Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(5): e0300819, 2024.
Article in English | MEDLINE | ID: mdl-38722920

ABSTRACT

The role of endemic species in global biodiversity is pivotal, and understanding their biology and ecology is imperative for their fitness and long-term survival, particularly in the face of ongoing climatic oscillations. Our primary goal was to investigate the sexual reproduction level of the endangered Western Carpathian endemic Daphne arbuscula (Thymelaeaceae), which inhabits extreme rocky habitats, and to comprehend the influence of specific factors on its reproductive success. We conducted the research across four populations, varying in size and environmental conditions. Over two years, we monitored flower and fruit production, analyzed genetic variability within and among populations, and studied pollination mechanisms. Daphne arbuscula proved to be strictly self-incompatible, with significant variations in flower and fruit production among populations and seasons. The average fruit production percentage consistently remained below 50% across populations, indicating challenges in sexual reproduction. Cold and harsh weather during the reproductive phase had a substantial negative impact on sexual reproduction efficacy, leading to decreased fruit production. Nevertheless, several individuals in sheltered microhabitats displayed significantly higher fruit production, ranging from 60% to 83%, emphasizing the critical role of microhabitat heterogeneity in sustaining sexual reproduction in this species. We found no pronounced differences in genetic diversity within or among populations, suggesting that genetic factors may not critically influence the reproductive success of this endemic species. The implications of our findings might be of paramount importance for the long-term survival of D. arbuscula and offer valuable insights for the development of effective conservation strategies for this species.


Subject(s)
Daphne , Flowers , Pollination , Reproduction , Daphne/genetics , Daphne/physiology , Flowers/physiology , Flowers/genetics , Genetic Variation , Ecosystem , Fruit/genetics , Seasons
2.
Physiol Plant ; 168(1): 77-87, 2020 Jan.
Article in English | MEDLINE | ID: mdl-30950068

ABSTRACT

Daphne pseudomezereum A. Gray (Dpm) appears to be the only woody species in the north temperate forest that sheds its leaves in the summer while remaining green over winter (i.e. wintergreen leaf habit). Yet, the reason for this odd leaf habit has not been explored. To this end, we examined the microclimatic settings and ecophysiological traits of Dpm and its three native congeners in a field study of eight natural populations. In addition, we conducted a common garden experiment using Dpm plants where potential carbon gain across the seasons was estimated, using actual field microclimate data. Together, these data tested the hypothesis that Dpm retained traits of an open-grown upland ancestor, unable to adapt to the deep summer shade, it survived by becoming summer dormant and wintergreen. Our hypothesis was supported by patterns of leaf ecophysiological traits and carbon gain simulations in Dpm, consistent with the energetic feasibility of a summer dormancy followed by an autumn leaf sprout. We also conclude that carbon deficit driven by low light and high respiration cost is the trigger for the leaf habit of Dpm and assert that its phenological strategy represents a rare but viable alternative strategy for persistence in the temperate understory.


Subject(s)
Daphne/physiology , Plant Dormancy , Plant Leaves/physiology , Seasons , Darkness , Forests , Sunlight
3.
J Plant Res ; 131(2): 245-254, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28936793

ABSTRACT

Gynodioecy is the coexistence of hermaphrodites and females in a population. It is supposed to be an intermediate stage in the evolutionary pathway from hermaphroditism to dioecy in angiosperm. Hermaphrodites gain fitness through both seed and pollen production whereas females gain fitness only through seed production. As females spread in a gynodioecious population, sexual selection prompts hermaphrodites to invest in male function and male-biased hermaphrodites prevail. In the gynodioecious shrub Daphne jezoensis (Thymelaeaceae), female frequency is stably around 50% in most populations, and fruit-set rate of hermaphrodites is commonly low. Therefore, D. jezoensis is likely at a later stage in the evolutionary pathway. Female function of hermaphrodites (fruit-set rate, selfing rate, seed size, and germination rate) was assessed in three populations under natural conditions. In order to evaluate the potential seed fertility and inbreeding depression by selfing in hermaphrodites, hand pollination treatments were also performed. Over a 2-year period under natural conditions, 18-29% of hermaphrodites and 69-81% of females set fruit. Across all three populations, the mean fruit-set rate ranged 9.5-49.2% in females and only 3.9-10.2% in hermaphrodites. Even with artificial outcross-pollination, 59-91% of hermaphrodites failed to set any fruit. When self-pollination was performed in hermaphrodites, both of fruit-set and germination rates were decreased, indicating early-acting inbreeding depression. In addition, more than half of the hermaphrodite seeds were produced by selfing under natural pollination, but pollinator service was still required. Totally, hermaphrodites performed poorly as seed producers because of the intrinsically-low fruiting ability and a combination of autogamous selfing and strong inbreeding depression, indicating the absence of reproductive assurance. These results indicate that the mating system of D. jezoensis is functionally close to dioecy.


