Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.876
Filter
1.
J Exp Clin Cancer Res ; 43(1): 159, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38840237

ABSTRACT

BACKGROUND: Renal cell carcinoma (RCC) was historically considered to be less responsive to radiation therapy (RT) compared to other cancer indications. However, advancements in precision high-dose radiation delivery through single-fraction and multi-fraction stereotactic ablative radiotherapy (SABR) have led to better outcomes and reduced treatment-related toxicities, sparking renewed interest in using RT to treat RCC. Moreover, numerous studies have revealed that certain therapeutic agents including chemotherapies can increase the sensitivity of tumors to RT, leading to a growing interest in combining these treatments. Here, we developed a rational combination of two radiosensitizers in a tumor-targeted liposomal formulation for augmenting RT in RCC. The objective of this study is to assess the efficacy of a tumor-targeted liposomal formulation combining the mTOR inhibitor everolimus (E) with the survivin inhibitor YM155 (Y) in enhancing the sensitivity of RCC tumors to radiation. EXPERIMENTAL DESIGN: We slightly modified our previously published tumor-targeted liposomal formulation to develop a rational combination of E and Y in a single liposomal formulation (EY-L) and assessed its efficacy in RCC cell lines in vitro and in RCC tumors in vivo. We further investigated how well EY-L sensitizes RCC cell lines and tumors toward radiation and explored the underlying mechanism of radiosensitization. RESULTS: EY-L outperformed the corresponding single drug-loaded formulations E-L and Y-L in terms of containing primary tumor growth and improving survival in an immunocompetent syngeneic mouse model of RCC. EY-L also exhibited significantly higher sensitization of RCC cells towards radiation in vitro than E-L and Y-L. Additionally, EY-L sensitized RCC tumors towards radiation therapy in xenograft and murine RCC models. EY-L mediated induction of mitotic catastrophe via downregulation of multiple cell cycle checkpoints and DNA damage repair pathways could be responsible for the augmentation of radiation therapy. CONCLUSION: Taken together, our study demonstrated the efficacy of a strategic combination therapy in sensitizing RCC to radiation therapy via inhibition of DNA damage repair and a substantial increase in mitotic catastrophe. This combination therapy may find its use in the augmentation of radiation therapy during the treatment of RCC patients.


Subject(s)
Carcinoma, Renal Cell , DNA Repair , Kidney Neoplasms , Survivin , TOR Serine-Threonine Kinases , Xenograft Model Antitumor Assays , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/radiotherapy , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/metabolism , Animals , Survivin/metabolism , Humans , Mice , Cell Line, Tumor , Kidney Neoplasms/pathology , Kidney Neoplasms/radiotherapy , Kidney Neoplasms/drug therapy , DNA Repair/drug effects , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Mitosis/drug effects , Mitosis/radiation effects , Imidazoles/pharmacology , DNA Damage , Everolimus/pharmacology , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/therapeutic use , Liposomes/pharmacology , MTOR Inhibitors/pharmacology , MTOR Inhibitors/therapeutic use
2.
Am J Mens Health ; 18(3): 15579883241246908, 2024.
Article in English | MEDLINE | ID: mdl-38725193

ABSTRACT

The aim of this study was to investigate the potential mechanism through which Yishen Tongluo decoction (YSTL) repairs DNA damage caused by benzo(a)pyrene diol epoxide (BPDE) in mouse spermatocytes (GC-2). The GC-2 cells were divided randomly into the control group, BPDE group, and low-, medium-, and high-dose YSTL groups of YSTL decoction. A comet assay was used to detect the DNA fragment index (DFI) of cells in each group. Based on the DFI results, whole transcriptome sequencing was conducted, followed by trend analysis, gene ontology (GO) enrichment analysis, kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, and ceRNA network analysis. Compared with the control group, the BPDE group reported a significant increase in the DNA fragmentation index (DFI) (p < .05). Compared with the BPDE group, the low-, high- and medium-dose YSTL groups had a significantly reduced DFI (p < .05). Whole-transcriptome sequencing revealed seven differentially expressed circRNAs, 203 differentially expressed miRNAs, and 3,662 differentially expressed mRNAs between the control group and the BPDE group. There was a total of 12 differentially expressed circRNAs, 204 miRNAs, and 2150 mRNAs between the BPDE group and the traditional Chinese medicine group. The pathways involved include DNA repair pathway, nucleotide excision repair pathway, base excision repair pathway, etc. The ceRNA network reported that Hmga2 was the core protein involved, novel_cir_000117 and mmu-miR-466c-3p were located upstream of Hmga2, and they were regulatory factors associated with Hmga2. Finally, we conclude that YSTL decoction may repair sperm DNA damage caused by BPDE through the novel_cir_000117-mmu-miR-466c-3p-Hmga2 pathway.


