Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.234
Filter
1.
Nat Commun ; 15(1): 3734, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702312

ABSTRACT

Mutations in DNA damage response (DDR) factors are associated with human infertility, which affects up to 15% of the population. The DDR is required during germ cell development and meiosis. One pathway implicated in human fertility is DNA translesion synthesis (TLS), which allows replication impediments to be bypassed. We find that TLS is essential for pre-meiotic germ cell development in the embryo. Loss of the central TLS component, REV1, significantly inhibits the induction of human PGC-like cells (hPGCLCs). This is recapitulated in mice, where deficiencies in TLS initiation (Rev1-/- or PcnaK164R/K164R) or extension (Rev7 -/-) result in a > 150-fold reduction in the number of primordial germ cells (PGCs) and complete sterility. In contrast, the absence of TLS does not impact the growth, function, or homeostasis of somatic tissues. Surprisingly, we find a complete failure in both activation of the germ cell transcriptional program and in DNA demethylation, a critical step in germline epigenetic reprogramming. Our findings show that for normal fertility, DNA repair is required not only for meiotic recombination but for progression through the earliest stages of germ cell development in mammals.


Subject(s)
DNA Demethylation , DNA Repair , DNA-Directed DNA Polymerase , Germ Cells , Animals , Humans , Mice , Germ Cells/metabolism , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Male , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Female , DNA Damage , Mice, Knockout , Meiosis/genetics , DNA Replication , Proliferating Cell Nuclear Antigen/metabolism , Epigenesis, Genetic , Translesion DNA Synthesis
2.
Proc Natl Acad Sci U S A ; 121(23): e2405771121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38805295

ABSTRACT

The phylum Preplasmiviricota (kingdom Bamfordvirae, realm Varidnaviria) is a broad assemblage of diverse viruses with comparatively short double-stranded DNA genomes (<50 kbp) that produce icosahedral capsids built from double jelly-roll major capsid proteins. Preplasmiviricots infect hosts from all cellular domains, testifying to their ancient origin, and, in particular, are associated with six of the seven supergroups of eukaryotes. Preplasmiviricots comprise four major groups of viruses, namely, polintons, polinton-like viruses (PLVs), virophages, and adenovirids. We used protein structure modeling and analysis to show that protein-primed DNA polymerases (pPolBs) of polintons, virophages, and cytoplasmic linear plasmids encompass an N-terminal domain homologous to the terminal proteins (TPs) of prokaryotic PRD1-like tectivirids and eukaryotic adenovirids that are involved in protein-primed replication initiation, followed by a viral ovarian tumor-like cysteine deubiquitinylase (vOTU) domain. The vOTU domain is likely responsible for the cleavage of the TP from the large pPolB polypeptide and is inactivated in adenovirids, in which TP is a separate protein. Many PLVs and transpovirons encode a distinct derivative of polinton-like pPolB that retains the TP, vOTU, and pPolB polymerization palm domains but lacks the exonuclease domain and instead contains a superfamily 1 helicase domain. Analysis of the presence/absence and inactivation of the vOTU domains and replacement of pPolB with other DNA polymerases in eukaryotic preplasmiviricots enabled us to outline a complete scenario for their origin and evolution.


Subject(s)
Capsid Proteins , DNA Viruses , Capsid Proteins/metabolism , Capsid Proteins/chemistry , Capsid Proteins/genetics , DNA Viruses/genetics , Eukaryota/virology , Eukaryota/genetics , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/genetics , Models, Molecular , Phylogeny
3.
Proc Natl Acad Sci U S A ; 121(23): e2400667121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38758693

ABSTRACT

In the mid-1950s, Arthur Kornberg elucidated the enzymatic synthesis of DNA by DNA polymerase, for which he was recognized with the 1959 Nobel Prize in Physiology or Medicine. He then identified many of the proteins that cooperate with DNA polymerase to replicate duplex DNA of small bacteriophages. However, one major unanswered problem was understanding the mechanism and control of the initiation of chromosome replication in bacteria. In a seminal paper in 1981, Fuller, Kaguni, and Kornberg reported the development of a cell-free enzyme system that could replicate DNA that was dependent on the bacterial origin of DNA replication, oriC. This advance opened the door to a flurry of discoveries and important papers that elucidated the process and control of initiation of chromosome replication in bacteria.


