore enhance the thermostability of these enzymes. Furthermore, a decrease in thermophilic cavities volumes assists in the protein compactness enhancement. Moreover, molecular dynamic simulation results revealed that increasing temperature impacts mesophilic enzymes further than thermophilic ones that reflect on polar and aliphatic residues surface area and hydrogen bonds changes.


Subject(s)
DNA-Directed DNA Polymerase , DNA Polymerase I/chemistry , Amino Acids/analysis , Hydrophobic and Hydrophilic Interactions , Escherichia coli/enzymology , Bacteriophage T7/enzymology , Mycobacterium smegmatis/enzymology , Molecular Dynamics Simulation , Sequence Analysis, Protein , Enzyme Stability , DNA-Directed DNA Polymerase/chemistry
15.
Biochemistry ; 62(2): 410-418, 2023 01 17.
Article in English | MEDLINE | ID: mdl-34762799

ABSTRACT

The DNA polymerase I from Geobacillus stearothermophilus (also known as Bst DNAP) is widely used in isothermal amplification reactions, where its strand displacement ability is prized. More robust versions of this enzyme should be enabled for diagnostic applications, especially for carrying out higher temperature reactions that might proceed more quickly. To this end, we appended a short fusion domain from the actin-binding protein villin that improved both stability and purification of the enzyme. In parallel, we have developed a machine learning algorithm that assesses the relative fit of individual amino acids to their chemical microenvironments at any position in a protein and applied this algorithm to predict sequence substitutions in Bst DNAP. The top predicted variants had greatly improved thermotolerance (heating prior to assay), and upon combination, the mutations showed additive thermostability, with denaturation temperatures up to 2.5 °C higher than the parental enzyme. The increased thermostability of the enzyme allowed faster loop-mediated isothermal amplification assays to be carried out at 73 °C, where both Bst DNAP and its improved commercial counterpart Bst 2.0 are inactivated. Overall, this is one of the first examples of the application of machine learning approaches to the thermostabilization of an enzyme.


Subject(s)
DNA-Directed DNA Polymerase , Nucleic Acid Amplification Techniques , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , DNA Polymerase I/chemistry , Geobacillus stearothermophilus
16.
Prep Biochem Biotechnol ; 53(4): 384-393, 2023.
Article in English | MEDLINE | ID: mdl-35792906

ABSTRACT

Bst DNA polymerase is a DNA polymerase derived from Geobacillus stearothermophilus, has a strand-displacement activity, and is used in loop-mediated isothermal amplification (LAMP) for rapid detection of COVID-19. Despite its potential to be employed in the detection of COVID-19, using commercially available enzymes is not economically feasible. The use of noncommercial enzyme for routine use is desirable. However, research on Bst DNA polymerase is still limited in Indonesia. For those reasons, a preliminary study of scale-up production of recombinant Bst polymerase was conducted. Therefore, the optimization of expression conditions was performed. The optimum conditions for Bst polymerase expression were as follows: 1 mM of IPTG, post-induction incubation time of 6 h, and induction at OD600 1.1. Employing optimum conditions could result in 2.8 times increase in protein yield compared to the initial conditions. Subsequently, an operation in 1 L working volume by a lab-scale bioreactor had been performed, followed by purification and dialysis. The optimum result for a 1 L lab-scale bioreactor was achieved by applying 100 rpm and 3 vvm, giving 11.7 mg/L of protein yield. Bst polymerase was successfully purified showing 813.56 U/mg of polymerase activity.


Subject(s)
COVID-19 , DNA Polymerase I , Humans , Geobacillus stearothermophilus/genetics , DNA Replication , Escherichia coli/genetics
17.
Nucleic Acids Res ; 50(21): 12266-12273, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36454017

ABSTRACT

DNA polymerase α (Polα) is essential for DNA replication initiation and makes a notable contribution to genome mutagenesis. The activity and fidelity of Polα during the early steps of DNA replication have not been well studied. Here we show that at the beginning of DNA synthesis, when extending the RNA primer received from primase, Polα is more mutagenic than during the later DNA elongation steps. Kinetic and binding studies revealed substantially higher activity and affinity to the template:primer when Polα interacts with ribonucleotides of a chimeric RNA-DNA primer. Polα activity greatly varies during first six steps of DNA synthesis, and the bias in the rates of correct and incorrect dNTP incorporation leads to impaired fidelity, especially upon the second step of RNA primer extension. Furthermore, increased activity and stability of Polα/template:primer complexes containing RNA-DNA primers result in higher efficiency of mismatch extension.