Subject(s)
DNA Damage , DNA Repair , Drugs, Chinese Herbal , Animals , Male , Mice , Drugs, Chinese Herbal/pharmacology , DNA Damage/drug effects , DNA Repair/drug effects , Spermatogonia/drug effects , Transcriptome/drug effects
3.
J Nanobiotechnology ; 22(1): 228, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38715049

ABSTRACT

Development of ferroptosis-inducible nanoplatforms with high efficiency and specificity is highly needed and challenging in tumor ferrotherapy. Here, we demonstrate highly effective tumor ferrotherapy using iron (II)-based metal-organic framework (FessMOF) nanoparticles, assembled from disulfide bonds and ferrous ions. The as-prepared FessMOF nanoparticles exhibit peroxidase-like activity and pH/glutathione-dependent degradability, which enables tumor-responsive catalytic therapy and glutathione depletion by the thiol/disulfide exchange to suppress glutathione peroxidase 4, respectively. Upon PEGylation and Actinomycin D (ActD) loading, the resulting FessMOF/ActD-PEG nanoplatform induces marked DNA damage and lipid peroxidation. Concurrently, we found that ActD can inhibit Xc- system and elicit ferritinophagy, which further boosts the ferrotherapeutic efficacy of the FessMOF/ActD-PEG. In vivo experiments demonstrate that our fabricated nanoplatform presents excellent biocompatibility and a high tumor inhibition rate of 91.89%.


Subject(s)
DNA Damage , Ferroptosis , Iron , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Ferroptosis/drug effects , Animals , Humans , Mice , DNA Damage/drug effects , Iron/chemistry , Cell Line, Tumor , DNA Repair/drug effects , Nanoparticles/chemistry , Neoplasms/drug therapy , Mice, Inbred BALB C , Female
4.
Cell Death Dis ; 15(5): 329, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740757

ABSTRACT

Iron is crucial for cell DNA synthesis and repair, but an excess of free iron can lead to oxidative stress and subsequent cell death. Although several studies suggest that cancer cells display characteristics of 'Iron addiction', an ongoing debate surrounds the question of whether iron can influence the malignant properties of ovarian cancer. In the current study, we initially found iron levels increase during spheroid formation. Furthermore, iron supplementation can promote cancer cell survival, cancer spheroid growth, and migration; vice versa, iron chelators inhibit this process. Notably, iron reduces the sensitivity of ovarian cancer cells to platinum as well. Mechanistically, iron downregulates DNA homologous recombination (HR) inhibitor polymerase theta (POLQ) and relieves its antagonism against the HR repair enzyme RAD51, thereby promoting DNA damage repair to resist chemotherapy-induced damage. Additionally, iron tightly regulated by ferritin (FTH1/FTL) which is indispensable for iron-triggered DNA repair. Finally, we discovered that iron chelators combined with platinum exhibit a synergistic inhibitory effect on ovarian cancer in vitro and in vivo. Our findings affirm the pro-cancer role of iron in ovarian cancer and reveal that iron advances platinum resistance by promoting DNA damage repair through FTH1/FTL/POLQ/RAD51 pathway. Our findings highlight the significance of iron depletion therapy, revealing a promising avenue for advancing ovarian cancer treatment.


Subject(s)
DNA Repair , Drug Resistance, Neoplasm , Iron , Ovarian Neoplasms , Rad51 Recombinase , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Drug Resistance, Neoplasm/drug effects , DNA Repair/drug effects , Iron/metabolism , Cell Line, Tumor , Rad51 Recombinase/metabolism , Animals , Ferritins/metabolism , Mice , Platinum/pharmacology , Platinum/therapeutic use , Mice, Nude , Oxidoreductases/metabolism
5.
J Hazard Mater ; 472: 134485, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38701725

ABSTRACT

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic persistent organic pollutant (POP) that can induce DNA damage within cells. Although oxidative stress is one of the primary mechanisms causing DNA damage, its role in the process of TCDD-induced DNA damage remains unclear. In this study, the TCDD-induced production of reactive oxygen species (ROS) and the occurrence of DNA damage at the AP site were monitored simultaneously. Further investigation revealed that TCDD impaired the activities of superoxide dismutase (SOD) and catalase (CAT), compromising the cellular antioxidant defense system. Consequently, this led to an increase in the production of O2.- and NO, thus inducing DNA damage at the AP site under oxidative stress. Our findings were further substantiated by the upregulation of key genes in the base excision repair (BER) pathway and the absence of DNA AP site damage after inhibiting O2.- and NO. In addition, transcriptome sequencing revealed that TCDD induces DNA damage by upregulating genes associated with oxidative stress in the mitogen-activated protein kinase (MAPK), cyclic adenosine monophosphate (cAMP), and breast cancer pathways. This study provides important insights into the toxicity mechanisms of TCDD.


Subject(s)
DNA Damage , Oxidative Stress , Polychlorinated Dibenzodioxins , Reactive Oxygen Species , Polychlorinated Dibenzodioxins/toxicity , Oxidative Stress/drug effects , DNA Damage/drug effects , Reactive Oxygen Species/metabolism , Catalase/metabolism , Superoxide Dismutase/metabolism , DNA Repair/drug effects , Humans , Environmental Pollutants/toxicity
6.
Cell Rep ; 43(5): 114234, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38758646

ABSTRACT

Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) not only suppress PARP1 catalytic activity but also prolong its association to damaged chromatin. Here, through live-cell imaging, we quantify the alterations in PARP1 dynamics and activity elicited by seven PARPis over a wide range of concentrations to deliver a unified mechanism of PARPi-induced PARP1 chromatin retention. We find that gross PARP1 retention at DNA damage sites is jointly governed by catalytic inhibition and allosteric trapping, albeit in a strictly independent manner-catalytic inhibition causes multiple unproductive binding-dissociation cycles of PARP1, while allosteric trapping prolongs the lesion-bound state of PARP1 to greatly increase overall retention. Importantly, stronger PARP1 retention produces greater temporal shifts in downstream DNA repair events and superior cytotoxicity, highlighting PARP1 retention, a complex but precisely quantifiable characteristic of PARPis, as a valuable biomarker for PARPi efficacy. Our approach can be promptly repurposed for interrogating the properties of DNA-repair-targeting compounds beyond PARPis.


Subject(s)
Chromatin , DNA Damage , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Humans , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Chromatin/metabolism , DNA Repair/drug effects
7.
Article in English | MEDLINE | ID: mdl-38821673

ABSTRACT

Diabetes mellitus is a complex metabolic disorder resulting from the interplay of environmental, genetic, and epigenetic factors that increase the risk of cancer development. However, it is unclear whether the increased cancer risk is due to poor glycemic control or the use of some antidiabetic medications. Therefore, we investigated the genetic and epigenetic changes in somatic cells in a mouse model of diabetes and studied whether multiple exposures to the antidiabetic medication dapagliflozin influence these changes. We also elucidated the mechanism(s) of these ameliorations. The micronucleus test and modified comet assay were used to investigate bone marrow DNA damage and methylation changes. These assays revealed that dapagliflozin is non-genotoxic in the tested regimen, and oxidative DNA damage and hypermethylation were significantly higher in diabetic mice. Spectrophotometry also evaluated oxidative DNA damage and global DNA methylation, revealing similar significant alterations induced by diabetes. Conversely, the dapagliflozin-treated diabetic animals significantly reduced these changes. The expression of some genes involved in DNA repair and DNA methylation was disrupted considerably in the somatic cells of diabetic animals. In contrast, dapagliflozin treatment significantly restored these disruptions and enhanced DNA repair. The simultaneous effects of decreased oxidative DNA damage and hypermethylation levels suggest that dapagliflozin can be used as a safe antidiabetic drug to reduce DNA damage and hypermethylation in diabetes, demonstrating its usefulness in patients with diabetes to control hyperglycemia and decrease the development of its subsequent complications.


Subject(s)
Benzhydryl Compounds , DNA Damage , DNA Methylation , Diabetes Mellitus, Experimental , Glucosides , Oxidative Stress , Animals , Benzhydryl Compounds/pharmacology , Glucosides/pharmacology , DNA Methylation/drug effects , DNA Damage/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/genetics , Mice , Oxidative Stress/drug effects , Male , Hypoglycemic Agents/pharmacology , Micronucleus Tests , DNA Repair/drug effects , Comet Assay
8.
J Exp Clin Cancer Res ; 43(1): 151, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38812026

ABSTRACT

BACKGROUND: SMYD3 has been found implicated in cancer progression. Its overexpression correlates with cancer growth and invasion, especially in gastrointestinal tumors. SMYD3 transactivates multiple oncogenic mechanisms, favoring cancer development. Moreover, it was recently shown that SMYD3 is required for DNA restoration by promoting homologous recombination (HR) repair. METHODS: In cellulo and in vivo models were employed to investigate the role of SMYD3 in cancer chemoresistance. Analyses of SMYD3-KO cells, drug-resistant cancer cell lines, patients' residual gastric or rectal tumors that were resected after neoadjuvant therapy and mice models were performed. In addition, the novel SMYD3 covalent inhibitor EM127 was used to evaluate the impact of manipulating SMYD3 activity on the sensitization of cancer cell lines, tumorspheres and cancer murine models to chemotherapeutics (CHTs). RESULTS: Here we report that SMYD3 mediates cancer cell sensitivity to CHTs. Indeed, cancer cells lacking SMYD3 functions showed increased responsiveness to CHTs, while restoring its expression promoted chemoresistance. Specifically, SMYD3 is essential for the repair of CHT-induced double-strand breaks as it methylates the upstream sensor ATM and allows HR cascade propagation through CHK2 and p53 phosphorylation, thereby promoting cancer cell survival. SMYD3 inhibition with the novel compound EM127 showed a synergistic effect with CHTs in colorectal, gastric, and breast cancer cells, tumorspheres, and preclinical colorectal cancer models. CONCLUSIONS: Overall, our results show that targeting SMYD3 may be an effective therapeutic strategy to overcome chemoresistance.


Subject(s)
DNA Damage , DNA Repair , Drug Resistance, Neoplasm , Histone-Lysine N-Methyltransferase , Humans , Animals , Mice , DNA Repair/drug effects , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Cell Line, Tumor , Xenograft Model Antitumor Assays , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Female
9.
Cancer Lett ; 592: 216929, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38697461

ABSTRACT

Small cell lung cancer (SCLC) is a recalcitrant cancer characterized by high frequency loss-of-function mutations in tumor suppressors with a lack of targeted therapy due to absence of high frequency gain-of-function abnormalities in oncogenes. SMARCAL1 is a member of the ATP-dependent chromatin remodeling protein SNF2 family that plays critical roles in DNA damage repair and genome stability maintenance. Here, we showed that SMARCAL1 was overexpressed in SCLC patient samples and was inversely associated with overall survival of the patients. SMARCAL1 was required for SCLC cell proliferation and genome integrity. Mass spectrometry revealed that PAR6B was a downstream SMARCAL1 signal molecule which rescued inhibitory effects caused by silencing of SMARCAL1. By screening of 36 FDA-approved clinically available agents related to DNA damage repair, we found that an aza-anthracenedione, pixantrone, was a potent SMARCAL1 inhibitor which suppressed the expression of SMARCAL1 and PAR6B at protein level. Pixantrone caused DNA damage and exhibited inhibitory effects on SCLC cells in vitro and in a patient-derived xenograft mouse model. These results indicated that SMARCAL1 functions as an oncogene in SCLC, and pixantrone as a SMARCAL1 inhibitor bears therapeutic potentials in this deadly disease.


Subject(s)
Cell Proliferation , DNA Helicases , Lung Neoplasms , Small Cell Lung Carcinoma , Xenograft Model Antitumor Assays , Humans , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Animals , DNA Helicases/genetics , DNA Helicases/metabolism , Cell Proliferation/drug effects , Mice , Cell Line, Tumor , DNA Damage , Gene Expression Regulation, Neoplastic/drug effects , DNA Repair/drug effects
10.
Oncol Rep ; 52(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38785163

ABSTRACT

Inotuzumab ozogamicin (IO), a novel therapeutic drug for relapsed or refractory acute lymphoblastic leukemia (RR)­(ALL), is a humanized anti­cluster of differentiation (CD) 22 monoclonal antibody conjugated with calicheamicin that causes DNA single­ and double­strand breaks. Although the efficacy of IO is significantly improved compared with that of conventional chemotherapies, the prognosis for RR­ALL remains poor, highlighting the need for more effective treatment strategies. The present study examined the role of DNA damage repair inhibition using the poly (ADP­ribose) polymerase (PARP) inhibitors olaparib or talazoparib on the enhancement of the antitumor effects of IO on B­ALL cells in vitro. The Reh, Philadelphia (Ph)­B­ALL and the SUP­B15 Ph+ B­ALL cell lines were used for experiments. Both cell lines were ~90% CD22+. The half­maximal inhibitory concentration (IC50) values of IO were 5.3 and 49.7 ng/ml for Reh and SUP­B15 cells, respectively. The IC50 values of IO combined with minimally toxic concentrations of olaparib or talazoparib were 0.8 and 2.9 ng/ml for Reh cells, respectively, and 36.1 and 39.6 ng/ml for SUP­B15 cells, respectively. The combination index of IO with olaparib and talazoparib were 0.19 and 0.56 for Reh cells and 0.76 and 0.89 for SUP­B15 cells, demonstrating synergistic effects in all combinations. Moreover, the addition of minimally toxic concentrations of PARP inhibitors augmented IO­induced apoptosis. The alkaline comet assay, which quantitates the amount of DNA strand breaks, was used to investigate the degree to which DNA damage observed 1 h after IO administration was repaired 6 h later, reflecting successful repair of DNA strand breaks. However, DNA strand breaks persisted 6 h after IO administration combined with olaparib or talazoparib, suggesting inhibition of the repair processes by PARP inhibitors. Adding olaparib or talazoparib thus synergized the antitumor effects of IO by inhibiting DNA strand break repair via the inhibition of PARP.


Subject(s)
DNA Repair , Drug Synergism , Inotuzumab Ozogamicin , Phthalazines , Piperazines , Poly(ADP-ribose) Polymerase Inhibitors , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Phthalazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Piperazines/pharmacology , Piperazines/administration & dosage , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Cell Line, Tumor , DNA Repair/drug effects , Inotuzumab Ozogamicin/pharmacology , Apoptosis/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Proliferation/drug effects , Indoles/pharmacology
11.
Chem Biol Drug Des ; 103(5): e14536, 2024 May.
Article in English | MEDLINE | ID: mdl-38725079

ABSTRACT

This research was designed to prospect the mechanism and impact of glycyrrhizic acid (GA) on DNA damage repair and cisplatin (CP)-induced apoptosis of melanoma cells. First, human melanoma cell SK-MEL-28 was stimulated using GA for 24, 48, and 72 h. Then, the optimal treatment time and dosage were selected. After that, cell counting kit-8 (CCK-8) was employed for testing the cell viability, flow cytometry for the apoptosis, comet assay for the DNA damage of cells, and western blot for the cleaved-Caspase3, Caspase3, Bcl-2, and γH2AX protein expression levels. The experimental outcomes exhibited that as the GA concentration climbed up, the SK-MEL-28 cell viability dropped largely, while the apoptosis level raised significantly, especially at the concentration of 100 µm. In addition, compared with GA or CPtreatment only, CP combined with GA notably suppressed the viability of melanoma cells and promoted cell apoptosis at the cytological level. At the protein level, the combined treatment notably downregulated the Bcl-2 and Caspase3 expression levels, while significantly upregulated the cleaved-Caspase3 and γH2AX expression levels. Besides, CP + GA treatment promoted DNA damage at the DNA molecular level. Collectively, both GA and CP can inhibit DNA damage repair and enhance the apoptosis of SK-MEL-28 cells, and the synergistic treatment of both exhibits better efficacy.


Subject(s)
Apoptosis , Cisplatin , DNA Damage , DNA Repair , Glycyrrhizic Acid , Melanoma , Cisplatin/pharmacology , Humans , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/chemistry , Apoptosis/drug effects , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/pathology , Cell Line, Tumor , DNA Damage/drug effects , DNA Repair/drug effects , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Caspase 3/metabolism , Drug Synergism , Proto-Oncogene Proteins c-bcl-2/metabolism
12.
Cancer Treat Rev ; 128: 102766, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763054

ABSTRACT

DNA-damage repair (DDR) pathways alterations, a growing area of interest in oncology, are detected in about 20% of patient with prostate cancer and are associated with improved sensitivity to poly(ADP ribose) polymerases (PARP) inhibitors. In May 2020, the Food and Drug Administration (FDA) approved two PARP inhibitors (olaparib and rucaparib) for prostate cancer treatment. Moreover, germline aberrations in DDR pathways genes have also been related to familial or hereditary prostate cancer, requiring tailored health-care programs. These emerging scenarios are rapidly changing diagnostic, prognostic and therapeutic approaches in prostate cancer management. The aim of this review is to highlight the five W-points of DDR pathways in prostate cancer: why targeting DDR pathways in prostate cancer; what we should test for genomic profiling in prostate cancer; "where" testing genetic assessment in prostate cancer (germline or somatic, solid or liquid biopsy); when genetic testing is appropriate in prostate cancer; who could get benefit from PARP inhibitors; how improve patients outcome with combinations strategies.


Subject(s)
DNA Damage , DNA Repair , Poly(ADP-ribose) Polymerase Inhibitors , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , DNA Repair/drug effects , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , DNA Damage/drug effects , Molecular Targeted Therapy/methods
13.
J Med Chem ; 67(9): 6906-6921, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38663873

ABSTRACT

DNA damage response (DDR) defects in cells play a crucial role in tumor development by promoting DNA mutations. These mutations create vulnerabilities specific to cancer cells, which can be effectively targeted through synthetic lethality-based therapies. To date, numerous small molecule DDR inhibitors have been identified, and some of them have already been approved for clinical use. However, due to the complexity of the tumor microenvironment, mutations may occur in the amino acid residues of DDR targets. These mutations can affect the efficacy of small molecule inhibitors targeting DDR pathways. Therefore, researchers have turned their attention to next-generation DNA damage repair modulators, particularly those based on PROTAC technology. From this perspective, we overviewed the recent progress on DDR-targeting PROTAC degraders for cancer therapy. In addition, we also summarized the biological functions of different DDR targets. Finally, the challenges and future directions for DDR-target PROTAC degraders are also discussed in detail.


Subject(s)
DNA Damage , DNA Repair , Humans , DNA Damage/drug effects , DNA Repair/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Animals , Proteolysis/drug effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
14.
Cell Cycle ; 23(4): 369-384, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38571319

ABSTRACT

Acetaldehyde, a chemical that can cause DNA damage and contribute to cancer, is prevalently present in our environment, e.g. in alcohol, tobacco, and food. Although aldehyde potentially promotes crosslinking reactions among biological substances including DNA, RNA, and protein, it remains unclear what types of DNA damage are caused by acetaldehyde and how they are repaired. In this study, we explored mechanisms involved in the repair of acetaldehyde-induced DNA damage by examining the cellular sensitivity to acetaldehyde in the collection of human TK6 mutant deficient in each genome maintenance system. Among the mutants, mismatch repair mutants did not show hypersensitivity to acetaldehyde, while mutants deficient in base and nucleotide excision repair pathways or homologous recombination (HR) exhibited higher sensitivity to acetaldehyde than did wild-type cells. We found that acetaldehyde-induced RAD51 foci representing HR intermediates were prolonged in HR-deficient cells. These results indicate a pivotal role of HR in the repair of acetaldehyde-induced DNA damage. These results suggest that acetaldehyde causes complex DNA damages that require various types of repair pathways. Mutants deficient in the removal of protein adducts from DNA ends such as TDP1-/- and TDP2-/- cells exhibited hypersensitivity to acetaldehyde. Strikingly, the double mutant deficient in both TDP1 and RAD54 showed similar sensitivity to each single mutant. This epistatic relationship between TDP1-/- and RAD54-/- suggests that the protein-DNA adducts generated by acetaldehyde need to be removed for efficient repair by HR. Our study would help understand the molecular mechanism of the genotoxic and mutagenic effects of acetaldehyde.


Subject(s)
Acetaldehyde , DNA Damage , DNA Repair , Homologous Recombination , Acetaldehyde/toxicity , Humans , Homologous Recombination/drug effects , Homologous Recombination/genetics , DNA Repair/drug effects , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Mutation/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cell Line
15.
EBioMedicine ; 103: 105129, 2024 May.
Article in English | MEDLINE | ID: mdl-38640836

ABSTRACT

BACKGROUND: Poly(ADP-ribose) polymerase (PARP) inhibitors have emerged as promising chemotherapeutic drugs primarily against BRCA1/2-associated tumours, known as synthetic lethality. However, recent clinical trials reported patients' survival benefits from PARP inhibitor treatments, irrelevant to homologous recombination deficiency. Therefore, revealing the therapeutic mechanism of PARP inhibitors beyond DNA damage repair is urgently needed, which can facilitate precision medicine. METHODS: A CRISPR-based knock-in technology was used to establish stable BRCA1 mutant cancer cells. The effects of PARP inhibitors on BRCA1 mutant cancer cells were evaluated by biochemical and cell biological experiments. Finally, we validated its in vivo effects in xenograft and patient-derived xenograft (PDX) tumour mice. FINDINGS: In this study, we uncovered that the majority of clinical BRCA1 mutations in breast cancers were in and near the middle of the gene, rather than in essential regions for DNA damage repair. Representative mutations such as R1085I and E1222Q caused transient extra spindle poles during mitosis in cancer cells. PAR, which is synthesized by PARP2 but not PARP1 at mitotic centrosomes, clustered these transient extra poles, independent of DNA damage response. Common PARP inhibitors could effectively suppress PARP2-synthesized PAR and induce cell senescence by abrogating the correction of mitotic extra-pole error. INTERPRETATION: Our findings uncover an alternative mechanism by which PARP inhibitors efficiently suppress tumours, thereby pointing to a potential new therapeutic strategy for centrosome error-related tumours. FUNDING: Funded by National Natural Science Foundation of China (NSFC) (T2225006, 82272948, 82103106), Beijing Municipal Natural Science Foundation (Key program Z220011), and the National Clinical Key Specialty Construction Program, P. R. China (2023).


Subject(s)
BRCA1 Protein , Cellular Senescence , Centrosome , DNA Damage , Poly(ADP-ribose) Polymerase Inhibitors , Xenograft Model Antitumor Assays , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Humans , Animals , Centrosome/metabolism , Centrosome/drug effects , DNA Damage/drug effects , Cellular Senescence/drug effects , Mice , BRCA1 Protein/genetics , Cell Line, Tumor , Female , Mutation , DNA Repair/drug effects , Disease Models, Animal , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Poly(ADP-ribose) Polymerases/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/genetics
16.
Toxicol Appl Pharmacol ; 486: 116930, 2024 May.
Article in English | MEDLINE | ID: mdl-38626870

ABSTRACT

Obesity impairs oocyte quality, fertility, pregnancy maintenance, and is associated with offspring birth defects. The model ovotoxicant, 7,12-dimethylbenz[a]anthracene (DMBA), causes ovarian DNA damage and follicle loss. Both DMBA-induced chemical biotransformation and the DNA damage response are partially attenuated in obese relative to lean female mice but whether weight loss could improve the DNA damage response to DMBA exposure has not been explored. Thus, at six weeks of age, C57BL/6 J female mice were divided in three groups: 1) Lean (L; n = 20) fed a chow diet for 12 weeks, 2) obese (O; n = 20) fed a high fat high sugar (HFHS) diet for 12 weeks and, 3) slim-down (S; n = 20). The S group was fed with HFHS diet for 7 weeks until attaining a higher body relative to L mice on week 7.5 and switched to a chow diet for 5 weeks to achieve weight loss. Mice then received either corn oil (CT) or DMBA (D; 1 mg/kg) for 7 d via intraperitoneal injection (n = 10/treatment). Obesity increased (P < 0.05) kidney and spleen weight, and DMBA decreased uterine weight (P < 0.05). Ovarian weight was reduced (P < 0.05) in S mice, but DMBA exposure increased ovary weight in the S mice. LC-MS/MS identified 18, 64, and 7 ovarian proteins as altered (P < 0.05) by DMBA in the L, S and O groups, respectively. In S and O mice, 24 and 8 proteins differed, respectively, from L mice. These findings support weight loss as a strategy to modulate the ovarian genotoxicant response.


Subject(s)
9,10-Dimethyl-1,2-benzanthracene , DNA Damage , Mice, Inbred C57BL , Obesity , Ovary , Weight Loss , Animals , Female , 9,10-Dimethyl-1,2-benzanthracene/toxicity , Obesity/metabolism , DNA Damage/drug effects , Weight Loss/drug effects , Ovary/drug effects , Ovary/metabolism , Ovary/pathology , Mice , DNA Repair/drug effects , Ovarian Diseases/chemically induced , Ovarian Diseases/prevention & control , Ovarian Diseases/metabolism , Ovarian Diseases/pathology , Diet, High-Fat
17.
J Control Release ; 369: 517-530, 2024 May.
Article in English | MEDLINE | ID: mdl-38569942

ABSTRACT

Cancer cells rely on aerobic glycolysis and DNA repair signals to drive tumor growth and develop drug resistance. Yet, fine-tuning aerobic glycolysis with the assist of nanotechnology, for example, dampening lactate dehydrogenase (LDH) for cancer cell metabolic reprograming remains to be investigated. Here we focus on anaplastic thyroid cancer (ATC) as an extremely malignant cancer with the high expression of LDH, and develop a pH-responsive and nucleus-targeting platinum nanocluster (Pt@TAT/sPEG) to simultaneously targets LDH and exacerbates DNA damage. Pt@TAT/sPEG effectively disrupts LDH activity, reducing lactate production and ATP levels, and meanwhile induces ROS production, DNA damage, and apoptosis in ATC tumor cells. We found Pt@TAT/sPEG also blocks nucleotide excision repair pathway and achieves effective tumor cell killing. In an orthotopic ATC xenograft model, Pt@TAT/sPEG demonstrates superior tumor growth suppression compared to Pt@sPEG and cisplatin. This nanostrategy offers a feasible approach to simultaneously inhibit glycolysis and DNA repair for metabolic reprogramming and enhanced tumor chemotherapy.


Subject(s)
Antineoplastic Agents , DNA Repair , Glycolysis , Mice, Nude , Platinum , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Glycolysis/drug effects , Animals , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Carcinoma, Anaplastic/metabolism , DNA Repair/drug effects , Cell Line, Tumor , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Platinum/chemistry , Platinum/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Cell Nucleus/metabolism , Cell Nucleus/drug effects , L-Lactate Dehydrogenase/metabolism , Mice, Inbred BALB C , Apoptosis/drug effects , DNA Damage/drug effects , Reactive Oxygen Species/metabolism
18.
Cancer Res Commun ; 4(5): 1199-1210, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38630886

ABSTRACT

Homologous recombination (HR)-related gene alterations are present in a significant subset of prostate, breast, ovarian, pancreatic, lung, and colon cancers rendering these tumors as potential responders to specific DNA damaging agents. A small molecule acylfulvene prodrug, LP-184, metabolizes to an active compound by the oxidoreductase activity of enzyme prostaglandin reductase 1 (PTGR1), which is frequently elevated in multiple solid tumor types. Prior work demonstrated that cancer cell lines deficient in a spectrum of DNA damage repair (DDR) pathway genes show increased susceptibility to LP-184. Here, we investigated the potential of LP-184 in targeting multiple tumors with impaired HR function and its mechanism of action as a DNA damaging agent. LP-184 induced elevated DNA double-strand breaks in HR deficient (HRD) cancer cells. Depletion of key HR components BRCA2 or ataxia telangiectasia mutated (ATM) in cancer cells conferred up to 12-fold increased sensitivity to the LP-184. LP-184 showed nanomolar potency in a diverse range of HRD cancer models, including prostate cancer organoids, leiomyosarcoma cell lines, and patient-derived tumor graft models of lung, pancreatic, and prostate cancers. LP-184 demonstrated complete, durable tumor regression in 10 patient-derived xenograft (PDX) models of HRD triple-negative breast cancer (TNBC) including those resistant to PARP inhibitors (PARPi). LP-184 further displayed strong synergy with PARPi in ovarian and prostate cancer cell lines as well as in TNBC PDX models. These preclinical findings illustrate the potential of LP-184 as a pan-HRD cancer therapeutic. Taken together, our results support continued clinical evaluation of LP-184 in a large subset of HRD solid tumors. SIGNIFICANCE: New agents with activity against DDR-deficient solid tumors refractory to standard-of-care therapies are needed. We report multiple findings supporting the potential for LP-184, a novel alkylating agent with three FDA orphan drug designations, to fill this void clinically: strong nanomolar potency; sustained, durable regression of solid tumor xenografts; synthetic lethality with HR defects. LP-184 adult phase IA trial to assess safety in advanced solid tumors is ongoing.


Subject(s)
Antineoplastic Agents , Homologous Recombination , Xenograft Model Antitumor Assays , Humans , Animals , Mice , Cell Line, Tumor , Homologous Recombination/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Neoplasms/genetics , Female , DNA Breaks, Double-Stranded/drug effects , Male , DNA Repair/drug effects
19.
CNS Neurosci Ther ; 30(4): e14711, 2024 04.
Article in English | MEDLINE | ID: mdl-38644551

ABSTRACT

OBJECTIVE: To elucidate the relationship between USP19 and O(6)-methylguanine-DNA methyltransferase (MGMT) after temozolomide treatment in glioblastoma (GBM) patients with chemotherapy resistance. METHODS: Screening the deubiquitinase pannel and identifying the deubiquitinase directly interacts with and deubiquitination MGMT. Deubiquitination assay to confirm USP19 deubiquitinates MGMT. The colony formation and tumor growth study in xenograft assess USP19 affects the GBM sensitive to TMZ was performed by T98G, LN18, U251, and U87 cell lines. Immunohistochemistry staining and survival analysis were performed to explore how USP19 is correlated to MGMT in GBM clinical management. RESULTS: USP19 removes the ubiquitination of MGMT to facilitate the DNA methylation damage repair. Depletion of USP19 results in the glioblastoma cell sensitivity to temozolomide, which can be rescued by overexpressing MGMT. USP19 is overexpressed in glioblastoma patient samples, which positively correlates with the level of MGMT protein and poor prognosis in these patients. CONCLUSION: The regulation of MGMT ubiquitination by USP19 plays a critical role in DNA methylation damage repair and GBM patients' temozolomide chemotherapy response.


Subject(s)
Antineoplastic Agents, Alkylating , DNA Methylation , DNA Modification Methylases , DNA Repair Enzymes , Drug Resistance, Neoplasm , Temozolomide , Tumor Suppressor Proteins , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , DNA Modification Methylases/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , DNA Methylation/drug effects , Mice, Nude , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Mice , Male , Female , Dacarbazine/analogs & derivatives , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , DNA Repair/drug effects , Endopeptidases/metabolism , Endopeptidases/genetics , Xenograft Model Antitumor Assays , Ubiquitination/drug effects
20.
Int J Biochem Cell Biol ; 171: 106582, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38649007

ABSTRACT

DNA methylation is one of the most important epigenetic mark involved in many physiologic cellular processes and pathologies. During mitosis, the transmission of DNA methylation patterns from a mother to the daughter cells is ensured through the action of the Ubiquitin-like, containing PHD and RING domains, 1/DNA methyltransferase 1 (UHRF1/DNMT1) tandem. UHRF1 is involved in the silencing of many tumor suppressor genes (TSGs) via mechanisms that remain largely to be deciphered. The present study investigated the role and the regulation of UHRF1 poly-ubiquitination induced by thymoquinone, a natural anti-cancer drug, known to enhance or re-activate the expression of TSGs. We found that the auto-ubiquitination of UHRF1, induced by TQ, is mediated by reactive oxygen species, and occurs following DNA damage. We demonstrated that the poly-ubiquitinated form of UHRF1 is K63-linked and can still silence the tumor suppressor gene p16INK4A/CDKN2A. We further showed that TQ-induced auto-ubiquitination is mediated via the activity of Tip60. Since this latter is known as a nuclear receptor co-factor, we investigated if the glucocorticoid receptor (GR) might be involved in the regulation of UHRF1 ubiquitination. Activation of the GR, with dexamethasone, did not influence auto-ubiquitination of UHRF1. However, we could observe that TQ induced a K48-linked poly-ubiquitination of GR, probably involved in the proteosomal degradation pathway. Mass-spectrometry analysis of FLAG-HA-tagged UHRF1 identified UHRF1 partners involved in DNA repair and showed that TQ increased their association with UHRF1, suggesting that poly-ubiquitination of UHRF1 is involved in the DNA repair process. We propose that poly-ubiquitination of UHRF1 serves as a scaffold to recruit the DNA repair machinery at DNA damage sites.


Subject(s)
Benzoquinones , CCAAT-Enhancer-Binding Proteins , DNA Repair , Ubiquitin-Protein Ligases , Ubiquitination , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , Ubiquitination/drug effects , Benzoquinones/pharmacology , DNA Repair/drug effects , Antineoplastic Agents/pharmacology , DNA Damage/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...