Subject(s)
Chromosomes, Bacterial , DNA Replication , Chromosomes, Bacterial/genetics , Chromosomes, Bacterial/metabolism , History, 20th Century , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Bacteria/genetics , Bacteria/metabolism , DNA, Bacterial/metabolism , DNA, Bacterial/genetics
4.
Nat Commun ; 15(1): 4057, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744910

ABSTRACT

With just four building blocks, low sequence information density, few functional groups, poor control over folding, and difficulties in forming compact folds, natural DNA and RNA have been disappointing platforms from which to evolve receptors, ligands, and catalysts. Accordingly, synthetic biology has created "artificially expanded genetic information systems" (AEGIS) to add nucleotides, functionality, and information density. With the expected improvements seen in AegisBodies and AegisZymes, the task for synthetic biologists shifts to developing for expanded DNA the same analytical tools available to natural DNA. Here we report one of these, an enzyme-assisted sequencing of expanded genetic alphabet (ESEGA) method to sequence six-letter AEGIS DNA. We show how ESEGA analyses this DNA at single base resolution, and applies it to optimized conditions for six-nucleotide PCR, assessing the fidelity of various DNA polymerases, and extending this to AEGIS components with functional groups. This supports the renewed exploitation of expanded DNA alphabets in biotechnology.


Subject(s)
DNA , High-Throughput Nucleotide Sequencing , High-Throughput Nucleotide Sequencing/methods , DNA/genetics , DNA/metabolism , Synthetic Biology/methods , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Polymerase Chain Reaction/methods , Base Sequence , Sequence Analysis, DNA/methods
5.
Biosci Rep ; 44(5)2024 May 29.
Article in English | MEDLINE | ID: mdl-38717250

ABSTRACT

Temozolomide (TMZ) is the leading therapeutic agent for combating Glioblastoma Multiforme (GBM). Nonetheless, the persistence of chemotherapy-resistant GBM cells remains an ongoing challenge, attributed to various factors, including the translesion synthesis (TLS) mechanism. TLS enables tumor cells to endure genomic damage by utilizing specialized DNA polymerases to bypass DNA lesions. Specifically, TLS polymerase Kappa (Polκ) has been implicated in facilitating DNA damage tolerance against TMZ-induced damage, contributing to a worse prognosis in GBM patients. To better understand the roles of Polκ in TMZ resistance, we conducted a comprehensive assessment of the cytotoxic, antiproliferative, antimetastatic, and genotoxic effects of TMZ on GBM (U251MG) wild-type (WTE) and TLS Polκ knockout (KO) cells, cultivated as three-dimensional (3D) tumor spheroids in vitro. Initial results revealed that TMZ: (i) induces reductions in GBM spheroid diameter (10-200 µM); (ii) demonstrates significant cytotoxicity (25-200 µM); (iii) exerts antiproliferative effects (≤25 µM) and promotes cell cycle arrest (G2/M phase) in Polκ KO spheroids when compared with WTE counterparts. Furthermore, Polκ KO spheroids exhibit elevated levels of cell death (Caspase 3/7) and display greater genotoxicity (53BP1) than WTE following TMZ exposure. Concerning antimetastatic effects, TMZ impedes invadopodia (3D invasion) more effectively in Polκ KO than in WTE spheroids. Collectively, the results suggest that TLS Polκ plays a vital role in the survival, cell death, genotoxicity, and metastatic potential of GBM spheroids in vitro when subjected to TMZ treatment. While the precise mechanisms underpinning this resistance remain elusive, TLS Polκ emerges as a potential therapeutic target for GBM patients.


Subject(s)
DNA-Directed DNA Polymerase , Drug Resistance, Neoplasm , Glioblastoma , Spheroids, Cellular , Temozolomide , Humans , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/enzymology , Temozolomide/pharmacology , Drug Resistance, Neoplasm/drug effects , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Damage/drug effects , Apoptosis/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/enzymology , Antineoplastic Agents, Alkylating/pharmacology
6.
Int J Biol Macromol ; 269(Pt 2): 131965, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697428