Subject(s)
Daphne/physiology , Genetic Fitness , Germination , Hermaphroditic Organisms/physiology , Daphne/genetics , Daphne/growth & development , Fertility , Hermaphroditic Organisms/genetics , Hermaphroditic Organisms/growth & development , Japan , Phenotype , Seeds/physiology
4.
Plant Biol (Stuttg) ; 18(5): 859-67, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27090773

ABSTRACT

Gynodioecy, a state where female and hermaphrodite plants coexist in populations, has been widely proposed an intermediate stage in the evolutionary pathway from hermaphroditism to dioecy. In the gynodioecy-dioecy pathway, hermaphrodites may gain most of their fitness through male function once females invade populations. To test this prediction, comprehensive studies on sex ratio variation across populations and reproductive characteristics of hermaphrodite and female phenotypes are necessary. This study examined the variation in sex ratio, sex expression, flower and fruit production and sexual dimorphism of morphological traits in a gynodioecious shrub, Daphne jezoensis, over multiple populations and years. Population sex ratio (hermaphrodite:female) was close to 1:1 or slightly hermaphrodite-biased. Sex type of individual plants was largely fixed, but 15% of plants changed their sex during a 6-year census. Hermaphrodite plants produced larger flowers and invested 2.5 times more resources in flower production than female plants, but they exhibited remarkably low fruit set (proportion of flowers setting fruits). Female plants produced six times more fruits than hermaphrodite plants. Low fruiting ability of hermaphrodite plants was retained even when hand-pollination was performed. Fruit production of female plants was restricted by pollen limitation under natural conditions, irrespective of high potential fecundity, and this minimised the difference in resources allocated to reproduction between the sexes. Negative effects of previous flower and fruit production on current reproduction were not apparent in both sexes. This study suggests that gynodioecy in this species is functionally close to a dioecious mating system: smaller flower production with larger fruiting ability in female plants, and larger flower production with little fruiting ability in hermaphrodite plants.


Subject(s)
Daphne/physiology , Hermaphroditic Organisms/physiology , Biological Evolution , Daphne/anatomy & histology , Daphne/genetics , Fertility , Flowers/anatomy & histology , Flowers/genetics , Flowers/physiology , Fruit/anatomy & histology , Fruit/genetics , Fruit/physiology , Geography , Japan , Phenotype , Pollen/anatomy & histology , Pollen/genetics , Pollen/physiology , Pollination , Reproduction , Seeds/anatomy & histology , Seeds/genetics , Seeds/physiology , Sex Ratio
5.
Am J Bot ; 103(3): 388-95, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26928007

ABSTRACT

PREMISE OF THE STUDY: Changes in the pollinator communities of marginal plant populations can affect their pollination quantity or quality. Geographic variation in pollination success can alter the reproductive advantage that female plants require to persist within gynodioecious populations. Particularly valuable is determining the pollination success at the prezygotic stage in self-compatible gynodioecious species whose females do not exhibit enhanced seed production. METHODS: In core and marginal populations of Daphne laureola, we analyzed the differences between hermaphrodites and females in the proportion of flowers visited, the stigma pollen loads, and the quantity of pollen tubes in styles. We also examined the relationship between the number of pollen tubes in styles vs. the number of pollen grains on stigmas using piecewise regression and binomial generalized linear mixed models. KEY RESULTS: Pollinators deposited larger pollen loads on flowers in marginal populations. In marginal populations, female flowers received more pollinator visits and more pollen grains on their stigmas, and they had more pollen tubes in their styles than did female flowers in core populations. Both piecewise regression and binomial GLMM analyses showed that females in marginal populations had a lower proportion of grains that developed tubes than females in the core populations, which suggests decreased pollination quality. CONCLUSIONS: More efficient pollination services in marginal populations decreased the overall differences in the prezygotic pollination success between the sex morphs. Our results also suggest that pollination quality is lower in females of marginal populations, which could be counteracting the increased pollination in females in marginal populations.


