Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 12(1): 1131, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33602900

ABSTRACT

Transcription activation of bacteriophage T4 late genes is accomplished by a transcription activation complex containing RNA polymerase (RNAP), the promoter specificity factor gp55, the coactivator gp33, and a universal component of cellular DNA replication, the sliding clamp gp45. Although genetic and biochemical studies have elucidated many aspects of T4 late gene transcription, no precise structure of the transcription machinery in the process is available. Here, we report the cryo-EM structures of a gp55-dependent RNAP-promoter open complex and an intact gp45-dependent transcription activation complex. The structures reveal the interactions between gp55 and the promoter DNA that mediate the recognition of T4 late promoters. In addition to the σR2 homology domain, gp55 has a helix-loop-helix motif that chaperons the template-strand single-stranded DNA of the transcription bubble. Gp33 contacts both RNAP and the upstream double-stranded DNA. Gp45 encircles the DNA and tethers RNAP to it, supporting the idea that gp45 switches the promoter search from three-dimensional diffusion mode to one-dimensional scanning mode.


Subject(s)
DNA Polymerase III/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , Transcriptional Activation/genetics , Amino Acid Motifs , Base Sequence , DNA Polymerase III/chemistry , DNA Polymerase III/ultrastructure , DNA, Single-Stranded/metabolism , DNA, Viral/metabolism , DNA-Directed RNA Polymerases/metabolism , Models, Genetic , Models, Molecular , Promoter Regions, Genetic , Protein Binding , Protein Domains , Sigma Factor/chemistry , Sigma Factor/ultrastructure , Transcription, Genetic , Viral Proteins/chemistry , Viral Proteins/ultrastructure
2.
Proc Natl Acad Sci U S A ; 117(48): 30344-30353, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33203675

ABSTRACT

The DNA polymerase (Pol) δ of Saccharomyces cerevisiae (S.c.) is composed of the catalytic subunit Pol3 along with two regulatory subunits, Pol31 and Pol32. Pol δ binds to proliferating cell nuclear antigen (PCNA) and functions in genome replication, repair, and recombination. Unique among DNA polymerases, the Pol3 catalytic subunit contains a 4Fe-4S cluster that may sense the cellular redox state. Here we report the 3.2-Šcryo-EM structure of S.c. Pol δ in complex with primed DNA, an incoming ddTTP, and the PCNA clamp. Unexpectedly, Pol δ binds only one subunit of the PCNA trimer. This singular yet extensive interaction holds DNA such that the 2-nm-wide DNA threads through the center of the 3-nm interior channel of the clamp without directly contacting the protein. Thus, a water-mediated clamp and DNA interface enables the PCNA clamp to "waterskate" along the duplex with minimum drag. Pol31 and Pol32 are positioned off to the side of the catalytic Pol3-PCNA-DNA axis. We show here that Pol31-Pol32 binds single-stranded DNA that we propose underlies polymerase recycling during lagging strand synthesis, in analogy to Escherichia coli replicase. Interestingly, the 4Fe-4S cluster in the C-terminal CysB domain of Pol3 forms the central interface to Pol31-Pol32, and this strategic location may explain the regulation of the oxidation state on Pol δ activity, possibly useful during cellular oxidative stress. Importantly, human cancer and other disease mutations map to nearly every domain of Pol3, suggesting that all aspects of Pol δ replication are important to human health and disease.


Subject(s)
DNA Polymerase III/chemistry , DNA Polymerase III/metabolism , DNA/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Cryoelectron Microscopy , DNA/chemistry , DNA Polymerase III/ultrastructure , Dideoxynucleotides/chemistry , Dideoxynucleotides/metabolism , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Models, Molecular , Mutation/genetics , Neoplasms/genetics , Protein Binding , Protein Subunits/chemistry , Protein Subunits/metabolism , Thymine Nucleotides/chemistry , Thymine Nucleotides/metabolism
3.
Nat Struct Mol Biol ; 26(10): 955-962, 2019 10.
Article in English | MEDLINE | ID: mdl-31582849

