Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 165.048
Filter
1.
J Exp Med ; 221(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38949640

ABSTRACT

FOXP3 hijacks DNA-binding proteins to regulate gene expression. In this issue of JEM, He et al. (https://doi.org/10.1084/jem.20232068) propose a dynamic model in which FOXP3 associates with DNA-binding proteins to regulate Treg cell function in response to environmental cues.


Subject(s)
Forkhead Transcription Factors , T-Lymphocytes, Regulatory , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Humans , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Animals , Gene Expression Regulation , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics
2.
Sci Signal ; 17(843): eadk0231, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954637

ABSTRACT

The Hippo pathway is generally understood to inhibit tumor growth by phosphorylating the transcriptional cofactor YAP to sequester it to the cytoplasm and reduce the formation of YAP-TEAD transcriptional complexes. Aberrant activation of YAP occurs in various cancers. However, we found a tumor-suppressive function of YAP in clear cell renal cell carcinoma (ccRCC). Using cell cultures, xenografts, and patient-derived explant models, we found that the inhibition of upstream Hippo-pathway kinases MST1 and MST2 or expression of a constitutively active YAP mutant impeded ccRCC proliferation and decreased gene expression mediated by the transcription factor NF-κB. Mechanistically, the NF-κB subunit p65 bound to the transcriptional cofactor TEAD to facilitate NF-κB-target gene expression that promoted cell proliferation. However, by competing for TEAD, YAP disrupted its interaction with NF-κB and prompted the dissociation of p65 from target gene promoters, thereby inhibiting NF-κB transcriptional programs. This cross-talk between the Hippo and NF-κB pathways in ccRCC suggests that targeting the Hippo-YAP axis in an atypical manner-that is, by activating YAP-may be a strategy for slowing tumor growth in patients.


Subject(s)
Adaptor Proteins, Signal Transducing , Carcinoma, Renal Cell , Cell Proliferation , Kidney Neoplasms , Protein Serine-Threonine Kinases , Transcription Factors , YAP-Signaling Proteins , Humans , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Transcription Factors/metabolism , Transcription Factors/genetics , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Animals , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Mice , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Hippo Signaling Pathway , Signal Transduction , TEA Domain Transcription Factors/metabolism , NF-kappa B/metabolism , NF-kappa B/genetics , Mice, Nude , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Serine-Threonine Kinase 3
3.
J Gene Med ; 26(7): e3711, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967638

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the death of upper and lower motor neurons with an unknown etiology. The difficulty of recovering biological material from patients led to employ lymphoblastoid cell lines (LCLs) as a model for ALS because many pathways, typically located in neurons, are also activated in these cells. METHODS: To investigate the expression of coding and long non-coding RNAs in LCLs, a transcriptomic profiling of sporadic ALS (SALS) and mutated patients (FUS, TARDBP, C9ORF72 and SOD1) and matched controls was realized. Thus, differentially expressed genes (DEGs) were investigated among the different subgroups of patients. Peripheral blood mononuclear cells (PBMCs) were isolated and immortalized into LCLs via Epstein-Barr virus infection; RNA was extracted, and RNA-sequencing analysis was performed. RESULTS: Gene expression profiles of LCLs were genetic-background-specific; indeed, only 12 genes were commonly deregulated in all groups. Nonetheless, pathways enriched by DEGs in each group were also compared, and a total of 89 Kyoto Encyclopedia of Genes and Genomes (KEGG) terms were shared among all patients. Eventually, the similarity of affected pathways was also assessed when our data were matched with a transcriptomic profile realized in the PBMCs of the same patients. CONCLUSIONS: We conclude that LCLs are a good model for the study of RNA deregulation in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Gene Expression Profiling , Mutation , Transcriptome , Humans , Amyotrophic Lateral Sclerosis/genetics , Female , Male , Middle Aged , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Leukocytes, Mononuclear/metabolism , Superoxide Dismutase-1/genetics , Cell Line , Aged , Gene Expression Regulation , DNA-Binding Proteins , RNA-Binding Protein FUS
4.
Arch Dermatol Res ; 316(7): 455, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967656