ABSTRACT

In A-family DNA polymerases (dPols), a functional 3'-5' exonuclease activity is known to proofread newly synthesized DNA. The identification of a mismatch in substrate DNA leads to transfer of the primer strand from the polymerase active site to the exonuclease active site. To shed more light regarding the mechanism responsible for the detection of mismatches, we have utilized DNA polymerase 1 from Aquifex pyrophilus (ApPol1). The enzyme synthesized DNA with high fidelity and exhibited maximal exonuclease activity with DNA substrates bearing mismatches at the -2 and - 3 positions. The crystal structure of apo-ApPol1 was utilized to generate a computational model of the functional ternary complex of this enzyme. The analysis of the model showed that N332 forms interactions with minor groove atoms of the base pairs at the -2 and - 3 positions. The majority of known A-family dPols show the presence of Asn at a position equivalent to N332. The N332L mutation led to a decrease in the exonuclease activity for representative purine-pyrimidine, and pyrimidine-pyrimidine mismatches at -2 and - 3 positions, respectively. Overall, our findings suggest that conserved polar residues located towards the minor groove may facilitate the detection of position-specific mismatches to enhance the fidelity of DNA synthesis.


Subject(s)
Base Pair Mismatch , Models, Molecular , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , DNA/chemistry , DNA/metabolism , DNA/genetics , Catalytic Domain , Conserved Sequence , Amino Acid Sequence , Mutation , DNA Polymerase I/chemistry , DNA Polymerase I/metabolism , DNA Polymerase I/genetics , Substrate Specificity
9.
Cell Death Dis ; 15(4): 281, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643274

ABSTRACT

The human mitochondrial DNA polymerase gamma is a holoenzyme, involved in mitochondrial DNA (mtDNA) replication and maintenance, composed of a catalytic subunit (POLG) and a dimeric accessory subunit (POLG2) conferring processivity. Mutations in POLG or POLG2 cause POLG-related diseases in humans, leading to a subset of Mendelian-inherited mitochondrial disorders characterized by mtDNA depletion (MDD) or accumulation of multiple deletions, presenting multi-organ defects and often leading to premature death at a young age. Considering the paucity of POLG2 models, we have generated a stable zebrafish polg2 mutant line (polg2ia304) by CRISPR/Cas9 technology, carrying a 10-nucleotide deletion with frameshift mutation and premature stop codon. Zebrafish polg2 homozygous mutants present slower development and decreased viability compared to wild type siblings, dying before the juvenile stage. Mutants display a set of POLG-related phenotypes comparable to the symptoms of human patients affected by POLG-related diseases, including remarkable MDD, altered mitochondrial network and dynamics, and reduced mitochondrial respiration. Histological analyses detected morphological alterations in high-energy demanding tissues, along with a significant disorganization of skeletal muscle fibres. Consistent with the last finding, locomotor assays highlighted a decreased larval motility. Of note, treatment with the Clofilium tosylate drug, previously shown to be effective in POLG models, could partially rescue MDD in Polg2 mutant animals. Altogether, our results point at zebrafish as an effective model to study the etiopathology of human POLG-related disorders linked to POLG2, and a suitable platform to screen the efficacy of POLG-directed drugs in POLG2-associated forms.


Subject(s)
DNA-Directed DNA Polymerase , Mitochondrial Diseases , Animals , Humans , DNA-Directed DNA Polymerase/genetics , Zebrafish/genetics , DNA Polymerase gamma/genetics , DNA, Mitochondrial/genetics , Mitochondria/genetics , Mitochondria/pathology , Mutation/genetics , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/genetics
10.
Antimicrob Agents Chemother ; 68(5): e0011024, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38619252

ABSTRACT

Ocular herpes simplex virus 1 (HSV-1) infections can lead to visual impairment. Long-term acyclovir (ACV) prophylaxis reduces the frequency of recurrences but is associated with drug resistance. Novel therapies are needed to treat drug-resistant HSV-1 infections. Here, we describe the effects of trifluridine (TFT) in combination with ACV or ganciclovir (GCV) on HSV-1 replication and drug-resistance emergence. Wild-type HSV-1 was grown under increasing doses of one antiviral (ACV, GCV, or TFT) or combinations thereof (ACV + TFT or GCV + TFT). Virus cultures were analyzed by Sanger sequencing and deep sequencing of the UL23 [thymidine kinase (TK)] and UL30 [DNA polymerase (DP)] genes. The phenotypes of novel mutations were determined by cytopathic effect reduction assays. TFT showed overall additive anti-HSV-1 activity with ACV and GCV. Five passages under ACV, GCV, or TFT drug pressure gave rise to resistance mutations, primarily in the TK. ACV + TFT and GCV + TFT combinatory pressure induced mutations in the TK and DP. The DP mutations were mainly located in terminal regions, outside segments that typically carry resistance mutations. TK mutations (R163H, A167T, and M231I) conferring resistance to all three nucleoside analogs (ACV, TFT, and GCV) emerged under ACV, TFT, ACV + TFT pressure and under GCV + TFT pressure initiated from suboptimal drug concentrations. However, higher doses of GCV and TFT prevented drug resistance in the resistance selection experiments. In summary, we identified novel mutations conferring resistance to nucleoside analogs, including TFT, and proposed that GCV + TFT combination therapy may be an effective strategy to prevent the development of drug resistance.


