Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.532
Filter
1.
Harmful Algae ; 135: 102635, 2024 May.
Article in English | MEDLINE | ID: mdl-38830716

ABSTRACT

Ongoing research on cyanotoxins, driven by the socioeconomic impact of harmful algal blooms, emphasizes the critical necessity of elucidating the toxicological profiles of algal cell extracts and pure toxins. This study comprehensively compares Raphidiopsis raciborskii dissolved extract (RDE) and cylindrospermopsin (CYN) based on Daphnia magna assays. Both RDE and CYN target vital organs and disrupt reproduction, development, and digestion, thereby causing acute and chronic toxicity. Disturbances in locomotion, reduced behavioral activity, and weakened swimming capability in D. magna have also been reported for both RDE and CYN, indicating the insufficiency of conventional toxicity evaluation parameters for distinguishing between the toxic effects of algal extracts and pure cyanotoxins. Additionally, chemical profiling revealed the presence of highly active tryptophan-, humic acid-, and fulvic acid-like fluorescence compounds in the RDE, along with the active constituents of CYN, within a 15-day period, demonstrating the chemical complexity and dynamics of the RDE. Transcriptomics was used to further elucidate the distinct molecular mechanisms of RDE and CYN. They act diversely in terms of cytotoxicity, involving oxidative stress and response, protein content, and energy metabolism, and demonstrate distinct modes of action in neurofunctions. In essence, this study underscores the distinct toxicity mechanisms of RDE and CYN and emphasizes the necessity for context- and objective-specific toxicity assessments, advocating nuanced approaches to evaluate the ecological and health implications of cyanotoxins, thereby contributing to the precision of environmental risk assessments.


Subject(s)
Alkaloids , Bacterial Toxins , Cyanobacteria Toxins , Cyanobacteria , Daphnia , Animals , Bacterial Toxins/toxicity , Daphnia/drug effects , Alkaloids/toxicity , Cyanobacteria/chemistry , Uracil/analogs & derivatives , Uracil/toxicity , Cell Extracts/chemistry , Cell Extracts/pharmacology , Harmful Algal Bloom
2.
J Hazard Mater ; 472: 134484, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38723484

ABSTRACT

To quantify the possible impact of different wood protection techniques on the aquatic environment, we applied a tiered Integrated Testing Strategy (ITS) on leachates obtained from untreated (UTW) Norway spruce (Picea abies), specimens treated with a copper-ethanolamine-based preservative solution, complying with the Use Class 3 (UC3), and specimens thermally modified (TM). Different maturation times in water were tested to verify whether toxicant leaching is time-dependent. Tier I tests, addressing acute effects on Aliivibrio fischeri, Raphidocelis subcapitata, and Daphnia magna, evidenced that TM toxicity was comparable or even lower than in UTW. Conversely, UC3 significantly affected all species compared to UTW, also after 30 days of maturation in water, and was not considered an environmentally acceptable wood preservation solution. Tier II (effects on early-life stages of Lymnea auricularia) and III (chronic effects on D. magna and L. auricularia) performed on UTW and TM confirmed the latter as an environmentally acceptable treatment, with increasing maturation times resulting in decreased adverse effects. The ITS allowed for rapid and reliable identification of potentially harmful effects due to preservation treatments, addressed the choice for a less impacting solution, and can be effective for manufacturers in identifying more environmentally friendly solutions while developing their products.


Subject(s)
Aliivibrio fischeri , Daphnia , Picea , Wood , Wood/chemistry , Daphnia/drug effects , Aliivibrio fischeri/drug effects , Animals , Picea/chemistry , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Copper/toxicity , Copper/chemistry , Ethanolamine/toxicity , Ethanolamine/chemistry , Chlorophyta/drug effects , Chlorophyta/growth & development
3.
Environ Sci Pollut Res Int ; 31(24): 35308-35319, 2024 May.
Article in English | MEDLINE | ID: mdl-38727975

ABSTRACT

Daphnia spinulata Birabén, 1917 is an endemic cladoceran species, frequent in the zooplankton communities of the shallow lakes of the Pampean region of Argentina. These lakes have varying salinity levels and, being located in agricultural areas, are frequently subject to pesticide pollution. This study aimed to determine the effects of the herbicide glyphosate (Panzer Gold®) in combination with different salinity levels on the biological parameters of D. spinulata and its recovery ability after a short exposure. Three types of assays were performed: an acute toxicity test, a chronic assessment to determine survival, growth and reproduction, and recovery assays under optimal salinity conditions (1 g L-1). The LC50-48 h of glyphosate was 7.5 mg L-1 (CL 3.15 to 11.72). Longevity and the number of offspring and clutches were significantly reduced due to the combined exposure of glyphosate and increased salinity. The timing of the first offspring did not recover after glyphosate exposure. Our results reveal that D. spinulata is sensitive to the herbicide Panzer Gold® at concentrations well below those indicated in the safety data sheet of this commercial formulation, which causes stronger negative effects in conditions of higher salinity. Further research is needed to shed light on the sensitivity of this cladoceran to glyphosate and its variability under other interactive stress factors.


Subject(s)
Daphnia , Glycine , Glyphosate , Herbicides , Salinity , Animals , Glycine/analogs & derivatives , Glycine/toxicity , Daphnia/drug effects , Herbicides/toxicity , Water Pollutants, Chemical/toxicity , Argentina , Reproduction/drug effects
4.
Sci Total Environ ; 935: 173123, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38740202

ABSTRACT

Low-VOC waterborne asphalt-emulsion (AE) seal coat is considered more sustainable than solvent-based coal-tar emulsion seal coat because asphalt emulsions contain negligible amounts of carcinogenic PAHs and release fewer harmful volatile organic compounds. Yet, many low-VOC coatings leach water-soluble substances under outdoor conditions. To investigate the chemical composition of seal coat leachates, three AE formulations were cured under natural weathering conditions and exposed to simulated runoff over a 10-day field trial. Runoff was collected and concentrated using ion-exchange solid-phase extraction (SPE) and analyzed using gas chromatography/mass spectrometry (GC-MS). Leached compounds included hydrocarbons, esters, amines, siloxanes, plasticizers, biocides, polyethylene glycol (PEG) ethers, urethanes, and toluene diisocyanate (TDI). Glycol ethers comprised 29-97 % of the measured leachate mass. Two seal coat formulations contained isothiazolinone biocides, methylchloro- and methylisothiazolinone (CMIT/MIT; 0.5 mg/L in runoff), while a third seal coat formulation continuously leached TDI, a reactive polyurethane (PU) precursor (0.7 mg/L in runoff). Biocide-containing leachates showed acute toxicity to the freshwater water flea, Ceriodaphnia dubia after 48 h, while TDI-containing leachate showed no acute toxicity, suggesting that leachate toxicity was due to in-can polymer preservatives. As biocides are implicated in impaired reproductive signaling, these results support the use of alkaline pH to avoid biofouling and reinforce the goal of reducing and/or avoiding the use of biocides altogether, especially for environmentally friendly products.


Subject(s)
Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Petroleum , Polymers , Daphnia/drug effects , Toxicity Tests, Acute , Ceriodaphnia dubia , Hydrocarbons
5.
Sci Total Environ ; 935: 173428, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38777065

ABSTRACT

The water-soluble polymer polyvinylpyrrolidone (PVP) is an established ingredient in pharmaceutical and personal care product (PPCP) formulations. Due to its high usage and lack of biodegradability, it has been detected up to 7.0 mg L-1 in wastewater and 0.1 mg L-1 in the receiving freshwaters, with several studies showing detrimental sublethal effects in a range of aquatic species. A lack of simple analytical methods to detect and quantify PVP currently impacts further investigation into the cause of these sublethal effects. In this paper we propose a refractive index gel-permeation chromatography (GPC) method to quantify PVP, which includes the processing of raw chromatograms using line deconvolution to calculate peak area. The method was then applied to Daphnia magna exposed to PVP for 48 h. A limit of detection (LOD) and limit of quantification (LOQ) of 0.05 and 0.2 mg mL-1 respectively was determined, with a recovery of 78 % from spiked Daphnia magna. PVP was detected in the samples above the LOD but below the LOQ. This suggests PVP is ingested by Daphnia magna, which warrants further investigation into whether bioaccumulation of PVP could be causing the sublethal effects seen in other studies.


Subject(s)
Daphnia , Povidone , Water Pollutants, Chemical , Animals , Daphnia/physiology , Daphnia/drug effects , Povidone/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Refractometry , Environmental Monitoring/methods , Aquatic Organisms/drug effects , Limit of Detection , Polymers , Daphnia magna
6.
Environ Pollut ; 352: 124144, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38735459

ABSTRACT

Infochemicals refer to chemicals responsible for information exchange between organisms. We evaluated the effects of Daphnia magna and Daphnia galeata infochemicals on Microcystis aeruginosa for 15d. The Daphnia infochemicals were obtained from spent medium after culturing Daphnia in Elendt M4 medium for 48 h. Both Daphnia infochemicals significantly increased (p < 0.05) the intracellular reactive oxygen species level and microcystin-LR concentration in M. aeruginosa. This cellular effect increased colony formation of M. aeruginosa, thereby inhibiting the growth of M. aeruginosa. D. galeata infochemicals provoked significantly greater (p < 0.05) adverse effects on M. aeruginosa than those of D. magna infochemicals, which were further exaggerated by pre-exposure of Daphnia to M. aeruginosa. This result seems to be related to the different compositions and concentrations of Daphnia infochemicals. Several Daphnia infochemicals, such as methyl ferulate, cyclohexanone, 3, 5-dimethyl, hexanedioic acid, and bis(2-ethylhexyl) ester, showed a high correlation with M. aeruginosa cell concentration (|r | >0.6), suggesting that they may play a key role in controlling harmful cyanobacteria. Additionally, pre-exposure of D. magna and D. galeata to M. aeruginosa produced oleic acid, methyl ester, and n-hexadecanoic acid, with a highly correlation with M. aeruginosa cell concentration (|r | >0.6). p-tolyl acetate and linoleic acid were detected only in the pre-exposed D. galeata infochemicals. These findings suggest that some of Daphnia infochemicals identified in this study can be a promising tool to control M. aeruginosa growth. However, further studies are required to verify the specific actions of these infochemicals against cyanobacteria.


Subject(s)
Daphnia , Microcystis , Microcystis/drug effects , Daphnia/drug effects , Animals , Microcystins/metabolism , Reactive Oxygen Species/metabolism , Pheromones/pharmacology , Marine Toxins
7.
Environ Sci Technol ; 58(22): 9548-9558, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38778038

ABSTRACT

Agricultural applications of nanotechnologies necessitate addressing safety concerns associated with nanopesticides, yet research has not adequately elucidated potential environmental risks between nanopesticides and their conventional counterparts. To address this gap, we investigated the risk of nanopesticides by comparing the ecotoxicity of nanoencapsulated imidacloprid (nano-IMI) with its active ingredient to nontarget freshwater organisms (embryonic Danio rerio, Daphnia magna, and Chironomus kiinensis). Nano-IMI elicited approximately 5 times higher toxicity than IMI to zebrafish embryos with and without chorion, while no significant difference was observed between the two invertebrates. Toxicokinetics further explained the differential toxicity patterns of the two IMI analogues. One-compartmental two-phase toxicokinetic modeling showed that nano-IMI exhibited significantly slower elimination and subsequently higher bioaccumulation potential than IMI in zebrafish embryos (dechorinated), while no disparity in toxicokinetics was observed between nano-IMI and IMI in D. magna and C. kiinensis. A two-compartmental toxicokinetic model successfully simulated the slow elimination of IMI from C. kiinensis and confirmed that both analogues of IMI reached toxicologically relevant targets at similar levels. Although nanopesticides exhibit comparable or elevated toxicity, future work is of utmost importance to properly understand the life cycle risks from production to end-of-life exposures, which helps establish optimal management measures before their widespread applications.


Subject(s)
Fresh Water , Toxicokinetics , Zebrafish , Animals , Fresh Water/chemistry , Water Pollutants, Chemical/toxicity , Daphnia/drug effects , Neonicotinoids/toxicity
8.
Sci Total Environ ; 935: 173344, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38772480

ABSTRACT

The widespread presence of microplastics (MP) in water represents an environmental problem, not only because of the harmful effects of their size and potential to vector other pollutants, but also because of the release of additives, degradation products and residues contained in the polymer matrix. The latter includes metallic catalysts, which are often overlooked. This study focuses on the photo-aging of polypropylene (PP) and the resulting structural changes that promote its fragmentation microplastics (PP-MPs) and release of metals, as well as the resulting toxicity of leachates and their potential to inhibit biodegradation of organics in water. The pristine, photo-aged and waste PP are ground under the same regime to assess susceptibility to fragmentation. Obtained PP-MPs are submitted to leaching tests; the release of organics and metals is monitored by Total Organic Carbon (TOC) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis, respectively. The leachates are assessed for their toxicity against Vibrio fischeri, Daphnia magna and Pseudokirchneriella subcapitata and their influence on the biodegradability of the glucose solution. Photo-aging induced changes in the crystallinity and morphology of the PP and manifested in the abundance of smaller MPs, as revealed by the particle size distribution. In the case of pristine PP, all particles were > 100 µm in size, while aged PP yielded significant mass fraction of MPs <100 µm. The toxicity of leachates from aged PP-MPs is higher than that of pristine and exhibits a positive correlation with portion of metals released. The biodegradability of glucose is strongly inhibited by PP-MPs leachates containing a mixture of metals in trace concentrations.


Subject(s)
Biodegradation, Environmental , Daphnia , Microplastics , Polypropylenes , Water Pollutants, Chemical , Water Pollutants, Chemical/toxicity , Microplastics/toxicity , Daphnia/drug effects , Metals/toxicity , Aliivibrio fischeri/drug effects , Animals
9.
Article in English | MEDLINE | ID: mdl-38583695

ABSTRACT

Human activities have directly impacted the environment, causing significant ecological imbalances. From the different contaminants resulting from human activities, plastics are of major environmental concern. Due to their high use and consequent discharge, plastics tend to accumulate in aquatic environments. There, plastics can form smaller particles (microplastics, MPs), due to fragmentation and weathering, which are more prone to interact with aquatic organisms and cause deleterious effects, including at the basis of different food webs. This study assessed the effects of two microplastics (polyethylene terephthalate, PET; and polypropylene, PP; both of common domestic use) in the freshwater cladoceran species Daphnia magna. Toxic effects were assessed by measuring reproductive traits (first brood and total number of offspring), and activities of biomarkers involved in xenobiotic metabolism (phase I: cytochrome P-450 isoenzymes CYP1A1, 1A2 and 3A4; phase II/conjugation: glutathione S-transferases; and antioxidant defense (catalase)). Both MPs showed a potential to significantly reduce reproductive parameters in D. magna. Furthermore, PET caused a significant increase in some isoenzymes of CYP450 in acutely exposed organisms, but this effect was not observed in chronically exposed animals. Similarly, the activity of the antioxidant defense (CAT) was significantly increased in acutely exposed animals, but not in chronically exposed organisms. This pattern of effects suggests a possible mechanism of long-term adaptation to the presence of the tested MPs. In conclusion, the herein tested MPs have shown the potential to induce deleterious effects on D. magna mainly observed in terms of the reproductive outcomes. Changes at the biochemical level seems transient and are not likely to occur in long term, environmentally exposed crustaceans.


Subject(s)
Daphnia , Microplastics , Reproduction , Water Pollutants, Chemical , Animals , Daphnia/drug effects , Water Pollutants, Chemical/toxicity , Reproduction/drug effects , Microplastics/toxicity , Fresh Water , Biomarkers/metabolism , Glutathione Transferase/metabolism , Polypropylenes/toxicity , Cytochrome P-450 Enzyme System/metabolism , Daphnia magna
10.
Environ Pollut ; 349: 123918, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38574946

ABSTRACT

The emergence of microplastics as a global contaminant of concern has coincided with climate change induced temperature warming in aquatic ecosystems. Warmer temperatures have been previously demonstrated to increase the toxicity of certain contaminants, but it is currently unclear if microplastics are similarly affected by temperature. As aquatic organisms simultaneously face microplastic pollution and both increasing and variable temperatures, understanding how temperature affects microplastic toxicity is pertinent in this era of human-induced global change. In this study, we investigate the effects of environmentally relevant microplastic exposure to Daphnia pulex survival, reproduction, and growth at three different temperatures. To simulate an environmentally relevant exposure scenario, we created microplastics with physicochemical characteristics often detected in nature, and exposed organisms to concentrations close to values reported in inland waters and 1-2 orders of magnitude higher. The three temperatures tested in this experiment included 12 °C, 20 °C, and 24 °C, to simulate cool/springtime, current, and warming scenarios. We found the highest concentration of microplastics significantly impacted survival and total offspring compared to the control at 20 °C and 24 °C, but not at 12 °C. The adverse effect of high microplastic concentrations on total offspring at warmer temperatures was driven by the high mortality of the juveniles. We observed no effect of microplastics on time to first reproduction or average growth rate at any temperature. Warmer temperatures exacerbated microplastic toxicity, although only for concentrations of microplastics not currently observed in nature, but these concentrations are possible in pollution hotspots, through pulses pollution events or future worsening environmental contamination. The results of our study illustrate the continued need to further investigate climate change related co-stressors such as warming temperatures in microplastic and pollution ecology, through environmentally realistic exposure scenarios.


Subject(s)
Climate Change , Daphnia , Microplastics , Water Pollutants, Chemical , Zooplankton , Microplastics/toxicity , Animals , Water Pollutants, Chemical/toxicity , Zooplankton/drug effects , Daphnia/drug effects , Temperature , Reproduction/drug effects
11.
Ecotoxicol Environ Saf ; 277: 116338, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38640799

ABSTRACT

Various phthalic acid esters (PAEs) such as dibutyl phthalate (DBP) and butyl benzyl phthalate (BBP) co-exist with nanopollutants in aquatic environment. In this study, Daphnia magna was exposed to nano-CuO and DBP or BBP at environmental relevant concentrations for 21-days to investigate these combined toxic effects. Acute EC50 values (48 h) of nano-CuO, DBP, and BBP were 12.572 mg/L, 8.978 mg/L, and 4.785 mg/L, respectively. Results showed that co-exposure with nano-CuO (500 µg/L) for 21 days significantly enhanced the toxicity of DBP (100 µg/L) and BBP (100 µg/L) to Daphnia magna by 18.37% and 18.11%, respectively. The activities of superoxide dismutase, catalase, and glutathione S-transferase were enhanced by 10.95% and 14.07%, 25.63% and 25.91%, and 39.93% and 35.01% in nano-CuO+DBP and nano-CuO+BBP treatments as compared to the individual exposure groups, verifying that antioxidative defense responses were activated. Furthermore, the co-exposure of nano-CuO and PAEs decreased the population richness and diversity microbiota, and changed the microbial community composition in Daphnia magna. Metabolomic analysis elucidated that nano-CuO + PAEs exposure induced stronger disturbance on metabolic network and molecular function, including amino acid, nucleotides, and lipid metabolism-related metabolic pathways, as comparison to PAEs single exposure treatments. In summary, the integration of physiological, microflora, and untargeted metabolomics analysis offers a fresh perspective into the potential ecological risk associated with nanopollutants and phthalate pollution in aquatic ecosystems.


Subject(s)
Copper , Daphnia , Dibutyl Phthalate , Phthalic Acids , Water Pollutants, Chemical , Animals , Daphnia/drug effects , Phthalic Acids/toxicity , Water Pollutants, Chemical/toxicity , Copper/toxicity , Dibutyl Phthalate/toxicity , Metal Nanoparticles/toxicity , Esters/toxicity , Microbiota/drug effects , Glutathione Transferase/metabolism , Metabolomics , Oxidative Stress/drug effects , Superoxide Dismutase/metabolism , Metabolome/drug effects , Daphnia magna
12.
Ecotoxicol Environ Saf ; 277: 116320, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38653020

ABSTRACT

In this study, the impact of calcination of zeolites on the ecotoxicity of carbamazepine solutions in two matrices, water and synthetic sewage, was assessed. Two types of zeolites were tested: natural zeolite, in the form of a zeolite rock consisting mainly of clinoptilolite, and a synthetic zeolite type 5 A. Additionally, zeolites were calcined at a temperature of 200 °C. The kinetics of carbamazepine adsorption in aqueous solutions and in synthetic sewage matrix was determined. Higher adsorption capacity was obtained for carbamazepine aqueous solutions as well as zeolites after the calcination process. Considering type of zeolite, the highest and fastest uptake of carbamazepine was observed for natural zeolite after calcination. In the case of ecotoxicity, carbamazepine solutions before adsorption was the most toxic towards Raphidocelis subcapitata, next Aliivibrio fischeri and Daphnia magna, regardless to the matrix type. The differentiation in toxicity regarding the type of matrix was observed, in the case of algae and bacteria, higher toxicity was demonstrated by carbamazepine solutions in the water matrix, while in the case of crustaceans-the sewage matrix. After the adsorption process, the toxicity of carbamazepine solutions on zeolites decreased by 34.5-60.9 % for R. subcapitata, 33-39 % for A. fischeri and 55-60 % for D. magna, thus confirming the effectiveness of the proposed method of carbamazepine immobilization.


Subject(s)
Carbamazepine , Daphnia , Sewage , Water Pollutants, Chemical , Zeolites , Carbamazepine/toxicity , Carbamazepine/chemistry , Zeolites/chemistry , Zeolites/toxicity , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Daphnia/drug effects , Adsorption , Animals , Sewage/chemistry , Aliivibrio fischeri/drug effects , Kinetics
13.
Mar Pollut Bull ; 202: 116306, 2024 May.
Article in English | MEDLINE | ID: mdl-38574500

ABSTRACT

In this study, we investigated the combined effects of hypoxia and NPs on the water flea Daphnia magna, a keystone species in freshwater environments. To measure and understand the oxidative stress responses, we used acute toxicity tests, fluorescence microscopy, enzymatic assays, Western blot analyses, and Ingenuity Pathway Analysis. Our findings demonstrate that hypoxia and NPs exhibit a negative synergy that increases oxidative stress, as indicated by heightened levels of reactive oxygen species and antioxidant enzyme activity. These effects lead to more severe reproductive and growth impairments in D. magna compared to a single-stressor exposure. In this work, molecular investigations revealed complex pathway activations involving HIF-1α, NF-κB, and mitogen-activated protein kinase, illustrating the intricate molecular dynamics that can occur in combined stress conditions. The results underscore the amplified physiological impacts of combined environmental stressors and highlight the need for integrated strategies in the management of aquatic ecosystems.


Subject(s)
Daphnia , Oxidative Stress , Water Pollutants, Chemical , Animals , Daphnia/physiology , Daphnia/drug effects , Water Pollutants, Chemical/toxicity , Reactive Oxygen Species/metabolism , Hypoxia , Daphnia magna
14.
Sci Total Environ ; 929: 172455, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38636871

ABSTRACT

Antibiotics and microplastics (MPs), known as emerging pollutants, are bound to coexist in aquatic environments due to their widespread distribution and prolonged persistence. To date, few systematic summaries are available for the interaction between MPs and antibiotics in aquatic ecosystems, and a comprehensive reanalysis of their combined toxicity is also needed. Based on the collected published data, we have analyzed the source and distribution of MPs and antibiotics in global aquatic environments, finding their coexistence occurs in a lot of study sites. Accordingly, the presence of MPs can directly alter the environmental behavior of antibiotics. The main influencing factors of interaction between antibiotics and MPs have been summarized in terms of the characteristics of MPs and antibiotics, as well as the environmental factors. Then, we have conducted a meta-analysis to evaluate the combined toxicity of antibiotics and MPs on aquatic organisms and the related toxicity indicators, suggesting a significant adverse effect on algae, and inapparent on fish and daphnia. Finally, the environmental risk assessments for antibiotics and MPs were discussed, but unfortunately the standardized methodology for the risk assessment of MPs is still challenging, let alone assessment for their combined toxicity. This review provides insights into the interactions and environment risks of antibiotics and MPs in the aquatic environment, and suggests perspectives for future research.


Subject(s)
Anti-Bacterial Agents , Environmental Monitoring , Microplastics , Water Pollutants, Chemical , Water Pollutants, Chemical/toxicity , Microplastics/toxicity , Risk Assessment , Anti-Bacterial Agents/toxicity , Environmental Monitoring/methods , Aquatic Organisms/drug effects , Animals , Daphnia/drug effects
15.
Aquat Toxicol ; 271: 106906, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38588636

ABSTRACT

Butylone (BTL) is a chiral synthetic cathinone available as a racemate and reported as contaminant in wastewater effluents. However, there are no studies on its impact on ecosystems and possible enantioselectivity in ecotoxicity. This work aimed to evaluate: (i) the possible ecotoxicity of BTL as racemate or its isolated (R)- and (S)- enantiomers using Daphnia magna; and (ii) the efficiency of advanced oxidation technologies (AOTs) in the removal of BTL and reduction of toxic effects caused by wastewaters. Enantiomers of BTL were obtained by liquid chromatography (LC) using a chiral semi-preparative column. Enantiomeric purity of each enantiomer was > 97 %. For toxicity assessment, a 9-day sub-chronic assay was performed with the racemate (at 0.10, 1.0 or 10 µg L-1) or each enantiomer (at 0.10 or 1.0 µg L-1). Changes in morphophysiological, behavioural, biochemical and reproductive endpoints were observed, which were dependent on the form of the substance and life stage of the organism (juvenile or adult). Removal rates of BTL in spiked wastewater (10 µg L-1) treated with different AOTs (ultraviolet, UV; ozonation, O3; and UV/O3) were similar and lower than 29 %. The 48 h D. magna acute toxicity assays demonstrated a reduction in the toxicity of the treated spiked effluents, but no differences were found amongst AOTs treatments. These results warn for the contamination and negative impact of BTL on ecosystems and highlight the need for efficient removal processes.


Subject(s)
Daphnia , Oxidation-Reduction , Water Pollutants, Chemical , Daphnia/drug effects , Animals , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Stereoisomerism , Wastewater/chemistry , Wastewater/toxicity , Daphnia magna
16.
Toxicol Appl Pharmacol ; 486: 116944, 2024 May.
Article in English | MEDLINE | ID: mdl-38677603

ABSTRACT

Despite significant success, targeted therapeutics such as kinase inhibitors (KIs) still pose adverse events such as the cardiotoxicity. There is a lot of variation in the type and intensity of cardiotoxicity caused by different KIs and current pre-clinical models are inadequate to predict it. Thus, there is a need to develop more simple and rapid models for screening of novel KIs at the pre-clinical step itself. We thus aimed to establish a rapid and robust pre-clinical animal model for predicting cardiotoxicity of KIs and identify comparative cardiotoxicity profiles of a panel of FDA-approved KIs. Heart rate measurement and survival analysis of Daphnia was performed at regular intervals following treatment with ten KIs that were approved for the treatment of various cancers. The heart rates of Daphnia as well as the survival varied between KIs in a dose and time dependent manner suggesting differential cardiotoxicity profiles of various KIs. Further, the correlation between the cardiotoxicity and survival also varied among the ten KIs. Importantly, sorafenib and vemurafenib displayed maximum and least cardiotoxicity, respectively. The comparative cardiotoxicity profiles also are in conformity with the previous studies indicating the utility of Daphnia as a valuable and relevant animal model to rapidly predict the cardiotoxicity of novel KIs at a pre-clinical stage.


Subject(s)
Cardiotoxicity , Daphnia , Protein Kinase Inhibitors , Animals , Protein Kinase Inhibitors/toxicity , Daphnia/drug effects , Heart Rate/drug effects , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Antineoplastic Agents/toxicity
17.
Aquat Toxicol ; 271: 106924, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38678909

ABSTRACT

The effects of fluoxetine (antidepressant) and ketoprofen (analgesic) on aquatic ecosystems are largely unknown, particularly as a mixture. This work aimed at determining the effect of sublethal concentrations of both compounds individually (0.050 mg/L) and their mixture (0.025 mg/L each) on aquatic communities at a microcosm scale for a period of 14 d. Several physicochemical parameters were monitored to estimate functional alterations in the ecosystem, while model organisms (Daphnia magna, Lemna sp., Raphidocelis subcapitata) and the sequencing of 16S/18S rRNA genes permitted to determine effects on specific populations and changes in community composition, respectively. Disturbances were more clearly observed after 14 d, and overall, the microcosms containing fluoxetine (alone or in combination with ketoprofen) produced larger alterations on most physicochemical and biological variables, compared to the microcosm containing only ketoprofen, which suffered less severe changes. Differences in nitrogen species suggest alterations in the N-cycle due to the presence of fluoxetine; similarly, all pharmaceutical-containing systems decreased the brood rate of D. magna, while individual compounds inhibited the growth of Lemna sp. No clear trends were observed regarding R. subcapitata, as indirectly determined by chlorophyll quantification. The structure of micro-eukaryotic communities was altered in the fluoxetine-containing systems, whereas the structure of bacterial communities was affected to a greater extent by the mixture. The disruptions to the equilibrium of the microcosm demonstrate the ecological risk these compounds pose to aquatic ecosystems.


Subject(s)
Fluoxetine , Ketoprofen , Water Pollutants, Chemical , Fluoxetine/toxicity , Ketoprofen/toxicity , Animals , Water Pollutants, Chemical/toxicity , Ecosystem , Daphnia/drug effects , Araceae/drug effects
18.
Environ Toxicol Chem ; 43(6): 1378-1389, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38661477

ABSTRACT

Octahydro-tetramethyl-naphthalenyl-ethanone (OTNE) is a high-production volume fragrance material used in various down-the-drain consumer products. To assess aquatic risk, the Research Institute for Fragrance Materials (RIFM) uses a tiered data-driven framework to determine a risk characterization ratio, where the ratio of the predicted-environmental concentration to the predicted-no-effect concentration (PNEC) of <1 indicates an acceptable level of risk. Owing to its high production volume and the conservative nature of the RIFM framework, RIFM identified the need to utilize a species sensitivity distribution (SSD) approach to reduce the PNEC uncertainty for OTNE. Adding to the existing Daphnia magna, Danio rerio, and Desmodesmus subspicatus chronic studies, eight new chronic toxicity studies were conducted on the following species: Navicula pelliculosa, Chironomus riparius, Lemna gibba, Ceriodaphnia dubia, Hyalella azteca, Pimephales promelas, Anabaena flos-aquae, and Daphnia pulex. All toxicity data were summarized as chronic 10% effect concentration estimates using the most sensitive biological response. Daphnia magna was the most sensitive (0.032 mg/L), and D. subspicatus was the least sensitive (>2.6 mg/L, the OTNE solubility limit). The 5th percentile hazardous concentration (HC5) derived from the cumulative probability distribution of the chronic toxicity values for the 11 species was determined to be 0.0498 mg/L (95% confidence interval 0.0097-0.1159 mg/L). A series of "leave-one-out" and "add-one-in" simulations indicated the SSD was stable and robust. Add-one-in simulations determined that the probability of finding a species sensitive enough to lower the HC5 two- or threefold was 1/504 and 1/15,300, respectively. Given the high statistical confidence in this robust SSD, an additional application factor protection is likely not necessary. Nevertheless, to further ensure the protection of the environment, an application factor of 2 to the HC5, resulting in a PNEC of 0.0249 mg/L, is recommended. When combined with environmental exposure information, the overall hazard assessment is suitable for a probabilistic environmental risk assessment. Environ Toxicol Chem 2024;43:1378-1389. © 2024 SETAC.


Subject(s)
Naphthalenes , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Risk Assessment , Naphthalenes/toxicity , Naphthalenes/chemistry , Daphnia/drug effects , Perfume/toxicity , Toxicity Tests, Chronic , Chironomidae/drug effects , Zebrafish , Cladocera/drug effects
19.
Environ Toxicol Chem ; 43(6): 1339-1351, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38661510

ABSTRACT

Pharmaceuticals are found in aquatic environments due to their widespread use and environmental persistence. To date, a range of impairments to aquatic organisms has been reported with exposure to pharmaceuticals; however, further comparisons of their impacts across different species on the molecular level are needed. In the present study, the crustacean Daphnia magna and the freshwater fish Japanese medaka, common model organisms in aquatic toxicity, were exposed for 48 h to the common analgesics acetaminophen (ACT), diclofenac (DCF), and ibuprofen (IBU) at sublethal concentrations. A targeted metabolomic-based approach, using liquid chromatography-tandem mass spectrometry to quantify polar metabolites from individual daphnids and fish was used. Multivariate analyses and metabolite changes identified differences in the metabolite profile for D. magna and medaka, with more metabolic perturbations for D. magna. Pathway analyses uncovered disruptions to pathways associated with protein synthesis and amino acid metabolism with D. magna exposure to all three analgesics. In contrast, medaka exposure resulted in disrupted pathways with DCF only and not ACT and IBU. Overall, the observed perturbations in the biochemistry of both organisms were different and consistent with assessments using other endpoints reporting that D. magna is more sensitive to pollutants than medaka in short-term studies. Our findings demonstrate that molecular-level responses to analgesic exposure can reflect observations of other endpoints, such as immobilization and mortality. Thus, environmental metabolomics can be a valuable tool for selecting sentinel species for the biomonitoring of freshwater ecosystems while also uncovering mechanistic information. Environ Toxicol Chem 2024;43:1339-1351. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Acetaminophen , Daphnia , Diclofenac , Ibuprofen , Metabolomics , Oryzias , Water Pollutants, Chemical , Animals , Oryzias/metabolism , Daphnia/drug effects , Daphnia/metabolism , Acetaminophen/toxicity , Ibuprofen/toxicity , Water Pollutants, Chemical/toxicity , Diclofenac/toxicity , Daphnia magna
20.
Sci Total Environ ; 933: 172824, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38688370

ABSTRACT

A recently synthesized aminated 3,4-dioxygenated xanthone (Xantifoul2) was found to have promising antifouling (AF) effects against the settlement of the macrofouler Mytilus galloprovincialis larvae. Preliminary assessment indicated that Xantifoul2 has reduced ecotoxicological impacts: e.g., being non-toxic to the marine crustacea Artemia salina (<10 % mortality at 50 µM) and showing low bioconcentration factor in marine organisms. In order to meet the EU Biocidal Product Regulation, a preliminary hazard assessment of this new nature-inspired antifouling (NIAF) agent was conducted in this work. Xantifoul2 did not affect the swimming ability of the planktonic crustacean Daphnia magna, the growth of the diatom Phaeodactylum tricornutum, and the cellular respiration of luminescent Gram-negative bacteria Vibrio fischeri, supporting the low toxicity towards several non-target marine species. Regarding human cytotoxicity, Xantifoul2 did not affect the cell viability of retinal human cells (hTERT-RPE-1) and lipidomic studies revealed depletion of lipids involved in cell death, membrane modeling, lipid storage, and oxidative stress only at a high concentration (10 µM). Accelerated degradation studies in water were conducted under simulated sunlight to allow the understanding of putative transformation products (TPs) that could be generated in the aquatic ecosystems. Both Xantifoul2 and photolytic-treated Xantifoul2 in the aqueous matrix were therefore evaluated on several nuclear receptors (NRs). The results of this preliminary hazard assessment of Xantifoul2, combined with the high degradation rates in water, provide strong evidence of the safety of this AF agent under the evaluated conditions, and provide the support for future validation studies before this compound can be introduced in the market.


Subject(s)
Biofouling , Biofouling/prevention & control , Animals , Water Pollutants, Chemical/toxicity , Aliivibrio fischeri/drug effects , Xanthones/toxicity , Mytilus/drug effects , Mytilus/physiology , Diatoms/drug effects , Humans , Daphnia/drug effects , Daphnia/physiology , Artemia/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...