ABSTRACT

Tirbanibulin 1% ointment is a synthetic antiproliferative agent approved in 2021 by the European Union for treating actinic keratoses (AK). Topical tirbanibulin has clinically resolved HPV-57 ( +) squamous cell carcinoma (SCC), HPV-16 ( +) vulvar high-grade squamous intraepithelial lesion, epidermodysplasia verruciformis, and condyloma. We examined how tirbanibulin might affect HPV oncoprotein expression and affect other cellular pathways involved in cell proliferation and transformation. We treated the HeLa cell line, containing integrated HPV-18, with increasing doses of tirbanibulin to determine the effects on cell proliferation. Immunoblotting was performed with antibodies against the Src canonical pathway, HPV 18 E6 and E7 transcription regulation, apoptosis, and invasion and metastasis pathways. Cell proliferation assays with tirbanibulin determined the half-maximal inhibitory concentration (IC50) of HeLa cells to be 31.49 nmol/L. Increasing concentrations of tirbanibulin downregulates the protein expression of Src (p < 0.001), phospho-Src (p < 0.001), Ras (p < 0.01), c-Raf (p < 0.001), ERK1 (p < 0.001), phospho-ERK1 (p < 0.001), phospho-ERK2 (p < 0.01), phospho-Mnk1 (p < 0.001), eIF4E (p < 0.01), phospho-eIF4E (p < 0.001), E6 (p < 0.01), E7 (p < 0.01), Rb (p < 0.01), phospho-Rb (p < 0.001), MDM2 (p < 0.01), E2F1 (p < 0.001), phospho-FAK (p < 0.001), phospho-p130 Cas (p < 0.001), Mcl-1 (p < 0.01), and Bcl-2 (p < 0.001), but upregulates cPARP (p < 0.001), and cPARP/fPARP (p < 0.001). These results demonstrate that tirbanibulin may impact expression of HPV oncoproteins via the Src- MEK- pathway. Tirbanibulin significantly downregulates oncogenic proteins related to cell cycle regulation and cell proliferation while upregulating apoptosis pathways.


Tirbanibulin is Promising Novel Therapy for Human Papillomavirus (HPV)-associated Diseases.Tirbanibulin 1% ointment is an approved synthetic topical ointment for treating actinic keratoses (AK), a precancer of skin cancer. Topical tirbanibulin has previously been reported to clinically resolve human papillomavirus (HPV)-( +) diseases.In this study, we examine how tirbanibulin may affect the HPV and pathways associated with cancer.We treated the HeLa cell line to determine the effects on HPV cell proliferation. Increasing the concentration of tirbanibulin statistically significantly affected numerous cellular pathways often associated with cancer.These results demonstrate that tirbanibulin may impact expression of HPV oncoproteins and thereby kill cancer cells.


Subject(s)
Cell Proliferation , Down-Regulation , Human papillomavirus 18 , Oncogene Proteins, Viral , Humans , HeLa Cells , Cell Proliferation/drug effects , Oncogene Proteins, Viral/metabolism , Down-Regulation/drug effects , Papillomavirus Infections/virology , Papillomavirus Infections/drug therapy , Papillomavirus E7 Proteins/metabolism , Apoptosis/drug effects , Repressor Proteins/metabolism , Repressor Proteins/genetics , Signal Transduction/drug effects , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , src-Family Kinases/metabolism , src-Family Kinases/antagonists & inhibitors , Female , Human Papillomavirus Viruses , DNA-Binding Proteins
5.
Virol J ; 21(1): 152, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970084

ABSTRACT

BACKGROUND: High-risk human papillomavirus (HR-HPV) infection is an important factor for the development of cervical cancer. HPV18 is the second most common HR-HPV after HPV16. METHODS: In this study, MEGA11 software was used to analyze the variation and phylogenetic tree of HPV18 E6-E7 and L1 genes. The selective pressure to E6, E7 and L1 genes was estimated using pamlX. In addition, the B cell epitopes of L1 amino acid sequences and T cell epitopes of E6-E7 amino acid sequences in HPV18 were predicted by ABCpred server and IEDB website, respectively. RESULTS: A total of 9 single nucleotide variants were found in E6-E7 sequences, of which 2 were nonsynonymous variants and 7 were synonymous variants. Twenty single nucleotide variants were identified in L1 sequence, including 11 nonsynonymous variants and 9 synonymous variants. Phylogenetic analysis showed that E6-E7 and L1 sequences were all distributed in A lineage. In HPV18 E6, E7 and L1 sequences, no positively selected site was found. The nonconservative substitution R545C in L1 affected hypothetical B cell epitope. Two nonconservative substitutions, S82A in E6, and R53Q in E7, impacted multiple hypothetical T cell epitopes. CONCLUSION: The sequence variation data of HPV18 may lay a foundation for the virus diagnosis, further study of cervical cancer and vaccine design in central China.