Subject(s)
Acyclovir , Antiviral Agents , Drug Resistance, Viral , Ganciclovir , Herpesvirus 1, Human , Trifluridine , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/genetics , Trifluridine/pharmacology , Ganciclovir/pharmacology , Antiviral Agents/pharmacology , Drug Resistance, Viral/genetics , Drug Resistance, Viral/drug effects , Vero Cells , Acyclovir/pharmacology , Chlorocebus aethiops , Thymidine Kinase/genetics , Animals , Virus Replication/drug effects , Humans , Mutation , DNA-Directed DNA Polymerase/genetics , Herpes Simplex/drug therapy , Herpes Simplex/virology
11.
mSphere ; 9(5): e0012224, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38591887

ABSTRACT

Antibiotic resistance in Mycobacterium tuberculosis exclusively originates from chromosomal mutations, either during normal DNA replication or under stress, when the expression of error-prone DNA polymerases increases to repair damaged DNA. To bypass DNA lesions and catalyze error-prone DNA synthesis, translesion polymerases must be able to access the DNA, temporarily replacing the high-fidelity replicative polymerase. The mechanisms that govern polymerase exchange are not well understood, especially in mycobacteria. Here, using a suite of quantitative fluorescence imaging techniques, we discover that in Mycobacterium smegmatis, as in other bacterial species, the replicative polymerase, DnaE1, exchanges at a timescale much faster than that of DNA replication. Interestingly, this fast exchange rate depends on an actinobacteria-specific nucleoid-associated protein (NAP), Lsr2. In cells missing lsr2, DnaE1 exchanges less frequently, and the chromosome is replicated more faithfully. Additionally, in conditions that damage DNA, cells lacking lsr2 load the complex needed to bypass DNA lesions less effectively and, consistently, replicate with higher fidelity but exhibit growth defects. Together, our results show that Lsr2 promotes dynamic flexibility of the mycobacterial replisome, which is critical for robust cell growth and lesion repair in conditions that damage DNA. IMPORTANCE: Unlike many other pathogens, Mycobacterium tuberculosis has limited ability for horizontal gene transfer, a major mechanism for developing antibiotic resistance. Thus, the mechanisms that facilitate chromosomal mutagenesis are of particular importance in mycobacteria. Here, we show that Lsr2, a nucleoid-associated protein, has a novel role in DNA replication and mutagenesis in the model mycobacterium Mycobacterium smegmatis. We find that Lsr2 promotes the fast exchange rate of the replicative DNA polymerase, DnaE1, at the replication fork and is important for the effective loading of the DnaE2-ImuA'-ImuB translesion complex. Without lsr2, M. smegmatis replicates its chromosome more faithfully and acquires resistance to rifampin at a lower rate, but at the cost of impaired survival to DNA damaging agents. Together, our work establishes Lsr2 as a potential factor in the emergence of mycobacterial antibiotic resistance.


Subject(s)
Bacterial Proteins , DNA Replication , DNA-Directed DNA Polymerase , Drug Resistance, Bacterial , Mycobacterium smegmatis , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/drug effects , Mycobacterium smegmatis/metabolism , Mycobacterium smegmatis/enzymology , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Antigens, Bacterial
12.
Biochemistry ; 63(9): 1107-1117, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38671548

ABSTRACT

DNA polymerase θ (Pol θ or POLQ) is primarily involved in repairing double-stranded breaks in DNA through an alternative pathway known as microhomology-mediated end joining (MMEJ) or theta-mediated end joining (TMEJ). Unlike other DNA repair polymerases, Pol θ is thought to be highly error-prone yet critical for cell survival. We have identified several POLQ gene variants from human melanoma tumors that experience altered DNA polymerase activity, including a propensity for incorrect nucleotide selection and reduced polymerization rates compared to WT Pol θ. Variants are 30-fold less efficient at incorporating a nucleotide during repair and up to 70-fold less accurate at selecting the correct nucleotide opposite a templating base. This suggests that aberrant Pol θ has reduced DNA repair capabilities and may also contribute to increased mutagenesis. Moreover, the variants were identified in established tumors, suggesting that cancer cells may use mutated polymerases to promote metastasis and drug resistance.