Subject(s)
Daphne/physiology , Flowers/physiology , Pollination/physiology , Pollen Tube/physiology , Regression Analysis , Zygote/physiology
6.
Plant Biol (Stuttg) ; 17(1): 186-93, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24841933

ABSTRACT

In sexually polymorphic plant species the extent of gender divergence in floral morphology and phenology may be influenced by gender-specific selection patterns imposed by pollinators, which may change geographically. Distribution margins are areas where changes in the pollinator fauna, and thus variation in gender divergence of floral traits, are expected. We tested for pollination-driven geographic variation in the gender divergence in floral and phenological traits in the gynodioecious shrub Daphne laureola, in core and marginal areas differing in the identity of the main pollinator. Pollinators selected for longer corolla tubes in hermaphrodite individuals only in core populations, which in turn recorded higher fruit set. Consistent with these phenotypic selection patterns, gender divergence in flower corolla length was higher in core populations. Moreover, pollinators selected towards delayed flowering on hermaphrodite individuals only in marginal populations, where the two sexes differed more in flowering time. Our results support that a shift in main pollinators is able to contribute to geographic variation in the gender divergence of sexually polymorphic plant species.


Subject(s)
Daphne/physiology , Pollination/physiology , Animals , Daphne/growth & development , Flowers/growth & development , Flowers/physiology , Geography , Insecta/physiology , Phenotype , Reproduction/physiology
7.
Evolution ; 65(6): 1680-92, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21644956

ABSTRACT

Recent phylogenetic analyses of sexual reproductive systems supported the evolutionary pathway from hermaphroditism to dioecy via gynodioecy in different groups of angiosperms. In this study, we explore the evolution of sexual reproductive systems in Daphne laureola L. (Thymelaeaceae), a species with variation in reproductive system among population. Sequences from the ITS region of the nuclear ribosomal cistron and two plastid markers (psbA-trnH and ndhF) were analyzed and used to map the population reproductive system along the molecular phylogeny. Our results support D. laureola as a monophyletic lineage with three different clades within the Iberian Peninsula. The hermaphroditic populations belong to two different clades, whereas gynodioecy is ubiquitous but characteristic of the third clade, which grouped together all the North-Western Iberian populations sampled, including the apparently oldest haplotype sampled. Gynodioecy appears as the most likely basal condition of the 13 analyzed populations, but different evolutionary transitions in reproductive sexual system were traced within each D. laureola clade. Both ecological conditions and (meta)population dynamics may help explain plant reproductive system evolution at the microevolutionary scale. Phylogenetic studies in which the historical relationships between populations differing in reproductive system can be ascertained will help to clarify the process.


Subject(s)
Daphne/genetics , Evolution, Molecular , Reproduction , Cell Nucleus/genetics , Daphne/physiology , Ecosystem , Phylogeny , Plastids/genetics , Population Dynamics , Ribosomes/genetics , Spain
8.
J Plant Res ; 124(2): 277-87, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20820845