Subject(s)
Genetic Variation , Human papillomavirus 18 , Oncogene Proteins, Viral , Papillomavirus E7 Proteins , Phylogeny , Oncogene Proteins, Viral/genetics , China , Humans , Human papillomavirus 18/genetics , Human papillomavirus 18/classification , Papillomavirus E7 Proteins/genetics , Capsid Proteins/genetics , Female , Epitopes, T-Lymphocyte/genetics , Papillomavirus Infections/virology , Repressor Proteins/genetics , Epitopes, B-Lymphocyte/genetics , DNA-Binding Proteins
6.
Clin Transl Med ; 14(7): e1753, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967349

ABSTRACT

BACKGROUND: Lysine methyltransferase 2D (KMT2D) mediates mono-methylation of histone H3 lysine 4 (H3K4me1) in mammals. H3K4me1 mark is involved in establishing an active chromatin structure to promote gene transcription. However, the precise molecular mechanism underlying the KMT2D-mediated H3K4me1 mark modulates gene expression in triple-negative breast cancer (TNBC) progression is unresolved. METHODS AND RESULTS: We recognized Y-box-binding protein 1 (YBX1) as a "reader" of the H3K4me1 mark, and a point mutation of YBX1 (E121A) disrupted this interaction. We found that KMT2D and YBX1 cooperatively promoted cell growth and metastasis of TNBC cells in vitro and in vivo. The expression levels of KMT2D and YBX1 were both upregulated in tumour tissues and correlated with poor prognosis for breast cancer patients. Combined analyses of ChIP-seq and RNA-seq data indicated that YBX1 was co-localized with KMT2D-mediated H3K4me1 in the promoter regions of c-Myc and SENP1, thereby activating their expressions in TNBC cells. Moreover, we demonstrated that YBX1 activated the expressions of c-Myc and SENP1 in a KMT2D-dependent manner. CONCLUSION: Our results suggest that KMT2D-mediated H3K4me1 recruits YBX1 to facilitate TNBC progression through epigenetic activation of c-Myc and SENP1. These results together unveil a crucial interplay between histone mark and gene regulation in TNBC progression, thus providing novel insights into targeting the KMT2D-H3K4me1-YBX1 axis for TNBC treatment. HIGHLIGHTS: YBX1 is a KMT2D-mediated H3K4me1-binding effector protein and mutation of YBX1 (E121A) disrupts its binding to H3K4me1. KMT2D and YBX1 cooperatively promote TNBC proliferation and metastasis by activating c-Myc and SENP1 expression in vitro and in vivo. YBX1 is colocalized with H3K4me1 in the c-Myc and SENP1 promoter regions in TNBC cells and increased YBX1 expression predicts a poor prognosis in breast cancer patients.


Subject(s)
Epigenesis, Genetic , Triple Negative Breast Neoplasms , Y-Box-Binding Protein 1 , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Humans , Y-Box-Binding Protein 1/metabolism , Y-Box-Binding Protein 1/genetics , Female , Epigenesis, Genetic/genetics , Animals , Disease Progression , Mice , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Cell Line, Tumor , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Gene Expression Regulation, Neoplastic/genetics , Histones/metabolism , Histones/genetics , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Lysine/analogs & derivatives
7.
Medicine (Baltimore) ; 103(27): e38791, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968511

ABSTRACT

RATIONALE: Adenomatous polyposis (AP) is a genetic disorder characterized by the occurrence of numerous adenomatous polyps in the colon and rectum and can be classified into classical AP and attenuated AP (AAP). AAP is diagnosed when the number of observed adenomas is between 10 and 99. The detection of AAP is significantly increasing mainly due to the improvement of the imaging technique and application of the screening program for colorectal cancer detection. Currently, the germline variations of the APC and MUTYH genes are reported as the main cause of classical AP. However, the underlying genetic basis of AAP is not well understood. In this study, we report 2 cases of AAP with MSH6 variations. PATIENT CONCERNS: Both patients visited the hospital after multiple polyps were detected during colonoscopies conducted as part of their health checkups. DIAGNOSES: The 2 patients were diagnosed with AAP through colonoscopic examination at our hospital. INTERVENTIONS: The 2 received genetic consultation; and, for follow-up purposes, both patients agreed to be tested for an underlying genetic condition through next generation sequencing. And germline MSH6 variations were detected in both AAP patients. OUTCOMES: There was no recurrence for both patients for 3 years follow-up. LESSONS: Minor portion of AAP can cause by genetic mutation in MSH6, and further research is needed.