Subject(s)
DNA Polymerase theta , DNA-Directed DNA Polymerase , Melanoma , Humans , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/chemistry , Melanoma/genetics , Melanoma/enzymology , DNA Repair , Mutation
13.
Virus Res ; 345: 199379, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38643859

ABSTRACT

Although all herpesviruses utilize a highly conserved replication machinery to amplify their viral genomes, different members may have unique strategies to modulate the assembly of their replication components. Herein, we characterize the subcellular localization of seven essential replication proteins of varicella-zoster virus (VZV) and show that several viral replication enzymes such as the DNA polymerase subunit ORF28, when expressed alone, are localized in the cytoplasm. The nuclear import of ORF28 can be mediated by the viral DNA polymerase processivity factor ORF16. Besides, ORF16 could markedly enhance the protein abundance of ORF28. Noteworthily, an ORF16 mutant that is defective in nuclear transport still retained the ability to enhance ORF28 abundance. The low abundance of ORF28 in transfected cells was due to its rapid degradation mediated by the ubiquitin-proteasome system. We additionally reveal that radicicol, an inhibitor of the chaperone Hsp90, could disrupt the interaction between ORF16 and ORF28, thereby affecting the nuclear entry and protein abundance of ORF28. Collectively, our findings imply that the cytoplasmic retention and rapid degradation of ORF28 may be a key regulatory mechanism for VZV to prevent untimely viral DNA replication, and suggest that Hsp90 is required for the interaction between ORF16 and ORF28.


Subject(s)
Active Transport, Cell Nucleus , DNA-Directed DNA Polymerase , Herpesvirus 3, Human , Viral Proteins , Virus Replication , Herpesvirus 3, Human/genetics , Herpesvirus 3, Human/metabolism , Humans , Viral Proteins/metabolism , Viral Proteins/genetics , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Cell Nucleus/metabolism , Cell Nucleus/virology , Cytoplasm/metabolism , Cytoplasm/virology , Cell Line , DNA Replication
14.
Nat Commun ; 15(1): 3054, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594306

ABSTRACT

Innovative approaches to controlled nucleobase-modified RNA synthesis are urgently needed to support RNA biology exploration and to synthesize potential RNA therapeutics. Here we present a strategy for enzymatic construction of nucleobase-modified RNA based on primer-dependent engineered thermophilic DNA polymerases - SFM4-3 and TGK. We demonstrate introduction of one or several different base-modified nucleotides in one strand including hypermodified RNA containing all four modified nucleotides bearing four different substituents, as well as strategy for primer segment removal. We also show facile site-specific or segmented introduction of fluorophores or other functional groups at defined positions in variety of RNA molecules, including structured or long mRNA. Intriguing translation efficacy of single-site modified mRNAs underscores the necessity to study isolated modifications placed at designer positions to disentangle their biological effects and enable development of improved mRNA therapeutics. Our toolbox paves the way for more precise dissecting RNA structures and functions, as well as for construction of diverse types of base-functionalized RNA for therapeutic applications and diagnostics.


Subject(s)
DNA-Directed DNA Polymerase , RNA , RNA/genetics , RNA/chemistry , DNA-Directed DNA Polymerase/genetics , Nucleotides/chemistry , RNA, Messenger/genetics
15.
BMC Biotechnol ; 24(1): 17, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566117

ABSTRACT

Thermostable DNA polymerases, such as Taq isolated from the thermophilic bacterium Thermus aquaticus, enable one-pot exponential DNA amplification known as polymerase chain reaction (PCR). However, properties other than thermostability - such as fidelity, processivity, and compatibility with modified nucleotides - are important in contemporary molecular biology applications. Here, we describe the engineering and characterization of a fusion between a DNA polymerase identified in the marine archaea Nanoarchaeum equitans and a DNA binding domain from the thermophile Sulfolobus solfataricus. The fusion creates a highly active enzyme, Neq2X7, capable of amplifying long and GC-rich DNA, unaffected by replacing dTTP with dUTP in PCR, and tolerant to various known PCR inhibitors. This makes it an attractive DNA polymerase for use, e.g., with uracil excision (USER) DNA assembly and for contamination-free diagnostics. Using a magnification via nucleotide imbalance fidelity assay, Neq2X7 was estimated to have an error rate lower than 2 ∙ 10-5 bp-1 and an approximately 100x lower fidelity than the parental variant Neq2X, indicating a trade-off between fidelity and processivity - an observation that may be of importance for similarly engineered DNA polymerases. Neq2X7 is easy to produce for routine application in any molecular biology laboratory, and the expression plasmid is made freely available.


Subject(s)
DNA-Directed DNA Polymerase , Uracil , Polymerase Chain Reaction , DNA-Directed DNA Polymerase/genetics , Uracil/metabolism , Plasmids , DNA
16.
J Mol Biol ; 436(9): 168542, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38492718

ABSTRACT

PrimPol is a human DNA primase-polymerase which restarts DNA synthesis beyond DNA lesions and non-B DNA structures blocking replication. Disfunction of PrimPol in cells leads to slowing of DNA replication rates in mitochondria and nucleus, accumulation of chromosome aberrations, cell cycle delay, and elevated sensitivity to DNA-damaging agents. A defective PrimPol has been suggested to be associated with the development of ophthalmic diseases, elevated mitochondrial toxicity of antiviral drugs and increased cell resistance to chemotherapy. Here, we describe a rare missense PrimPol variant V102A with altered biochemical properties identified in patients suffering from ovarian and cervical cancer. The Val102 to Ala substitution dramatically reduced both the primase and DNA polymerase activities of PrimPol as well as specifically decreased its ability to incorporate ribonucleotides. Structural analysis indicates that the V102A substitution can destabilize the hydrophobic pocket adjacent to the active site, affecting dNTP binding and catalysis.


Subject(s)
DNA Primase , DNA-Directed DNA Polymerase , Multifunctional Enzymes , Mutation, Missense , Ovarian Neoplasms , Uterine Cervical Neoplasms , Female , Humans , Amino Acid Substitution , Catalytic Domain , Crystallography, X-Ray , DNA Primase/metabolism , DNA Primase/chemistry , DNA Primase/genetics , DNA Replication , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/chemistry , Models, Molecular , Multifunctional Enzymes/metabolism , Multifunctional Enzymes/genetics , Multifunctional Enzymes/chemistry , Protein Conformation , Uterine Cervical Neoplasms/genetics , Ovarian Neoplasms/genetics
17.
Virology ; 594: 110035, 2024 06.
Article in English | MEDLINE | ID: mdl-38554655

ABSTRACT

The herpes simplex virus 1 DNA polymerase contains a highly conserved structural motif found in most family B polymerases and certain RNA-binding proteins. To investigate its importance within cells, we constructed a mutant virus with substitutions in two residues of the motif and a rescued derivative. The substitutions resulted in severe impairment of plaque formation, yields of infectious virus, and viral DNA synthesis while not meaningfully affecting expression of the mutant enzyme, its co-localization with the viral single-stranded DNA binding protein at intranuclear punctate sites in non-complementing cells or in replication compartments in complementing cells, or viral DNA polymerase activity. Taken together, our results indicate that the RNA binding motif plays a crucial role in herpes simplex virus 1 DNA synthesis through a mechanism separate from effects on polymerase activity, thus identifying a distinct essential function of this motif with implications for hypotheses regarding its biochemical functions.


Subject(s)
Herpesvirus 1, Human , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/metabolism , DNA, Viral/genetics , DNA Polymerase I/genetics , DNA Polymerase I/metabolism , Virus Replication , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/metabolism , DNA Replication
18.
J Biol Chem ; 300(4): 107128, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432635

ABSTRACT

Both POLG and MGME1 are needed for mitochondrial DNA (mtDNA) maintenance in animal cells. POLG, the primary replicative polymerase of the mitochondria, has an exonuclease activity (3'→5') that corrects for the misincorporation of bases. MGME1 serves as an exonuclease (5'→3'), producing ligatable DNA ends. Although both have a critical role in mtDNA replication and elimination of linear fragments, these mechanisms are still not fully understood. Using digital PCR to evaluate and compare mtDNA integrity, we show that Mgme1 knock out (Mgme1 KK) tissue mtDNA is more fragmented than POLG exonuclease-deficient "Mutator" (Polg MM) or WT tissue. In addition, next generation sequencing of mutant hearts showed abundant duplications in/nearby the D-loop region and unique 100 bp duplications evenly spaced throughout the genome only in Mgme1 KK hearts. However, despite these unique mtDNA features at steady-state, we observed a similar delay in the degradation of mtDNA after an induced double strand DNA break in both Mgme1 KK and Polg MM models. Lastly, we characterized double mutant (Polg MM/Mgme1 KK) cells and show that mtDNA cannot be maintained without at least one of these enzymatic activities. We propose a model for the generation of these genomic abnormalities which suggests a role for MGME1 outside of nascent mtDNA end ligation. Our results highlight the role of MGME1 in and outside of the D-loop region during replication, support the involvement of MGME1 in dsDNA degradation, and demonstrate that POLG EXO and MGME1 can partially compensate for each other in maintaining mtDNA.