Subject(s)
DNA Polymerase I , Mutagens , Humans , DNA Polymerase I/metabolism , DNA Replication/genetics , DNA Primase/metabolism , Mutagenesis , DNA/chemistry , DNA Primers/genetics , RNA/genetics
18.
Int J Mol Sci ; 23(21)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36362137

ABSTRACT

Azide-alkyne cycloaddition ("click chemistry") has found wide use in the analysis of molecular interactions in living cells. 5-ethynyl-2-(hydroxymethyl)tetrahydrofuran-3-ol (EAP) is a recently developed apurinic/apyrimidinic (AP) site analog functionalized with an ethynyl moiety, which can be introduced into cells in DNA constructs to perform labeling or cross-linking in situ. However, as a non-natural nucleoside, EAP could be subject to removal by DNA repair and misreading by DNA polymerases. Here, we investigate the interaction of this clickable AP site analog with DNA polymerases and base excision repair enzymes. Similarly to the natural AP site, EAP was non-instructive and followed the "A-rule", directing residual but easily detectable incorporation of dAMP by E. coli DNA polymerase I Klenow fragment, bacteriophage RB69 DNA polymerase and human DNA polymerase ß. On the contrary, EAP was blocking for DNA polymerases κ and λ. EAP was an excellent substrate for the major human AP endonuclease APEX1 and E. coli AP exonucleases Xth and Nfo but was resistant to the AP lyase activity of DNA glycosylases. Overall, our data indicate that EAP, once within a cell, would represent a replication block and would be removed through an AP endonuclease-initiated long-patch base excision repair pathway.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase , Escherichia coli , Humans , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Escherichia coli/metabolism , DNA-Directed DNA Polymerase/metabolism , DNA Repair , DNA Damage , DNA Polymerase I/genetics , Endonucleases/metabolism
19.
Acta Crystallogr D Struct Biol ; 78(Pt 11): 1384-1398, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36322421

ABSTRACT

This study describes the structure of DNA polymerase I from Thermus phage G20c, termed PolI_G20c. This is the first structure of a DNA polymerase originating from a group of related thermophilic bacteriophages infecting Thermus thermophilus, including phages G20c, TSP4, P74-26, P23-45 and phiFA and the novel phage Tth15-6. Sequence and structural analysis of PolI_G20c revealed a 3'-5' exonuclease domain and a DNA polymerase domain, and activity screening confirmed that both domains were functional. No functional 5'-3' exonuclease domain was present. Structural analysis also revealed a novel specific structure motif, here termed SßαR, that was not previously identified in any polymerase belonging to the DNA polymerases I (or the DNA polymerase A family). The SßαR motif did not show any homology to the sequences or structures of known DNA polymerases. The exception was the sequence conservation of the residues in this motif in putative DNA polymerases encoded in the genomes of a group of thermophilic phages related to Thermus phage G20c. The structure of PolI_G20c was determined with the aid of another structure that was determined in parallel and was used as a model for molecular replacement. This other structure was of a 3'-5' exonuclease termed ExnV1. The cloned and expressed gene encoding ExnV1 was isolated from a thermophilic virus metagenome that was collected from several hot springs in Iceland. The structure of ExnV1, which contains the novel SßαR motif, was first determined to 2.19 Šresolution. With these data at hand, the structure of PolI_G20c was determined to 2.97 Šresolution. The structures of PolI_G20c and ExnV1 are most similar to those of the Klenow fragment of DNA polymerase I (PDB entry 2kzz) from Escherichia coli, DNA polymerase I from Geobacillus stearothermophilus (PDB entry 1knc) and Taq polymerase (PDB entry 1bgx) from Thermus aquaticus.


Subject(s)
Bacteriophages , DNA Polymerase I , DNA Polymerase I/chemistry , DNA Polymerase I/genetics , Phosphodiesterase I , Thermus , Taq Polymerase/chemistry , Escherichia coli
20.
Eur J Med Genet ; 65(12): 104628, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36182037

ABSTRACT

POLA1 encodes a subunit of the DNA polymerase alpha, a key enzyme for the initiation of DNA synthesis. In males, hemizygous hypomorphic variants in POLA1 have been identified as the cause of X-linked pigmentary reticulate disorder (XLPDR) and a novel X-linked neurodevelopmental disorder termed Van Esch-O'Driscoll syndrome (VEODS), while female carriers have been reported to be healthy. Nullisomy for POLA1 was speculated to be lethal due to its crucial function, while the effect of loss of one allele in females remained unknown. Here, we report on a three-generation family harboring a deletion of POLA1 in females showing subfertility as the only phenotype. Our findings show that heterozygous deletions or truncating variants in females with skewed X inactivation do not cause VEODS and support the hypothesis of very early embryonic lethality in males with POLA1 nullisomy.


Subject(s)
Genetic Diseases, X-Linked , Intellectual Disability , Male , Female , Humans , DNA Polymerase I/genetics , Genetic Diseases, X-Linked/genetics , Genes, X-Linked , Heterozygote , Intellectual Disability/genetics , Fertility
SELECTION OF CITATIONS
SEARCH DETAIL
...