Subject(s)
Adenomatous Polyposis Coli , DNA-Binding Proteins , Humans , Male , Adenomatous Polyposis Coli/genetics , Adenomatous Polyposis Coli/diagnosis , Middle Aged , Female , DNA-Binding Proteins/genetics , Adult , Colonoscopy , Germ-Line Mutation
8.
BMC Pediatr ; 24(1): 426, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961351

ABSTRACT

BACKGROUND: Adipose tissue is significantly involved in inflammatory bowel disease (IBD). Vitamin D can affect both adipogenesis and inflammation. The aim of this study was to compare the production of selected adipokines, potentially involved in the pathogenesis of IBD - adiponectin, resistin, retinol binding protein 4 (RBP-4), adipocyte fatty acid binding protein and nesfatin-1 in children with IBD according to the presence of 25-hydroxyvitamin D (25(OH)D) deficiency. METHODS: The study was conducted as a case-control study in pediatric patients with IBD and healthy children of the same sex and age. In addition to adipokines and 25(OH)D, anthropometric parameters, markers of inflammation and disease activity were assessed in all participants. RESULTS: Children with IBD had significantly higher resistin levels regardless of 25(OH)D levels. IBD patients with 25(OH)D deficiency only had significantly lower RBP-4 compared to healthy controls and also compared to IBD patients without 25(OH)D deficiency. No other significant differences in adipokines were found in children with IBD with or without 25(OH)D deficiency. 25(OH)D levels in IBD patients corelated with RBP-4 only, and did not correlate with other adipokines. CONCLUSIONS: Whether the lower RBP-4 levels in the 25(OH)D-deficient group of IBD patients directly reflect vitamin D deficiency remains uncertain. The production of other adipokines does not appear to be directly related to vitamin D deficiency.


Subject(s)
Adipokines , Vitamin D Deficiency , Vitamin D , Humans , Vitamin D Deficiency/complications , Vitamin D Deficiency/blood , Male , Female , Child , Case-Control Studies , Adipokines/blood , Adolescent , Vitamin D/blood , Vitamin D/analogs & derivatives , Retinol-Binding Proteins, Plasma/metabolism , Retinol-Binding Proteins, Plasma/analysis , Resistin/blood , Nucleobindins/blood , Adiponectin/blood , Adiponectin/deficiency , Calcium-Binding Proteins/blood , Fatty Acid-Binding Proteins/blood , DNA-Binding Proteins/blood , Biomarkers/blood , Inflammatory Bowel Diseases/blood , Inflammatory Bowel Diseases/complications
9.
Sci Rep ; 14(1): 15053, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38956389

ABSTRACT

Targeting intracellular inhibiting proteins has been revealed to be a promising strategy to improve CD8+ T cell anti-tumor efficacy. Here, we are focusing on intracellular inhibiting proteins specific to TCR signaling: DOK1 and DOK2 expressed in T cells. We hypothesized that depletion of intracellular inhibition checkpoint DOK1 and DOK2 could improve CD8+ T-cell based cancer therapies. To evaluate the role of DOK1 and DOK2 depletion in physiology and effector function of CD8+ T lymphocytes and in cancer progression, we established a transgenic T cell receptor mouse model specific to melanoma antigen hgp100 (pmel-1 TCR Tg) in WT and Dok1/Dok2 DKO (double KO) mice. We showed that both DOK1 and DOK2 depletion in CD8+ T cells after an in vitro pre-stimulation induced a higher percentage of effector memory T cells as well as an up regulation of TCR signaling cascade- induced by CD3 mAbs, including the increased levels of pAKT and pERK, two major phosphoproteins involved in T cell functions. Interestingly, this improved TCR signaling was not observed in naïve CD8+ T cells. Despite this enhanced TCR signaling essentially shown upon stimulation via CD3 mAbs, pre-stimulated Dok1/Dok2 DKO CD8+ T cells did not show any increase in their activation or cytotoxic capacities against melanoma cell line expressing hgp100 in vitro. Altogether we demonstrate here a novel aspect of the negative regulation by DOK1 and DOK2 proteins in CD8+ T cells. Indeed, our results allow us to conclude that DOK1 and DOK2 have an inhibitory role following long term T cell stimulations.


Subject(s)
Adaptor Proteins, Signal Transducing , CD8-Positive T-Lymphocytes , DNA-Binding Proteins , Immunologic Memory , Mice, Knockout , Phosphoproteins , RNA-Binding Proteins , Receptors, Antigen, T-Cell , Signal Transduction , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Phosphoproteins/metabolism , Phosphoproteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Receptors, Antigen, T-Cell/metabolism , Cell Line, Tumor , Mice, Transgenic
10.
Nat Commun ; 15(1): 5187, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992002

