Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.511
Filter
1.
BMC Biotechnol ; 24(1): 38, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831403

ABSTRACT

BACKGROUND: Antibiotic-containing carrier systems are one option that offers the advantage of releasing active ingredients over a longer period of time. In vitro sustained drug release from a carrier system consisting of microporous ß-TCP ceramic and alginate has been reported in previous works. Alginate dialdehyde (ADA) gelatin gel showed both better mechanical properties when loaded into a ß-TCP ceramic and higher biodegradability than pure alginate. METHODS: Dual release of daptomycin and BMP-2 was measured on days 1, 2, 3, 6, 9, 14, 21, and 28 by HPLC and ELISA. After release, the microbial efficacy of the daptomycin was verified and the biocompatibility of the composite was tested in cell culture. RESULTS: Daptomycin and the model compound FITC protein A (n = 30) were released from the composite over 28 days. A Daptomycin release above the minimum inhibitory concentration (MIC) by day 9 and a burst release of 71.7 ± 5.9% were observed in the loaded ceramics. Low concentrations of BMP-2 were released from the loaded ceramics over 28 days.


Subject(s)
Anti-Bacterial Agents , Bone Morphogenetic Protein 2 , Calcium Phosphates , Ceramics , Daptomycin , Gelatin , Bone Morphogenetic Protein 2/chemistry , Bone Morphogenetic Protein 2/metabolism , Daptomycin/chemistry , Daptomycin/pharmacology , Gelatin/chemistry , Ceramics/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Calcium Phosphates/chemistry , Animals , Microbial Sensitivity Tests , Mice , Drug Carriers/chemistry , Drug Liberation
2.
J Phys Chem B ; 128(18): 4414-4427, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38690887

ABSTRACT

This study elucidated the mechanism of formation of a tripartite complex containing daptomycin (Dap), lipid II, and phospholipid phosphatidylglycerol in the bacterial septum membrane, which was previously reported as the cause of the antibacterial action of Dap against gram-positive bacteria via molecular dynamics and enhanced sampling methods. Others have suggested that this transient complex ushers in the inhibition of cell wall synthesis by obstructing the downstream polymerization and cross-linking processes involving lipid II, which is absent in the presence of cardiolipin lipid in the membrane. In this work, we observed that the complex was stabilized by Ca2+-mediated electrostatic interactions between Dap and lipid head groups, hydrophobic interaction, hydrogen bonds, and salt bridges between the lipopeptide and lipids and was associated with Dap concentration-dependent membrane depolarization, thinning of the bilayer, and increased lipid tail disorder. Residues Orn6 and Kyn13, along with the DXDG motif, made simultaneous contact with constituent lipids, hence playing a crucial role in the formation of the complex. Incorporating cardiolipin into the membrane model led to its competitively displacing lipid II away from the Dap, reducing the lifetime of the complex and the nonexistence of lipid tail disorder and membrane depolarization. No evidence of water permeation inside the membrane hydrophobic interior was noted in all of the systems studied. Additionally, it was shown that using hydrophobic contacts between Dap and lipids as collective variables for enhanced sampling gave rise to a free energy barrier for the translocation of the lipopeptide. A better understanding of Dap's antibacterial mechanism, as studied through this work, will help develop lipopeptide-based antibiotics for rising Dap-resistant bacteria.


Subject(s)
Anti-Bacterial Agents , Daptomycin , Molecular Dynamics Simulation , Phospholipids , Daptomycin/pharmacology , Daptomycin/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Phospholipids/chemistry , Phospholipids/metabolism , Uridine Diphosphate N-Acetylmuramic Acid/analogs & derivatives , Uridine Diphosphate N-Acetylmuramic Acid/metabolism , Uridine Diphosphate N-Acetylmuramic Acid/chemistry , Cell Membrane/drug effects , Cell Membrane/metabolism , Phosphatidylglycerols/chemistry , Hydrophobic and Hydrophilic Interactions , Cardiolipins/chemistry , Cardiolipins/metabolism
3.
Virulence ; 15(1): 2339703, 2024 12.
Article in English | MEDLINE | ID: mdl-38576396

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has posed enormous challenges to global public health. The use of antibiotics has greatly increased during the SARS-CoV-2 epidemic owing to the presence of bacterial co-infection and secondary bacterial infections. The antibiotics daptomycin (DAP) is widely used in the treatment of infectious diseases caused by gram-positive bacteria owing to its highly efficient antibacterial activity. It is pivotal to study the antibiotics usage options for patients of coronavirus infectious disease (COVID-19) with pneumonia those need admission to receive antibiotics treatment for bacterial co-infection in managing COVID-19 disease. Herein, we have revealed the interactions of DAP with the S protein of SARS-CoV-2 and the variant Omicron (B1.1.529) using the molecular docking approach and Omicron (B1.1.529) pseudovirus (PsV) mimic invasion. Molecular docking analysis shows that DAP has a certain degree of binding ability to the S protein of SARS-CoV-2 and several derived virus variants, and co-incubation of 1-100 µM DAP with cells promotes the entry of the PsV into human angiotensin-converting enzyme 2 (hACE2)-expressing HEK-293T cells (HEK-293T-hACE2), and this effect is related to the concentration of extracellular calcium ions (Ca2+). The PsV invasion rate in the HEK-293T-hACE2 cells concurrently with DAP incubation was 1.7 times of PsV infection alone. In general, our findings demonstrate that DAP promotes the infection of PsV into cells, which provides certain reference of antibiotics selection and usage optimization for clinicians to treat bacterial coinfection or secondary infection during SARS-CoV-2 infection.