Subject(s)
DNA Polymerase gamma , DNA, Mitochondrial , Animals , Mice , DNA Polymerase gamma/metabolism , DNA Polymerase gamma/genetics , DNA Replication , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Mice, Knockout
19.
Viruses ; 16(3)2024 03 06.
Article in English | MEDLINE | ID: mdl-38543771

ABSTRACT

The ability of bacteriophages to destroy bacteria has made them the subject of extensive research. Interest in bacteriophages has recently increased due to the spread of drug-resistant bacteria, although genomic research has not kept pace with the growth of genomic data. Genomic analysis and, especially, the taxonomic description of bacteriophages are often difficult due to the peculiarities of the evolution of bacteriophages, which often includes the horizontal transfer of genes and genomic modules. The latter is particularly pronounced for temperate bacteriophages, which are capable of integration into the bacterial chromosome. Xanthomonas phage PBR31 is a temperate bacteriophage, which has been neither described nor classified previously, that infects the plant pathogen Xanthomonas campestris pv. campestris. Genomic analysis, including phylogenetic studies, indicated the separation of phage PBR31 from known classified bacteriophages, as well as its distant relationship with other temperate bacteriophages, including the Lederbervirus group. Bioinformatic analysis of proteins revealed distinctive features of PBR31, including the presence of a protein similar to the small subunit of D-family DNA polymerase and advanced lysis machinery. Taxonomic analysis showed the possibility of assigning phage PBR31 to a new taxon, although the complete taxonomic description of Xanthomonas phage PBR31 and other related bacteriophages is complicated by the complex evolutionary history of the formation of its genome. The general biological features of the PBR31 phage were analysed for the first time. Due to its presumably temperate lifestyle, there is doubt as to whether the PBR31 phage is appropriate for phage control purposes. Bioinformatics analysis, however, revealed the presence of cell wall-degrading enzymes that can be utilised for the treatment of bacterial infections.


Subject(s)
Bacteriophages , Xanthomonas , Bacteriophages/genetics , Xanthomonas/genetics , Phylogeny , DNA-Directed DNA Polymerase/genetics
20.
Nucleic Acids Res ; 52(7): 3493-3509, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38442257

ABSTRACT

Gene-strand bias is a characteristic feature of bacterial genome organization wherein genes are preferentially encoded on the leading strand of replication, promoting co-orientation of replication and transcription. This co-orientation bias has evolved to protect gene essentiality, expression, and genomic stability from the harmful effects of head-on replication-transcription collisions. However, the origin, variation, and maintenance of gene-strand bias remain elusive. Here, we reveal that the frequency of inversions that alter gene orientation exhibits large variation across bacterial populations and negatively correlates with gene-strand bias. The density, distance, and distribution of inverted repeats show a similar negative relationship with gene-strand bias explaining the heterogeneity in inversions. Importantly, these observations are broadly evident across the entire bacterial kingdom uncovering inversions and inverted repeats as primary factors underlying the variation in gene-strand bias and its maintenance. The distinct catalytic subunits of replicative DNA polymerase have co-evolved with gene-strand bias, suggesting a close link between replication and the origin of gene-strand bias. Congruently, inversion frequencies and inverted repeats vary among bacteria with different DNA polymerases. In summary, we propose that the nature of replication determines the fitness cost of replication-transcription collisions, establishing a selection gradient on gene-strand bias by fine-tuning DNA sequence repeats and, thereby, gene inversions.


Subject(s)
Bacteria , DNA Replication , Evolution, Molecular , Genome, Bacterial , DNA Replication/genetics , Bacteria/genetics , Bacteria/metabolism , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Inverted Repeat Sequences , Replication Origin/genetics , Transcription, Genetic , Genomic Instability
SELECTION OF CITATIONS
SEARCH DETAIL
...