ABSTRACT

Taxonomically related species can differ in a number of reproductive traits, which may translate into a differential mating system and pollination success. Here we compare two hermaphroditic insect-pollinated Daphne species (D. rodriguezii and D. gnidium) which differ in distribution (island endemic vs. mediterranean) and floral traits (long- vs. short-tube corolla). We investigated their mating system and pollen limitation by means of hand-pollination experiments and quantified the diversity and abundance of flower visitors by direct observations. Plant size and five reproductive traits (flower production, proportion of viable anthers, pollen production, flower tube length and tepal area) were studied to assess how they contribute to reproductive success, measured as proportion of pollen grains germinated per stigma and fruit set. Selfing was very low and pollen limitation existed in both species, though was higher in D. rodriguezii probably due to the scarcity of flower visitors. The low fruit set in both species suggests that most of the pollen grains found on stigmas are self-pollen. Pollinators appeared to favour some floral traits (specifically, flower tube length or tepal area) in both species, although flower crop in D. rodriguezii was the only reproductive trait influencing fruit set. In both species, the highest variability in reproductive traits and pollination success was within individuals. Our findings suggest that despite both species showed similar mating system, dependency on outcrossing pollen and selection of floral traits, pollen limitation was higher in D. rodriguezii, probably as a higher proportion of self-pollen arrives to its stigmas.


Subject(s)
Daphne/genetics , Insecta/physiology , Pollination/genetics , Animals , Daphne/anatomy & histology , Daphne/physiology , Flowers/anatomy & histology , Flowers/genetics , Fruit/physiology , Mediterranean Islands , Phenotype , Reproduction/genetics , Species Specificity
9.
Ann Bot ; 100(7): 1547-56, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17933844

ABSTRACT

BACKGROUND AND AIMS: Species that exhibit among-population variation in breeding system are particularly suitable to study the importance of the ecological context for the stability and evolution of gender polymorphism. Geographical variation in breeding system and sex ratio of Daphne laureola (Thymelaeaceae) was examined and their association with environmental conditions, plant and floral display sizes, and pollination environment in a broad geographic scale was analysed. METHODS: The proportion of female and hermaphrodite individuals in 38 populations within the Iberian Peninsula was scored. Average local temperature and precipitation from these sites were obtained from interpolation models based on 30 years of data. Pollination success was estimated as stigmatic pollen loads, pollen tubes per ovule and the proportion of unfertilized flowers per individual in a sub-set of hermaphroditic and gynodioecious populations. KEY RESULTS: Daphne laureola is predominantly gynodioecious, but hermaphroditic populations were found in northeastern and southwestern regions, characterized by higher temperatures and lower annual precipitation. In the gynodioecious populations, female plants were larger and bore more flowers than hermaphrodites. However, due to their lower pollination success, females did not consistently produce more seeds than hermaphrodites, which tends to negate a seed production advantage in D. laureola females. In the northeastern hermaphroditic populations, plants were smaller and produced 9-13 times fewer flowers than in the other Iberian regions, and thus presumably had a lower level of geitonogamous self-fertilization. However, in a few southern populations hermaphroditism was not associated with small plant size and low flower production. CONCLUSIONS: The findings highlight that different mechanisms, including abiotic conditions and pollinator service, may account for breeding system variation within a species' distribution range and also suggest that geitonogamy may affect plant breeding system evolution.


Subject(s)
Daphne/growth & development , Daphne/physiology , Ecology , Pollination/physiology , Breeding , Geography , Reproduction/physiology , Spain
10.
J Chem Ecol ; 31(1): 139-50, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15839486

ABSTRACT

In this article, we analyzed the concentration of coumarins in leaves of female and hermaphrodite individuals of the gynodioecious shrub Daphne laureola, along an elevational gradient in southern Spain. Combining HPLC and NMR techniques, we identified three different glycosides of 7-methoxycoumarin in leaves of this species. Total coumarin concentration averaged between 60 and 120 mg/g dry weight for mature summer leaves of D. laureola growing at six different populations. As predicted by optimal theory, females tended to have a higher concentration of coumarins than hermaphrodites, thus upholding the idea that male reproductive function is costly for hermaphrodites. Furthermore, concentrations in females but not hermaphrodites were positively correlated with increasing population altitude, and the magnitude of gender divergence in coumarin concentration varied among populations, suggesting that the cost of the male function may be context dependent. To our knowledge, this is the first evidence of gender differences in chemical defenses of a gynodioecious species in the field.


Subject(s)
Daphne/physiology , Altitude , Coumarins/analysis , Daphne/chemistry , Disorders of Sex Development , Glycosides/analysis , Magnetic Resonance Spectroscopy , Plant Leaves/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...