Subject(s)
COVID-19 , Daptomycin , Molecular Docking Simulation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , SARS-CoV-2/drug effects , Humans , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Daptomycin/pharmacology , Daptomycin/therapeutic use , COVID-19/virology , Anti-Bacterial Agents/pharmacology , Protein Binding , Virus Internalization/drug effects , Betacoronavirus/drug effects , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , HEK293 Cells , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry
4.
JAAPA ; 37(4): 1-4, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38531037

ABSTRACT

ABSTRACT: Daptomycin-induced eosinophilic pneumonia (DIEP) is a rare complication of daptomycin use. Manifestations most commonly include fever, hypoxia, dyspnea, cough, eosinophilia, and lung changes on radiographs and CT. Patients typically have had recent daptomycin exposure and develop fever, dyspnea, infiltrates on chest radiograph, more than 25% eosinophils on bronchoalveolar lavage, and improvement of symptoms after withdrawal of daptomycin. Treatment includes discontinuation of daptomycin, corticosteroids, and supportive measures such as supplemental oxygen. Clinicians should have a high index of suspicion for DIEP in patients who develop new onset of pulmonary and systemic signs and symptoms after initiation of daptomycin.


Subject(s)
Daptomycin , Pulmonary Eosinophilia , Humans , Daptomycin/adverse effects , Pulmonary Eosinophilia/chemically induced , Pulmonary Eosinophilia/diagnosis , Anti-Bacterial Agents/adverse effects , Lung , Dyspnea
5.
Antimicrob Agents Chemother ; 68(5): e0141523, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38501807

ABSTRACT

Daptomycin is a concentration-dependent lipopeptide antibiotic for which exposure/effect relationships have been shown. Machine learning (ML) algorithms, developed to predict the individual exposure to drugs, have shown very good performances in comparison to maximum a posteriori Bayesian estimation (MAP-BE). The aim of this work was to predict the area under the blood concentration curve (AUC) of daptomycin from two samples and a few covariates using XGBoost ML algorithm trained on Monte Carlo simulations. Five thousand one hundred fifty patients were simulated from two literature population pharmacokinetics models. Data from the first model were split into a training set (75%) and a testing set (25%). Four ML algorithms were built to learn AUC based on daptomycin blood concentration samples at pre-dose and 1 h post-dose. The XGBoost model (best ML algorithm) with the lowest root mean square error (RMSE) in a 10-fold cross-validation experiment was evaluated in both the test set and the simulations from the second population pharmacokinetic model (validation). The ML model based on the two concentrations, the differences between these concentrations, and five other covariates (sex, weight, daptomycin dose, creatinine clearance, and body temperature) yielded very good AUC estimation in the test (relative bias/RMSE = 0.43/7.69%) and validation sets (relative bias/RMSE = 4.61/6.63%). The XGBoost ML model developed allowed accurate estimation of daptomycin AUC using C0, C1h, and a few covariates and could be used for exposure estimation and dose adjustment. This ML approach can facilitate the conduct of future therapeutic drug monitoring (TDM) studies.


Subject(s)
Anti-Bacterial Agents , Area Under Curve , Bayes Theorem , Daptomycin , Machine Learning , Monte Carlo Method , Daptomycin/pharmacokinetics , Daptomycin/blood , Humans , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/blood , Male , Female , Algorithms , Middle Aged , Adult , Aged
6.
Int J Antimicrob Agents ; 63(5): 107144, 2024 May.
Article in English | MEDLINE | ID: mdl-38494147

ABSTRACT

OBJECTIVES: Daptomycin is one of the few last-line antimicrobials available for the treatment of multidrug-resistant Staphylococcus aureus infections. An increasing number of daptomycin non-susceptible S. aureus infections has been reported worldwide, including Australia. Resistance to daptomycin is multifactorial and involves chromosomal mutations in genes encoding proteins involved in cell membrane and cell wall synthesis. METHODS: In this study, we performed broth microdilution (BMD) to determine the daptomycin minimum inhibitory concentration (MIC) of 66 clinical isolates of S. aureus previously reported as daptomycin non-susceptible by the VITEKⓇ 2. We used whole-genome sequencing to characterise the isolates and screened the genomes for mutations associated with daptomycin non-susceptibility. RESULTS: Only 56 of the 66 isolates had a daptomycin MIC >1 mg/L by BMD. Although the 66 isolates were polyclonal, ST22 was the predominant sequence type and one-third of the isolates were multidrug resistant. Daptomycin non-susceptibility was primarily associated with MprF mutations-at least one MprF mutation was identified in the 66 isolates. Twelve previously reported MprF mutations associated with daptomycin non-susceptibility were identified in 83% of the isolates. Novel MprF mutations identified included P314A, P314F, P314T, S337T, L341V, F349del, and T423R. CONCLUSIONS: Daptomycin non-susceptible S. aureus causing infections in Australia are polyclonal and harbour MprF mutation(s). The identification of multidrug-resistant daptomycin non-susceptible S. aureus is a public health concern.


Subject(s)
Aminoacyltransferases , Anti-Bacterial Agents , Bacterial Proteins , Daptomycin , Microbial Sensitivity Tests , Mutation , Staphylococcal Infections , Staphylococcus aureus , Whole Genome Sequencing , Daptomycin/pharmacology , Humans , Anti-Bacterial Agents/pharmacology , Australia , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Bacterial Proteins/genetics , Aminoacyltransferases/genetics , Male , Drug Resistance, Multiple, Bacterial/genetics , Female , Genome, Bacterial/genetics , Middle Aged , Aged , Adult
7.
Mol Microbiol ; 121(5): 1021-1038, 2024 05.
Article in English | MEDLINE | ID: mdl-38527904

ABSTRACT

Daptomycin is a last-line antibiotic commonly used to treat vancomycin-resistant Enterococci, but resistance evolves rapidly and further restricts already limited treatment options. While genetic determinants associated with clinical daptomycin resistance (DAPR) have been described, information on factors affecting the speed of DAPR acquisition is limited. The multiple peptide resistance factor (MprF), a phosphatidylglycerol-modifying enzyme involved in cationic antimicrobial resistance, is linked to DAPR in pathogens such as methicillin-resistant Staphylococcus aureus. Since Enterococcus faecalis encodes two paralogs of mprF and clinical DAPR mutations do not map to mprF, we hypothesized that functional redundancy between the paralogs prevents mprF-mediated resistance and masks other evolutionary pathways to DAPR. Here, we performed in vitro evolution to DAPR in mprF mutant background. We discovered that the absence of mprF results in slowed DAPR evolution and is associated with inactivating mutations in ftsH, resulting in the depletion of the chaperone repressor HrcA. We also report that ftsH is essential in the parental, but not in the ΔmprF, strain where FtsH depletion results in growth impairment in the parental strain, a phenotype associated with reduced extracellular acidification and reduced ability for metabolic reduction. This presents FtsH and HrcA as enticing targets for developing anti-resistance strategies.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Daptomycin , Enterococcus faecalis , Microbial Sensitivity Tests , Enterococcus faecalis/genetics , Enterococcus faecalis/drug effects , Enterococcus faecalis/metabolism , Enterococcus faecalis/enzymology , Daptomycin/pharmacology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Anti-Bacterial Agents/pharmacology , Mutation , Drug Resistance, Bacterial/genetics , Peptide Hydrolases/metabolism , Peptide Hydrolases/genetics , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/metabolism
8.
J Nat Prod ; 87(4): 664-674, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38362867

ABSTRACT

We report the molecular mechanism of action of gausemycins and the isolation of new members of the family, gausemycins C (1c), D (1d), E (1e), and F (1f), the minor components of the mixture. To elucidate the mechanism of action of gausemycins, we investigated the antimicrobial activity of the most active compounds, gausemycins A and B, in the presence of Ca2+, other metal ions, and phosphate. Gausemycins require a significantly higher Ca2+ concentration for maximum activity than daptomycin but lower than that required for malacidine and cadasides. Species-specific antimicrobial activity was found upon testing against a wide panel of Gram-positive bacteria. Membranoactivity of gausemycins was demonstrated upon their interactions with model lipid bilayers and micelles. The pore-forming ability was found to be dramatically dependent on the Ca2+ concentration and the membrane lipid composition. An NMR study of gausemycin B in zwitterionic and anionic micelles suggested the putative structure of the gausemycin/membrane complex and revealed the binding of Ca2+ by the macrocyclic domain of the antibiotic.


Subject(s)
Anti-Bacterial Agents , Calcium , Gram-Positive Bacteria , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Calcium/metabolism , Molecular Structure , Gram-Positive Bacteria/drug effects , Cell Membrane/drug effects , Daptomycin/pharmacology , Daptomycin/chemistry , Lipid Bilayers/chemistry , Micelles
9.
Int J Infect Dis ; 142: 106975, 2024 May.
Article in English | MEDLINE | ID: mdl-38395218

ABSTRACT

The recently published European Society of Cardiology guidelines for infective endocarditis management recommends daptomycin combination therapy for the treatment of staphylococcal endocarditis in severe penicillin allergy, rather than daptomycin monotherapy. We discuss the evidence base behind this recommendation, highlighting concerns regarding the lack of robust clinical studies, increased cost and logistical considerations, and adverse effects of combination therapy. Although further studies are required to elucidate the role of combination vs monotherapy in these patients, we propose a pragmatic management approach to reduce the risk of adverse antimicrobial side effects and limit costs, while aiming to maintain treatment efficacy.


Subject(s)
Daptomycin , Endocarditis, Bacterial , Endocarditis , Staphylococcal Infections , Humans , Anti-Bacterial Agents/therapeutic use , Daptomycin/therapeutic use , Endocarditis, Bacterial/drug therapy , Staphylococcal Infections/drug therapy , Endocarditis/drug therapy
10.
Microbiol Spectr ; 12(4): e0321223, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38411110

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) causes biofilm-related medical device infections. Phage-antibiotic combinations offer potential therapy due to proven in vitro antibiofilm efficacy. We evaluated phage-antibiotic synergy against biofilms using modified checkerboard and 24-h time-kill assays. Humanized-simulated daptomycin (DAP) (10, 8, and 6 mg/kg q24h) and ceftaroline (CPT) (600 mg q12h) were combined with Intesti13, Sb-1, and Romulus phages (tMOI 1, q12h). Assays were conducted in 168-h biofilm reactor models against DAP non-susceptible (DNS) vancomycin intermediate S. aureus (VISA) MRSA D712 and DAP-susceptible MRSA 8014. Synergistic activity and bactericidal activity were defined as ≥2log10 CFU/mL reduction from antibiotic-only regimens and ≥3log10 CFU/mL decrease from baseline at 24 h. Differences were analyzed by one-way analysis of variance with Tukey's post hoc test (P ≤ 0.05 is considered significant). Surviving bacteria were examined for antibiotic minimum biofilm inhibitory concentration (MBIC) changes and phage susceptibility. In 168-h biofilm models, humanized DAP 10 mg/kg + CPT, combined with a 2-phage cocktail (Intesti13 + Sb-1) against D712, and a 3-phage cocktail (Intesti13 + Sb-1 + Romulus) against 8014, demonstrated synergistic bactericidal activity. At 168 h, bacteria were minimally detectable [2log10 CFU/cm2 (-Δ4.23 and -Δ4.42 log10 CFU/cm2; both P < 0.001)]. Antibiotic MBIC remained unchanged compared to baseline across various time points. None of the tested bacteria at 168 h exhibited complete phage resistance. This study reveals bactericidal efficacy of DAP + CPT with 2-phage and 3-phage cocktails against DNS VISA and MRSA isolates (D712 and 8014) in biofilm models, maintaining susceptibility. Further research is needed for diverse strains and durations, aligning with infection care. IMPORTANCE: The prevalence of biofilm-associated medical device infections caused by methicillin-resistant Staphylococcus aureus (MRSA) presents a pressing medical challenge. The latest research demonstrates the potential of phage-antibiotic combinations (PACs) as a promising solution, notably in vitro antibiofilm efficacy. By adopting modified checkerboard and 24-h time-kill assays, the study investigated the synergistic action of phages combined with humanized-simulated doses of daptomycin (DAP) and ceftaroline (CPT). The results were promising: a combination of DAP, CPT, and either a 2-phage or 3-phage cocktail effectively exhibited bactericidal activity against both DAP non-susceptible vancomycin intermediate S. aureus MRSA and DAP-susceptible MRSA strains within 168-h biofilm models. Moreover, post-treatment evaluations revealed no discernible rise in antibiotic resistance or complete phage resistance. This pioneering work suggests the potential of PACs in addressing MRSA biofilm infections, setting the stage for further expansive research tailored to diverse bacterial strains and treatment durations.


Subject(s)
Benzimidazoles , Carboxylic Acids , Daptomycin , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Anti-Bacterial Agents/pharmacology , Daptomycin/pharmacology , Staphylococcus aureus , Cephalosporins/pharmacology , Ceftaroline , Biofilms , Microbial Sensitivity Tests , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology
11.
PLoS One ; 19(2): e0293423, 2024.
Article in English | MEDLINE | ID: mdl-38381737

ABSTRACT

BACKGROUND: In the treatment of methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections (BSIs), vancomycin stands as the prevalent therapeutic agent. Daptomycin remains an alternative antibiotic to treat MRSA BSIs in cases where vancomycin proves ineffective. However, studies have conflicted on whether daptomycin is more effective than vancomycin among patients with MRSA BSI. OBJECTIVE: To compare the effectiveness of daptomycin and vancomycin for the prevention of mortality among adult patients with MRSA BSI. METHODS: Systematic searches of databases were performed, including Embase, PubMed, Web of Science, and Cochrane Library. The Newcastle Ottawa Scale (NOS) and Revised Cochrane risk-of-bias tool for randomized trials (RoB 2) were used to assess the quality of individual observational and randomized control studies, respectively. Pooled odd ratios were calculated using random effects models. RESULTS: Twenty studies were included based on a priori set inclusion and exclusion criteria. Daptomycin treatment was associated with non-significant lower mortality odds, compared to vancomycin treatment (OR = 0.81; 95% CI, 0.62, 1.06). Sub-analyses based on the time patients were switched from another anti-MRSA treatment to daptomycin demonstrated that switching to daptomycin within 3 or 5 days was significantly associated with 55% and 45% decreased odds of all-cause mortality, respectively. However, switching to daptomycin any time after five days of treatment was not significantly associated with lower odds of mortality. Stratified analysis based on vancomycin minimum inhibitory concentration (MIC) revealed that daptomycin treatment among patients infected with MRSA strains with MIC≥1 mg/L was significantly associated with 40% lower odds of mortality compared to vancomycin treatment. CONCLUSION: Compared with vancomycin, an early switch from vancomycin to daptomycin was significantly associated with lower odds of mortality. In contrast, switching to daptomycin at any time only showed a trend towards reduced mortality, with a non-significant association. Therefore, the efficacy of early daptomycin use over vancomycin against mortality among MRSA BSIs patients may add evidence to the existing literature in support of switching to daptomycin early over remaining on vancomycin. More randomized and prospective studies are needed to assess this association.


Subject(s)
Bacteremia , Daptomycin , Methicillin-Resistant Staphylococcus aureus , Sepsis , Staphylococcal Infections , Adult , Humans , Vancomycin/adverse effects , Daptomycin/therapeutic use , Daptomycin/pharmacology , Bacteremia/drug therapy , Treatment Outcome , Retrospective Studies , Anti-Bacterial Agents/pharmacology , Sepsis/drug therapy , Microbial Sensitivity Tests
12.
Antimicrob Agents Chemother ; 68(4): e0138823, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38376187

ABSTRACT

Phage-antibiotic combinations (PAC) offer a potential solution for treating refractory daptomycin-nonsusceptible (DNS) methicillin-resistant Staphylococcus aureus (MRSA) infections. We examined PAC activity against two well-characterized DNS MRSA strains (C4 and C37) in vitro and ex vivo. PACs comprising daptomycin (DAP) ± ceftaroline (CPT) and a two-phage cocktail (Intesti13 + Sb-1) were evaluated for phage-antibiotic synergy (PAS) against high MRSA inoculum (109 CFU/mL) using (i) modified checkerboards (CB), (ii) 24-h time-kill assays (TKA), and (iii) 168-h ex vivo simulated endocardial vegetation (SEV) models. PAS was defined as a fractional inhibitory concentration ≤0.5 in CB minimum inhibitory concentration (MIC) or a ≥2 log10 CFU/mL reduction compared to the next best regimen in time-kill assays and SEV models. Significant differences between regimens were assessed by analysis of variance with Tukey's post hoc modification (α = 0.05). CB assays revealed PAS with Intesti13 + Sb-1 + DAP ± CPT. In 24-h time-kill assays against C4, Intesti13 + Sb-1 + DAP ± CPT demonstrated synergistic activity (-Δ7.21 and -Δ7.39 log10 CFU/mL, respectively) (P < 0.05 each). Against C37, Intesti13 + Sb-1 + CPT ± DAP was equally effective (-Δ7.14 log10 CFU/mL each) and not significantly different from DAP + Intesti13 + Sb-1 (-Δ6.65 log10 CFU/mL). In 168-h SEV models against C4 and C37, DAP ± CPT + the phage cocktail exerted synergistic activities, significantly reducing bio-burdens to the detection limit [2 log10 CFU/g (-Δ7.07 and -Δ7.11 log10 CFU/g, respectively)] (P < 0.001). At 168 h, both models maintained stable MICs, and no treatment-emergent phage resistance occurred with DAP or DAP + CPT regimens. The two-phage cocktail demonstrated synergistic activity against two DNS MRSA isolates in combination with DAP + CPT in vitro and ex vivo. Further in vivo PAC investigations are needed.


Subject(s)
Daptomycin , Methicillin-Resistant Staphylococcus aureus , Daptomycin/pharmacology , Cephalosporins/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Ceftaroline , Microbial Sensitivity Tests
13.
J Bacteriol ; 206(3): e0036823, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38376203

ABSTRACT

Daptomycin is a cyclic lipopeptide antibiotic used to treat infections caused by some Gram-positive bacteria. Daptomycin disrupts synthesis of the peptidoglycan (PG) cell wall by inserting into the cytoplasmic membrane and binding multiple forms of the undecaprenyl carrier lipid required for PG synthesis. Membrane insertion requires phosphatidylglycerol, so studies of daptomycin can provide insight into assembly and maintenance of the cytoplasmic membrane. Here, we studied the effects of daptomycin on Clostridioides difficile, the leading cause of healthcare-associated diarrhea. We observed that growth of C. difficile strain R20291 in the presence of sub-MIC levels of daptomycin resulted in a chaining phenotype, minicell formation, and lysis-phenotypes broadly consistent with perturbation of membranes and PG synthesis. We also selected for and characterized eight mutants with elevated daptomycin resistance. The mutations in these mutants were mapped to four genes: cdsA (cdr20291_2041), ftsH2 (cdr20291_3396), esrR (cdr20291_1187), and draS (cdr20291_2456). Of these four genes, only draS has been characterized previously. Follow-up studies indicate these mutations confer daptomycin resistance by two general mechanisms: reducing the amount of phosphatidylglycerol in the cytoplasmic membrane (cdsA) or altering the regulation of membrane processes (ftsH2, esrR, and draS). Thus, the mutants described here provide insights into phospholipid synthesis and identify signal transduction systems involved in cell envelope biogenesis and stress response in C. difficile. IMPORTANCE: C. difficile is the leading cause of healthcare-associated diarrhea and is a threat to public health due to the risk of recurrent infections. Understanding biosynthesis of the atypical cell envelope of C. difficile may provide insight into novel drug targets to selectively inhibit C. difficile. Here, we identified mutations that increased daptomycin resistance and allowed us to better understand phospholipid synthesis, cell envelope biogenesis, and stress response in C. difficile.


Subject(s)
Clostridioides difficile , Daptomycin , Humans , Daptomycin/pharmacology , Daptomycin/chemistry , Clostridioides difficile/genetics , Clostridioides difficile/metabolism , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Phosphatidylglycerols , Diarrhea
14.
J Antimicrob Chemother ; 79(4): 712-721, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38323372

ABSTRACT

BACKGROUND: The indications of daptomycin have been extended to off-label indications including prosthesis-related infection, and bone and joint infection (BJI). However, efficacy and safety have not been thoroughly demonstrated compared with the standard of care. This systematic review and meta-analysis aimed to compare the treatment effect of daptomycin and glycopeptides for complicated infections. MATERIALS AND METHODS: MEDLINE, Embase and Web of Science were searched for randomized controlled trials (RCTs) comparing daptomycin and standard of care for Gram-positive infections, published until 30 June 2021. The primary outcome was defined as all-cause mortality. Secondary outcomes were clinical and microbiological success. The main safety outcome was any severe adverse event (SAE) (grade  ≥3). RESULTS: Overall, eight RCTs were included in the meta-analysis, totalling 1095 patients. Six (75%) were in complicated skin and soft-structure infections, one (12.5%) in bacteraemia and one (12.5%) in a BJI setting. Six RCTs used vancomycin as a comparator and two used either vancomycin or teicoplanin. All-cause mortality and clinical cure were not different between groups. The microbiological cure rate was superior in patients who received daptomycin [risk ratio (RR) = 1.17 (95% CI: 1.01-1.35)]. The risk of SAEs [RR = 0.57 (95% CI: 0.36-0.90)] was lower in the daptomycin arm. CONCLUSIONS: While daptomycin is associated with a significantly lower risk of SAEs and a better microbiological eradication, substantial uncertainty remains about the best treatment strategy in the absence of good-quality evidence, especially in bacteraemia and endocarditis where further RCTs should be conducted.


Subject(s)
Bacteremia , Daptomycin , Humans , Daptomycin/adverse effects , Vancomycin/adverse effects , Glycopeptides/adverse effects , Bacteremia/drug therapy , Anti-Bacterial Agents/adverse effects
15.
Antimicrob Agents Chemother ; 68(3): e0157923, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38349160

ABSTRACT

Adequate dosing of antimicrobials is paramount for treating infections in critically ill patients undergoing kidney replacement therapy; however, little is known about antimicrobial removal by sustained low-efficiency dialysis (SLED). The objective was to quantify the removal of cefepime, daptomycin, meropenem, piperacillin-tazobactam, and vancomycin in patients undergoing SLED. Adult patients ≥18 years with acute kidney injury (AKI) or end-stage kidney disease receiving one of the select antimicrobials and requiring SLED were included. Blood and dialysate flow rates were maintained at 250 and 100 mL/min, respectively. Simultaneous arterial and venous blood samples for the analysis of antibiotic concentrations were collected hourly for 8 hours during SLED (on-SLED). Arterial samples were collected every 2 hours for up to 6 hours while not receiving SLED (off-SLED) for the calculation of SLED clearance, half-life (t1/2) on-SLED and off-SLED, and the fraction of removal by SLED (fD). Twenty-one patients completed the study: 52% male, mean age (±SD) 53 ± 13 years, and mean weight of 98 ± 30 kg. Eighty-six percent had AKI, and 4 patients were receiving cefepime, 3 daptomycin, 10 meropenem, 6 piperacillin-tazobactam, and 13 vancomycin. The average SLED time was 7.3 ± 1.1 hours, and the mean ultrafiltration rate was 95 ± 52 mL/hour (range 10-211). The t1/2 on-SLED was substantially lower than the off-SLED t1/2 for all antimicrobials, and the SLED fD varied between 44% and 77%. An 8-hour SLED session led to significant elimination of most antimicrobials evaluated. If SLED is performed, modification of the dosing regimen is warranted to avoid subtherapeutic concentrations.


Subject(s)
Acute Kidney Injury , Daptomycin , Hybrid Renal Replacement Therapy , Adult , Humans , Male , Middle Aged , Aged , Female , Meropenem/therapeutic use , Vancomycin/therapeutic use , Cefepime/therapeutic use , Daptomycin/therapeutic use , Renal Dialysis , Anti-Bacterial Agents , Piperacillin, Tazobactam Drug Combination/therapeutic use , Critical Illness , Acute Kidney Injury/drug therapy , Retrospective Studies
17.
Lancet Microbe ; 5(2): e151-e163, 2024 02.
Article in English | MEDLINE | ID: mdl-38219758

ABSTRACT

BACKGROUND: DNA sequencing could become an alternative to in vitro antibiotic susceptibility testing (AST) methods for determining antibiotic resistance by detecting genetic determinants associated with decreased antibiotic susceptibility. Here, we aimed to assess and improve the accuracy of antibiotic resistance determination from Enterococcus faecium genomes for diagnosis and surveillance purposes. METHODS: In this retrospective diagnostic accuracy study, we first conducted a literature search in PubMed on Jan 14, 2021, to compile a catalogue of genes and mutations predictive of antibiotic resistance in E faecium. We then evaluated the diagnostic accuracy of this database to determine susceptibility to 12 different, clinically relevant antibiotics using a diverse population of 4382 E faecium isolates with available whole-genome sequences and in vitro culture-based AST phenotypes. Isolates were obtained from various sources in 11 countries worldwide between 2000 and 2018. We included isolates tested with broth microdilution, Vitek 2, and disc diffusion, and antibiotics with at least 50 susceptible and 50 resistant isolates. Phenotypic resistance was derived from raw minimum inhibitory concentrations and measured inhibition diameters, and harmonised primarily using the breakpoints set by the European Committee on Antimicrobial Susceptibility Testing. A bioinformatics pipeline was developed to process raw sequencing reads, identify antibiotic resistance genetic determinants, and report genotypic resistance. We used our curated database, as well as ResFinder, AMRFinderPlus, and LRE-Finder, to assess the accuracy of genotypic predictions against phenotypic resistance. FINDINGS: We curated a catalogue of 228 genetic markers involved in resistance to 12 antibiotics in E faecium. Very accurate genotypic predictions were obtained for ampicillin (sensitivity 99·7% [95% CI 99·5-99·9] and specificity 97·9% [95·8-99·0]), ciprofloxacin (98·0% [96·4-98·9] and 98·8% [95·9-99·7]), vancomycin (98·8% [98·3-99·2] and 98·8% [98·0-99·3]), and linezolid resistance (after re-testing false negatives: 100·0% [90·8-100·0] and 98·3% [97·8-98·7]). High sensitivity was obtained for tetracycline (99·5% [99·1-99·7]), teicoplanin (98·9% [98·4-99·3]), and high-level resistance to aminoglycosides (97·7% [96·6-98·4] for streptomycin and 96·8% [95·8-97·5] for gentamicin), although at lower specificity (60-90%). Sensitivity was expectedly low for daptomycin (73·6% [65·1-80·6]) and tigecycline (38·3% [27·1-51·0]), for which the genetic basis of resistance is not fully characterised. Compared with other antibiotic resistance databases and bioinformatic tools, our curated database was similarly accurate at detecting resistance to ciprofloxacin and linezolid and high-level resistance to streptomycin and gentamicin, but had better sensitivity for detecting resistance to ampicillin, tigecycline, daptomycin, and quinupristin-dalfopristin, and better specificity for ampicillin, vancomycin, teicoplanin, and tetracycline resistance. In a validation dataset of 382 isolates, similar or improved diagnostic accuracies were also achieved. INTERPRETATION: To our knowledge, this work represents the largest published evaluation to date of the accuracy of antibiotic susceptibility predictions from E faecium genomes. The results and resources will facilitate the adoption of whole-genome sequencing as a tool for the diagnosis and surveillance of antimicrobial resistance in E faecium. A complete characterisation of the genetic basis of resistance to last-line antibiotics, and the mechanisms mediating antibiotic resistance silencing, are needed to close the remaining sensitivity and specificity gaps in genotypic predictions. FUNDING: Wellcome Trust, UK Department of Health, British Society for Antimicrobial Chemotherapy, Academy of Medical Sciences and the Health Foundation, Medical Research Council Newton Fund, Vietnamese Ministry of Science and Technology, and European Society of Clinical Microbiology and Infectious Disease.


Subject(s)
Daptomycin , Enterococcus faecium , Enterococcus faecium/genetics , Vancomycin/pharmacology , Linezolid , Tigecycline , Teicoplanin , Retrospective Studies , Anti-Bacterial Agents/pharmacology , Ampicillin/pharmacology , Drug Resistance, Microbial , Ciprofloxacin , Phenotype , Gentamicins , Streptomycin
18.
Antimicrob Agents Chemother ; 68(3): e0106923, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38289081

ABSTRACT

Daptomycin (DAP) is often used as a first-line therapy to treat vancomycin-resistant Enterococcus faecium infections, but emergence of DAP non-susceptibility threatens the effectiveness of this antibiotic. Moreover, current methods to determine DAP minimum inhibitory concentrations (MICs) have poor reproducibility and accuracy. In enterococci, DAP resistance is mediated by the LiaFSR cell membrane stress response system, and deletion of liaR encoding the response regulator results in hypersusceptibility to DAP and antimicrobial peptides. The main genes regulated by LiaR are a cluster of three genes, designated liaXYZ. In Enterococcus faecalis, LiaX is surface-exposed with a C-terminus that functions as a negative regulator of cell membrane remodeling and an N-terminal domain that is released to the extracellular medium where it binds DAP. Thus, in E. faecalis, LiaX functions as a sentinel molecule recognizing DAP and controlling the cell membrane response, but less is known about LiaX in E. faecium. Here, we found that liaX is essential in E. faecium with an activated LiaFSR system. Unlike E. faecalis, E. faecium LiaX is not detected in the extracellular milieu and does not appear to alter phospholipid architecture. We further postulated that LiaX could be used as a surrogate marker for cell envelope activation and non-susceptibility to DAP. For this purpose, we developed and optimized a LiaX enzyme-linked immunosorbent assay (ELISA). We then assessed 86 clinical E. faecium bloodstream isolates for DAP MICs and used whole genome sequencing to assess for substitutions in LiaX. All DAP-resistant clinical strains of E. faecium exhibited elevated LiaX levels. Strikingly, 73% of DAP-susceptible isolates by standard MIC determination also had elevated LiaX ELISAs compared to a well-characterized DAP-susceptible strain. Phylogenetic analyses of predicted amino acid substitutions showed 12 different variants of LiaX without a specific association with DAP MIC or LiaX ELISA values. Our findings also suggest that many E. faecium isolates that test DAP susceptible by standard MIC determination are likely to have an activated cell stress response that may predispose to DAP failure. As LiaX appears to be essential for the cell envelope response to DAP, its detection could prove useful to improve the accuracy of susceptibility testing by anticipating therapeutic failure.


Subject(s)
Daptomycin , Enterococcus faecium , Gram-Positive Bacterial Infections , Humans , Daptomycin/pharmacology , Daptomycin/therapeutic use , Phylogeny , Reproducibility of Results , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/therapeutic use , Cell Membrane , Biomarkers/metabolism , Microbial Sensitivity Tests , Enterococcus faecalis , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/metabolism
19.
Microbiol Spectr ; 12(2): e0363823, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38214521

ABSTRACT

Drug-resistant bacteria are a serious threat to human health as antibiotics are gradually losing their clinical efficacy. Comprehending the mechanism of action of antimicrobials and their resistance mechanisms plays a key role in developing new agents to fight antimicrobial resistance. The lipopeptide daptomycin is an antibiotic that selectively disrupts Gram-positive bacterial membranes, thereby showing slower resistance development than many classical drugs. Consequently, it is often used as a last resort antibiotic to preserve its use as one of the least potent antibiotics at our disposal. The mode of action of daptomycin has been debated but was recently found to involve the formation of a tripartite complex between undecaprenyl precursors of cell wall biosynthesis and the anionic phospholipid phosphatidylglycerol. BceAB-type ABC transporters are known to confer resistance to antimicrobial peptides that sequester some precursors of the peptidoglycan, such as the undecaprenyl pyrophosphate or lipid II. The expression of these transporters is upregulated by dedicated two-component regulatory systems in the presence of antimicrobial peptides that are recognized by the system. Here, we investigated whether daptomycin evades resistance mediated by the BceAB transporter from the bacterial pathogen Streptococcus pneumoniae. Although daptomycin can bind to the transporter, our data showed that the BceAB transporter does not mediate resistance to the drug and its expression is not induced in its presence. These findings show that the pioneering membrane-active daptomycin has the potential to escape the resistance mechanism mediated by BceAB-type transporters and confirm that the development of this class of compounds has promising clinical applications.IMPORTANCEAntibiotic resistance is rising in all parts of the world. New resistance mechanisms are emerging and dangerously spreading, threatening our ability to treat common infectious diseases. Daptomycin is an antimicrobial peptide that is one of the last antibiotics approved for clinical use. Understanding the resistance mechanisms toward last-resort antibiotics such as daptomycin is critical for the success of future antimicrobial therapies. BceAB-type ABC transporters confer resistance to antimicrobial peptides that target precursors of cell-wall synthesis. In this study, we showed that the BceAB transporter from the human pathogen Streptococcus pneumoniae does not confer resistance to daptomycin, suggesting that this drug and other calcium-dependent lipopeptide antibiotics have the potential to evade the action of this type of ABC transporters in other bacterial pathogens.


Subject(s)
Daptomycin , Humans , Daptomycin/pharmacology , Streptococcus pneumoniae/metabolism , Drug Resistance, Bacterial , Anti-Bacterial Agents/pharmacology , Membrane Transport Proteins , Lipopeptides/metabolism , ATP-Binding Cassette Transporters/metabolism , Bacteria/metabolism , Antimicrobial Peptides
20.
Microbiol Spectr ; 12(2): e0367223, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38230937

ABSTRACT

Enterococcus faecalis (Efs) and Enterococcus faecium (Efm) are major causes of multiresistant healthcare-associated or nosocomial infections. Efm has been traditionally divided into clades A (healthcare associated) and B (community associated) but clade B has been recently reassigned to Enterococcus lactis (Elc). However, identification techniques do not routinely differentiate Elc from Efm. As part of a longitudinal study to investigate the antimicrobial resistance of Enterococcus in dairy cattle, isolates initially identified as Efm were confirmed as Elc after Oxford-Nanopore long-fragment whole-genome sequencing and genome comparisons. An Efm-specific PCR assay was developed and used to identify isolates recovered from animal feces on five farms, resulting in 44 Efs, 23 Efm, and 59 Elc. Resistance, determined by broth microdilution, was more frequent in Efs than in Efm and Elc but all isolates were susceptible to ampicillin, daptomycin, teicoplanin, tigecycline, and vancomycin. Genome sequencing analysis of 32 isolates identified 23 antimicrobial resistance genes (ARGs, mostly plasmid-located) and 2 single nucleotide polymorphisms associated with resistance to 10 antimicrobial classes, showing high concordance with phenotypic resistance. Notably, linezolid resistance in Efm was encoded by the optrA gene, located in plasmids downstream of the fexA gene. Although most Elc lacked virulence factors and genetic determinants of resistance, one isolate carried a plasmid with eight ARGs. This study showed that Elc is more prevalent than Efm in dairy cattle but carries fewer ARGs and virulence genes. However, Elc can carry multi-drug-resistant plasmids like those harbored by Efm and could act as a donor of ARGs for other pathogenic enterococcal species.IMPORTANCEEnterococcus species identification is crucial due to differences in pathogenicity and antibiotic resistance profiles. The failure of traditional methods or whole-genome sequencing-based taxonomic classifiers to distinguish Enterococcus lactis (Elc) from Enterococcus faecium (Efm) results in a biased interpretation of Efm epidemiology. The Efm species-specific real-time PCR assay developed here will help to properly identify Efm (only the formerly known clade A) in future studies. Here, we showed that Elc is prevalent in dairy cattle, and although this species carries fewer genetic determinants of resistance (GDRs) than Enterococcus faecalis (Efs) and Efm, it can carry multi-drug-resistant (MDR) plasmids and could act as a donor of resistance genes for other pathogenic enterococcal species. Although all isolates (Efs, Efm, and Elc) were susceptible to critically or highly important antibiotics like daptomycin, teicoplanin, tigecycline, and vancomycin, the presence of GDRs in MDR-plasmids is a concern since antimicrobials commonly used in livestock could co-select and confer resistance to critically important antimicrobials not used in food-producing animals.


Subject(s)
Anti-Infective Agents , Daptomycin , Enterococcus faecium , Gram-Positive Bacterial Infections , Animals , Cattle , Anti-Bacterial Agents/pharmacology , Vancomycin , Teicoplanin , Tigecycline , Farms , Longitudinal Studies , Drug Resistance, Bacterial/genetics , Enterococcus , Enterococcus faecium/genetics , Enterococcus faecalis/genetics , Microbial Sensitivity Tests , Gram-Positive Bacterial Infections/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...