ABSTRACT

The histone H2A variant H2A.W occupies transposons and thus prevents access to them in Arabidopsis thaliana. H2A.W is deposited by the chromatin remodeler DDM1, which also promotes the accessibility of chromatin writers to heterochromatin by an unknown mechanism. To shed light on this question, we solve the cryo-EM structures of nucleosomes containing H2A and H2A.W, and the DDM1-H2A.W nucleosome complex. These structures show that the DNA end flexibility of the H2A nucleosome is higher than that of the H2A.W nucleosome. In the DDM1-H2A.W nucleosome complex, DDM1 binds to the N-terminal tail of H4 and the nucleosomal DNA and increases the DNA end flexibility of H2A.W nucleosomes. Based on these biochemical and structural results, we propose that DDM1 counters the low accessibility caused by nucleosomes containing H2A.W to enable the maintenance of repressive epigenetic marks on transposons and prevent their activity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Chromatin Assembly and Disassembly , Cryoelectron Microscopy , Histones , Nucleosomes , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/chemistry , Nucleosomes/metabolism , Nucleosomes/ultrastructure , Nucleosomes/chemistry , Histones/metabolism , Histones/genetics , Histones/chemistry , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription Factors/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Protein Binding , Models, Molecular , DNA, Plant/metabolism , DNA, Plant/genetics
11.
Nat Commun ; 15(1): 5727, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977669

ABSTRACT

DNA replication and transcription generate DNA supercoiling, which can cause topological stress and intertwining of daughter chromatin fibers, posing challenges to the completion of DNA replication and chromosome segregation. Type II topoisomerases (Top2s) are enzymes that relieve DNA supercoiling and decatenate braided sister chromatids. How Top2 complexes deal with the topological challenges in different chromatin contexts, and whether all chromosomal contexts are subjected equally to torsional stress and require Top2 activity is unknown. Here we show that catalytic inhibition of the Top2 complex in interphase has a profound effect on the stability of heterochromatin and repetitive DNA elements. Mechanistically, we find that catalytically inactive Top2 is trapped around heterochromatin leading to DNA breaks and unresolved catenates, which necessitate the recruitment of the structure specific endonuclease, Ercc1-XPF, in an SLX4- and SUMO-dependent manner. Our data are consistent with a model in which Top2 complex resolves not only catenates between sister chromatids but also inter-chromosomal catenates between clustered repetitive elements.


Subject(s)
DNA Topoisomerases, Type II , Heterochromatin , DNA Topoisomerases, Type II/metabolism , DNA Topoisomerases, Type II/genetics , Heterochromatin/metabolism , Animals , Topoisomerase II Inhibitors/pharmacology , Repetitive Sequences, Nucleic Acid/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , DNA Replication , DNA, Superhelical/metabolism , DNA, Superhelical/chemistry , Humans , Mice , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA/metabolism , DNA/chemistry , Interphase
12.
Sci Rep ; 14(1): 15740, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977862

ABSTRACT

Genome replication is frequently impeded by highly stable DNA secondary structures, including G-quadruplex (G4) DNA, that can hinder the progression of the replication fork. Human WRNIP1 (Werner helicase Interacting Protein 1) associates with various components of the replication machinery and plays a crucial role in genome maintenance processes. However, its detailed function is still not fully understood. Here we show that human WRNIP1 interacts with G4 structures and provide evidence for its contribution to G4 processing. The absence of WRNIP1 results in elevated levels of G4 structures, DNA damage and chromosome aberrations following treatment with PhenDC3, a G4-stabilizing ligand. Additionally, we establish a functional and physical relationship between WRNIP1 and the PIF1 helicase in G4 processing. In summary, our results suggest that WRNIP1 aids genome replication and maintenance by regulating G4 processing and this activity relies on Pif1 DNA helicase.


Subject(s)
DNA Helicases , DNA Replication , G-Quadruplexes , Humans , DNA Helicases/metabolism , DNA Damage , Chromosome Aberrations , Carrier Proteins/metabolism , Carrier Proteins/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , ATPases Associated with Diverse Cellular Activities/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics
13.
Elife ; 132024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980300

ABSTRACT

Tardigrades are microscopic animals renowned for their ability to withstand extreme conditions, including high doses of ionizing radiation (IR). To better understand their radio-resistance, we first characterized induction and repair of DNA double- and single-strand breaks after exposure to IR in the model species Hypsibius exemplaris. Importantly, we found that the rate of single-strand breaks induced was roughly equivalent to that in human cells, suggesting that DNA repair plays a predominant role in tardigrades' radio-resistance. To identify novel tardigrade-specific genes involved, we next conducted a comparative transcriptomics analysis across three different species. In all three species, many DNA repair genes were among the most strongly overexpressed genes alongside a novel tardigrade-specific gene, which we named Tardigrade DNA damage Response 1 (TDR1). We found that TDR1 protein interacts with DNA and forms aggregates at high concentration suggesting it may condensate DNA and preserve chromosome organization until DNA repair is accomplished. Remarkably, when expressed in human cells, TDR1 improved resistance to Bleomycin, a radiomimetic drug. Based on these findings, we propose that TDR1 is a novel tardigrade-specific gene conferring resistance to IR. Our study sheds light on mechanisms of DNA repair helping cope with high levels of DNA damage inflicted by IR.