ABSTRACT

DNA polymerase δ (Polδ) plays pivotal roles in eukaryotic DNA replication and repair. Polδ is conserved from yeast to humans, and mutations in human Polδ have been implicated in various cancers. Saccharomyces cerevisiae Polδ consists of catalytic Pol3 and the regulatory Pol31 and Pol32 subunits. Here, we present the near atomic resolution (3.2 Å) cryo-EM structure of yeast Polδ holoenzyme in the act of DNA synthesis. The structure reveals an unexpected arrangement in which the regulatory subunits (Pol31 and Pol32) lie next to the exonuclease domain of Pol3 but do not engage the DNA. The Pol3 C-terminal domain contains a 4Fe-4S cluster and emerges as the keystone of Polδ assembly. We also show that the catalytic and regulatory subunits rotate relative to each other and that this is an intrinsic feature of the Polδ architecture. Collectively, the structure provides a framework for understanding DNA transactions at the replication fork.


Subject(s)
DNA Polymerase III/chemistry , DNA-Directed DNA Polymerase/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/chemistry , Amino Acid Sequence , Cryoelectron Microscopy , DNA Polymerase III/metabolism , DNA Polymerase III/ultrastructure , DNA, Fungal/metabolism , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/ultrastructure , Molecular Docking Simulation , Protein Binding , Protein Conformation , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/ultrastructure
4.
Cell ; 84(1): 137-45, 1996 Jan 12.
Article in English | MEDLINE | ID: mdl-8548818

ABSTRACT

Replication machines use ring-shaped clamps that encircle DNA to tether the polymerase to the chromosome. The clamp is assembled on DNA by a clamp loader. This report shows that the polymerase and clamp loader coordinate their actions with the clamp by competing for it through overlapping binding sites. The competition is modulated by DNA. In the absence of DNA, the clamp associates with the clamp loader. But after the clamp is placed on DNA, the polymerase develops a tight grip on the clamp and out-competes the clamp loader. After replication of the template, the polymerase looses affinity for the clamp. Now the clamp loader regains access to the clamp and removes it from DNA thus recycling it for future use.


Subject(s)
DNA Polymerase III/ultrastructure , DNA Replication/physiology , Binding, Competitive , DNA/metabolism , DNA Polymerase III/analysis , DNA Polymerase III/metabolism , DNA-Binding Proteins/analysis , DNA-Binding Proteins/metabolism , Mutagenesis, Site-Directed
6.
Cell ; 69(3): 425-37, 1992 May 01.
Article in English | MEDLINE | ID: mdl-1349852

ABSTRACT

The crystal structure of the beta subunit (processivity factor) of DNA polymerase III holoenzyme has been determined at 2.5 A resolution. A dimer of the beta subunit (M(r) = 2 x 40.6 kd, 2 x 366 amino acid residues) forms a ring-shaped structure lined by 12 alpha helices that can encircle duplex DNA. The structure is highly symmetrical, with each monomer containing three domains of identical topology. The charge distribution and orientation of the helices indicate that the molecule functions by forming a tight clamp that can slide on DNA, as shown biochemically. A potential structural relationship is suggested between the beta subunit and proliferating cell nuclear antigen (PCNA, the eukaryotic polymerase delta [and epsilon] processivity factor), and the gene 45 protein of the bacteriophage T4 DNA polymerase.


Subject(s)
DNA Polymerase III/ultrastructure , DNA-Binding Proteins/ultrastructure , Escherichia coli/enzymology , Trans-Activators , Amino Acid Sequence , Computer Graphics , Crystallography , DNA Polymerase III/chemistry , Humans , Hydrogen Bonding , Macromolecular Substances , Models, Molecular , Molecular Sequence Data , Nuclear Proteins/chemistry , Nucleic Acid Conformation , Proliferating Cell Nuclear Antigen , Protein Conformation , Sequence Alignment , T-Phages/enzymology , Viral Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL