Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Luminescence ; 19(2): 85-93, 2004.
Article in English | MEDLINE | ID: mdl-15098208

ABSTRACT

Use of antisense nucleic acids to modulate expression of particular genes is a promising approach to the therapy of human papillomavirus type 16 (HPV-16)-associated cervical cancer. Understandably, evaluation of the in vivo performance of synthetic antisense oligodeoxynucleotides (AS-ODNs) or ribozymes is of ultimate importance to development of effective antisense tools. Here we report the use of a bacterial reporter system based on the inhibition of fluorescence resonance energy transfer (FRET) to measure the interaction of AS-ODNs with HPV-16 target nt 410-445, using variants of the green fluorescent protein (GFP). An optimal FRET-producing pair was selected with GFP as the donor and yellow fluorescent protein (YFP) as the acceptor molecule. Hybridization of AS-ODNs with a chimaeric mRNA containing the antisense target site flanked by GFP variants resulted in the inhibition of the FRET effect. Use of different linkers suggested that the amino acid content of the linker has no significant effect on FRET effect. Antisense accessibility, tested by RNaseH assays with phosphorothioated target-specific and mutant AS-ODNs, suggested a specific effect on the chimaeric mRNA. FRET inhibition measurements correlated with the presence of truncated proteins confirming true antisense activity over the target. Therefore, FRET inhibition may be used for the direct measurement of AS-ODNs activity in vivo.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Oligodeoxyribonucleotides, Antisense/analysis , Oligodeoxyribonucleotides, Antisense/chemistry , Bacterial Proteins/analysis , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Base Sequence , DNA Probes, HPV/analysis , DNA Probes, HPV/chemical synthesis , DNA Probes, HPV/chemistry , Flow Cytometry , Green Fluorescent Proteins , Humans , Luminescent Proteins/analysis , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Microscopy, Fluorescence/methods , Molecular Sequence Data , Oligodeoxyribonucleotides, Antisense/chemical synthesis , RNA, Messenger/chemistry , RNA, Viral/antagonists & inhibitors , RNA, Viral/chemistry , Recombinant Proteins/analysis
2.
Infect Dis Obstet Gynecol ; 6(5): 214-9, 1998.
Article in English | MEDLINE | ID: mdl-9894176

ABSTRACT

OBJECTIVE: The aim of this study was to identify human papillomavirus (HPV) in cervical intraepithelial neoplasia (CIN) lesions and to evaluate the persistence of viral DNA after diathermic large loop excision (DLLE) treatment. STUDY DESIGN: Biopsies from 36 patients with low- and high-grade CIN lesions were studied before and after DLLE treatment looking for HPV sequences. DNA was extracted to perform a radioactive polymerase chain reaction (PCR) using GP 5,6 generic primers. PCR products were analyzed by the single-stranded conformational polymorphism (SSCP) which is a simultaneous detection and typing method. Dot-blot hybridization with generic and type-specific biotinylated oligonucleotide probes was applied in some cases. RESULTS: HPV DNA was found in all pretreatment samples, and the viral type was identified in 80% of them, HPV 16 being the most prevalent. The viral type coincided with that detected in the first biopsy in all except one case. Seventy five percent of the patients (27 cases) were negative for CIN at follow up, but 50% of them remained HPV DNA positive. CONCLUSION: DLLE treatment was effective in removing the CIN lesion but not the HPV. This fact points out the need to asses the presence of HPV in DNA during the follow-up, since viral persistence has been considered a high risk factor for recurrence and/or malignant transformation.


Subject(s)
Electrocoagulation , Papillomaviridae/growth & development , Papillomavirus Infections/surgery , Tumor Virus Infections/surgery , Uterine Cervical Dysplasia/virology , Adolescent , Adult , Biopsy , DNA Probes, HPV/chemistry , DNA, Viral/analysis , DNA, Viral/chemistry , Female , Humans , Middle Aged , Nucleic Acid Hybridization , Papillomaviridae/classification , Papillomaviridae/genetics , Papillomavirus Infections/virology , Polymerase Chain Reaction , Polymorphism, Single-Stranded Conformational , Tumor Virus Infections/virology , Uterine Cervical Dysplasia/surgery
SELECTION OF CITATIONS
SEARCH DETAIL