Subject(s)
DNA Repair , DNA-Binding Proteins , Radiation, Ionizing , Tardigrada , Transcriptome , Tardigrada/genetics , Tardigrada/metabolism , Animals , Humans , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Gene Expression Profiling , DNA Damage , Radiation Tolerance/genetics
14.
J Cancer Res Clin Oncol ; 150(7): 345, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981872

ABSTRACT

BACKGROUND: Endometrial cancer (EC) is the sixth most frequent cancer in women worldwide and has higher fatality rates. The pathophysiology of EC is complex, and there are currently no reliable methods for diagnosing and treating the condition. Long non-coding RNA (lncRNA), according to mounting evidence, is vital to the pathophysiology of EC. HOTAIR is regarded as a significant prognostic indicator of EC. ZBTB7A decreased EC proliferation and migration, according to recent studies, however the underlying mechanism still needs to be clarified. METHODS: The research utilized RT-qPCR to measure HOTAIR expression in clinical EC tissues and various EC cell lines. Kaplan-Meier survival analysis was employed to correlate HOTAIR levels with patient prognosis. Additionally, the study examined the interaction between ZBTB7A and HOTAIR using bioinformatics tools and ChIP assays. The experimental approach also involved manipulating the expression levels of HOTAIR and ZBTB7A in EC cell lines and assessing the impact on various cellular processes and gene expression. RESULTS: The study found significantly higher levels of HOTAIR in EC tissues compared to adjacent normal tissues, with high HOTAIR expression correlating with poorer survival rates and advanced cancer characteristics. EC cell lines like HEC-1 A and KLE showed higher HOTAIR levels compared to normal cells. Knockdown of HOTAIR in these cell lines reduced proliferation, angiogenesis, and migration. ZBTB7A was found to be inversely correlated with HOTAIR, and its overexpression led to a decrease in HOTAIR levels and a reduction in malignant cell behaviors. The study also uncovered that HOTAIR interacts with ELAVL1 to regulate SOX17, which in turn activates the Wnt/ß-catenin pathway, promoting malignant behaviors in EC cells. CONCLUSION: HOTAIR is a critical regulator in EC, contributing to tumor growth and poor prognosis. Its interaction with ZBTB7A and regulation of SOX17 via the Wnt/ß-catenin pathway underlines its potential as a therapeutic target.


Subject(s)
Cell Proliferation , ELAV-Like Protein 1 , Endometrial Neoplasms , RNA, Long Noncoding , SOXF Transcription Factors , Humans , RNA, Long Noncoding/genetics , Female , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Endometrial Neoplasms/metabolism , SOXF Transcription Factors/genetics , SOXF Transcription Factors/metabolism , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Prognosis , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Animals , Mice , Middle Aged , Wnt Signaling Pathway/genetics , Angiogenesis
15.
Nat Commun ; 15(1): 5793, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987256

ABSTRACT

Temperature is a critical environmental cue that controls the development and lifespan of many animal species; however, mechanisms underlying low-temperature adaptation are poorly understood. Here, we describe cold-inducible diapause (CID), another type of diapause induced by low temperatures in Caenorhabditis elegans. A premature stop codon in heat shock factor 1 (hsf-1) triggers entry into CID at 9 °C, whereas wild-type animals enter CID at 4 °C. Furthermore, both wild-type and hsf-1(sy441) mutant animals undergoing CID can survive for weeks, and resume growth at 20 °C. Using epistasis analysis, we demonstrate that neural signalling pathways, namely tyraminergic and neuromedin U signalling, regulate entry into CID of the hsf-1 mutant. Overexpression of anti-ageing genes, such as hsf-1, XBP1/xbp-1, FOXO/daf-16, Nrf2/skn-1, and TFEB/hlh-30, also inhibits CID entry of the hsf-1 mutant. Based on these findings, we hypothesise that regulators of the hsf-1 mutant CID may impact longevity, and successfully isolate 16 long-lived mutants among 49 non-CID mutants via genetic screening. Furthermore, we demonstrate that the nonsense mutation of MED23/sur-2 prevents CID entry of the hsf-1(sy441) mutant and extends lifespan. Thus, CID is a powerful model to investigate neural networks involving cold acclimation and to explore new ageing mechanisms.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cold Temperature , DNA-Binding Proteins , Diapause , Longevity , Transcription Factors , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Diapause/genetics , Diapause/physiology , Longevity/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Mutation , Signal Transduction , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Codon, Nonsense/genetics , Neuropeptides/metabolism , Neuropeptides/genetics , Carrier Proteins , Basic Helix-Loop-Helix Transcription Factors
16.
Nat Commun ; 15(1): 5822, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38987289

ABSTRACT

DNA polymerase theta (Polθ)-mediated end-joining (TMEJ) repairs DNA double-strand breaks and confers resistance to genotoxic agents. How Polθ is regulated at the molecular level to exert TMEJ remains poorly characterized. We find that Polθ interacts with and is PARylated by PARP1 in a HPF1-independent manner. PARP1 recruits Polθ to the vicinity of DNA damage via PARylation dependent liquid demixing, however, PARylated Polθ cannot perform TMEJ due to its inability to bind DNA. PARG-mediated de-PARylation of Polθ reactivates its DNA binding and end-joining activities. Consistent with this, PARG is essential for TMEJ and the temporal recruitment of PARG to DNA damage corresponds with TMEJ activation and dissipation of PARP1 and PAR. In conclusion, we show a two-step spatiotemporal mechanism of TMEJ regulation. First, PARP1 PARylates Polθ and facilitates its recruitment to DNA damage sites in an inactivated state. PARG subsequently activates TMEJ by removing repressive PAR marks on Polθ.


Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA Polymerase theta , DNA-Directed DNA Polymerase , Poly (ADP-Ribose) Polymerase-1 , Humans , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , DNA-Directed DNA Polymerase/metabolism , Poly Adenosine Diphosphate Ribose/metabolism , DNA Damage , Animals , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA/metabolism , DNA/genetics , HEK293 Cells , Poly ADP Ribosylation , Poly(ADP-ribose) Polymerases/metabolism , Poly(ADP-ribose) Polymerases/genetics , Carrier Proteins , Glycoside Hydrolases , Nuclear Proteins
17.
Sci Rep ; 14(1): 15906, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987297

ABSTRACT

Most of essential thrombocythemia (ET) patients have the clone harboring a mutation in one of the JAK2, CALR, or MPL gene, and these clones generally acquire additional mutations at transformation to acute myeloid leukemia (AML). However, the proliferation of triple-negative clones has sometimes been observed at AML transformation. To clarify the clonal evolution of ET to AML, we analyzed paired samples at ET and AML transformation in eight patients. We identified that JAK2-unmutated AML clones proliferated at AML transformation in three patients in whom the JAK2-mutated clone was dominant at ET. In two patients, TET2-mutated, but not JAK2-mutated, clones might be common initiating clones for ET and transformed AML. In a patient with JAK2-mutated ET, SMARCC2, UBR4, and ZNF143, but not JAK2, -mutated clones proliferated at AML transformation. Precise analysis using single-cell sorted CD34+/CD38- fractions suggested that ET clone with JAK2-mutated and AML clone with TP53 mutation was derived from the common clone with these mutations. Although further study is required to clarify the biological significance of SMARCC2, UBR4, and ZNF143 mutations during disease progression of ET and AML transformation, the present results demonstrate the possibility of a common initial clone involved in both ET and transformed AML.


Subject(s)
Janus Kinase 2 , Leukemia, Myeloid, Acute , Mutation , Thrombocythemia, Essential , Humans , Thrombocythemia, Essential/genetics , Thrombocythemia, Essential/complications , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Male , Female , Janus Kinase 2/genetics , Middle Aged , Aged , Adult , Aged, 80 and over , Cell Transformation, Neoplastic/genetics , Dioxygenases , Clonal Evolution/genetics , DNA-Binding Proteins
18.
Nat Commun ; 15(1): 5789, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987539

ABSTRACT

The outcome of CRISPR-Cas-mediated genome modifications is dependent on DNA double-strand break (DSB) processing and repair pathway choice. Homology-directed repair (HDR) of protein-blocked DSBs requires DNA end resection that is initiated by the endonuclease activity of the MRE11 complex. Using reconstituted reactions, we show that Cas9 breaks are unexpectedly not directly resectable by the MRE11 complex. In contrast, breaks catalyzed by Cas12a are readily processed. Cas9, unlike Cas12a, bridges the broken ends, preventing DSB detection and processing by MRE11. We demonstrate that Cas9 must be dislocated after DNA cleavage to allow DNA end resection and repair. Using single molecule and bulk biochemical assays, we next find that the HLTF translocase directly removes Cas9 from broken ends, which allows DSB processing by DNA end resection or non-homologous end-joining machineries. Mechanistically, the activity of HLTF requires its HIRAN domain and the release of the 3'-end generated by the cleavage of the non-target DNA strand by the Cas9 RuvC domain. Consequently, HLTF removes the H840A but not the D10A Cas9 nickase. The removal of Cas9 H840A by HLTF explains the different cellular impact of the two Cas9 nickase variants in human cells, with potential implications for gene editing.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Cas Systems , DNA Breaks, Double-Stranded , DNA , Humans , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , DNA/metabolism , DNA/genetics , MRE11 Homologue Protein/metabolism , MRE11 Homologue Protein/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/genetics , Gene Editing , Endonucleases/metabolism , Endonucleases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , DNA End-Joining Repair , DNA Cleavage , Transcription Factors/metabolism , Transcription Factors/genetics
19.
Int J Gynecol Cancer ; 34(7): 993-1000, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950928

ABSTRACT

OBJECTIVE: Although early-detected cervical cancer is associated with good survival, the prognosis for late-stage disease is poor and treatment options are sparse. Mismatch repair deficiency (MMR-D) has surfaced as a predictor of prognosis and response to immune checkpoint inhibitor(s) in several cancer types, but its value in cervical cancer remains unclear. This study aimed to define the prevalence of MMR-D in cervical cancer and assess the prognostic value of MMR protein expression. METHODS: Expression of the MMR proteins MLH-1, PMS-2, MSH-2, and MSH-6 was investigated by immunohistochemical staining in a prospectively collected cervical cancer cohort (n=508) with corresponding clinicopathological and follow-up data. Sections were scored as either loss or intact expression to define MMR-D, and by a staining index, based on staining intensity and area, evaluating the prognostic potential. RNA and whole exome sequencing data were available for 72 and 75 of the patients and were used for gene set enrichment and mutational analyses, respectively. RESULTS: Five (1%) tumors were MMR-deficient, three of which were of neuroendocrine histology. MMR status did not predict survival (HR 1.93, p=0.17). MSH-2 low (n=48) was associated with poor survival (HR 1.94, p=0.02), also when adjusting for tumor stage, tumor type, and patient age (HR 2.06, p=0.013). MSH-2 low tumors had higher tumor mutational burden (p=0.003) and higher frequency of (frameshift) mutations in the double-strand break repair gene RAD50 (p<0.01). CONCLUSION: MMR-D is rare in cervical cancer, yet low MSH-2 expression is an independent predictor of poor survival.


Subject(s)
DNA Mismatch Repair , DNA-Binding Proteins , MutS Homolog 2 Protein , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/mortality , Prognosis , Middle Aged , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , MutS Homolog 2 Protein/metabolism , MutS Homolog 2 Protein/biosynthesis , MutS Homolog 2 Protein/genetics , Adult , Aged , Mismatch Repair Endonuclease PMS2/metabolism , Mismatch Repair Endonuclease PMS2/genetics , MutL Protein Homolog 1/metabolism , MutL Protein Homolog 1/genetics , MutL Protein Homolog 1/biosynthesis
20.
Adv Exp Med Biol ; 1459: 97-113, 2024.
Article in English | MEDLINE | ID: mdl-39017841

ABSTRACT

Helix-loop-helix (HLH) transcription factors (TFs) play a key role in various cellular differentiation and function through the regulation of enhancer activity. E2A, a member of the mammalian E-protein family (class I HLH protein), is well known to play an important role in hematopoiesis, especially in adaptive lymphocyte development. E2A instructs B- and T-cell lineage development through the regulation of enhancer activity for B- or T-cell signature gene expression, including Rag1 and Rag2 (Rag1/2) genes. In this chapter, we mainly focus on the function of E2A in B-cell development and on the roles of E2A in establishing the enhancer landscape through the recruitment of EP300/KAT3B, chromatin remodeling complex, mediator, cohesion, and TET proteins. Finally, we demonstrate how E2A orchestrates the assembly of the Rag1/2 gene super-enhancer (SE) formation by changing the chromatin conformation across the Rag gene locus.


Subject(s)
B-Lymphocytes , Homeodomain Proteins , Humans , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Enhancer Elements, Genetic/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Chromatin Assembly and Disassembly , Cell Differentiation/genetics , Chromatin/metabolism , Chromatin/genetics , E1A-Associated p300 Protein/metabolism , E1A-Associated p300 Protein/genetics , DNA-Binding Proteins , Nuclear Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...