Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.890
Filter
1.
J Chem Theory Comput ; 20(10): 4218-4228, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38720241

ABSTRACT

iso-Orotate decarboxylase (IDCase), which is involved in the thymidine salvage pathway, has attracted considerable interest owing to its chemical similarity to a hypothetical DNA decarboxylase in mammals. Although valuable insights into the active DNA demethylation of 5-methyl-cytosine can be obtained from the decarboxylation mechanism of 5-carboxyl-uracil (5caU) catalyzed by IDCase, this mechanism remains under debate. In this study, the catalytic mechanism of 5caU decarboxylation by IDCase was studied using hybrid quantum mechanics/molecular mechanics (QM/MM) methodologies and density functional theory (DFT) calculations with a truncated model. The calculations supported a mechanism involving three sequential stages: activation of the 5caU substrate via proton transfer from an arginine (R262') to the carboxyl group of 5caU, formation of a tetrahedral intermediate, and decarboxylation of the tetrahedral intermediate to generate uracil as the product. The reaction pathways and structures obtained using the QM/MM and DFT methods coincided with each other. These simulations provided detailed insights into the unique mechanism of IDCase, clarifying various unresolved issues, such as the critical role of R262'. In addition, aspartate D323 was found to act as a general base in the tetrahedral intermediate formation step and a general acid in the later C-C bond cleavage step.


Subject(s)
Density Functional Theory , Decarboxylation , Molecular Dynamics Simulation , Quantum Theory , Carboxy-Lyases/chemistry , Carboxy-Lyases/metabolism , Biocatalysis , Orotidine-5'-Phosphate Decarboxylase/chemistry , Orotidine-5'-Phosphate Decarboxylase/metabolism , Uracil/chemistry , Uracil/metabolism
2.
Phys Chem Chem Phys ; 26(16): 12331-12344, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38598177

ABSTRACT

Oxaloacetic acid (OAA) is a ß-ketocarboxylic acid, which plays an important role as an intermediate in some metabolic pathways, including the tricarboxylic acid cycle, gluconeogenesis and fatty acid biosynthesis. Animal studies have indicated that supplementing oxaloacetic acid shows an increase of lifespan and other substantial health benefits including mitochondrial DNA protection, and protection of retinal, neural and pancreatic tissues. Most of the chemical transformations of OAA in the metabolic pathways have been extensively studied; however, the understanding of decarboxylation of OAA at the atomic level is relatively lacking. Here, we carried out MD simulations and combined quantum mechanical/molecular mechanical (QM/MM) calculations as an example to systematically elucidate the binding modes, keto-enol tautomerization and decarboxylation of OAA in the active site of macrophomate synthase (MPS), which is a Mg(II)-dependent bifunctional enzyme that catalyzes both the decarboxylation of OAA and [4+2] cycloaddition of 2-pyrone with the decarboxylated intermediate of OAA (pyruvate enolate). On the basis of our calculations, it was found that the Mg2+-coordinated oxaloacetate may exist in enol forms and keto forms. The four keto forms can be transformed into each other by simply rotating the C2-C3 single bond, nevertheless, the keto-enol tautomerization strictly requires the assistance of pocket water molecules. In addition, the decarboxylation is stereo-electronically controlled, i.e., it is the relative orientation of the terminal carboxyl anion that determines the rate of decarboxylation. As such, the chemistry of oxaloacetate in the active site of MPS is complex. On one hand, the most stable binding mode (K-I) may undergo enol-keto tautomerization to isomerize to the enol form, which may further react with the second substrate; on the other hand, K-I may isomerize to another binding mode K-II to proceed decarboxylation to generate pyruvate enolate and CO2. Starting from K-I, the enol-keto tautomerization corresponds to a barrier of 16.2 kcal mol-1, whereas the decarboxylation is associated with an overall barrier of 19.7 kcal mol-1. These findings may provide useful information for understanding the chemistry of OAA and the catalysis of related enzymes, and they are basically in agreement with the available experimental kinetic data.


Subject(s)
Ascomycota , Multienzyme Complexes , Catalytic Domain , Decarboxylation , Molecular Dynamics Simulation , Oxaloacetic Acid/metabolism , Oxaloacetic Acid/chemistry , Quantum Theory , Stereoisomerism , Multienzyme Complexes/chemistry , Ascomycota/enzymology
3.
Molecules ; 29(4)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38398651

ABSTRACT

The development of selective extraction protocols for Cannabis-inflorescence constituents is still a significant challenge. The characteristic Cannabis fragrance can be mainly ascribed to monoterpenes, sesquiterpenes and oxygenated terpenoids. This work investigates the entrapment of Cannabis terpenes in olive oil from inflorescences via stripping under mild vacuum during the rapid microwave-assisted decarboxylation of cannabinoids (MW, 120 °C, 30 min) and after subsequent extraction of cannabinoids (60 and 100 °C). The profiles of the volatiles collected in the oil samples before and after the extraction step were evaluated using static headspace solid-phase microextraction (HS-SPME), followed by gas chromatography coupled to mass spectrometry (GC-MS). Between the three fractions obtained, the first shows the highest volatile content (~37,400 mg/kg oil), with α-pinene, ß-pinene, ß-myrcene, limonene and trans-ß-caryophyllene as the main components. The MW-assisted extraction at 60 and 100 °C of inflorescences using the collected oil fractions allowed an increase of 70% and 86% of total terpene content, respectively. Considering the initial terpene amount of 91,324.7 ± 2774.4 mg/kg dry inflorescences, the percentage of recovery after decarboxylation was close to 58% (mainly monoterpenes), while it reached nearly 100% (including sesquiterpenes) after extraction. The selective and efficient extraction of volatile compounds, while avoiding direct contact between the matrix and extraction solvents, paves the way for specific applications in various aromatic plants. In this context, aromatized extracts can be employed to create innovative Cannabis-based products within the hemp processing industry, as well as in perfumery, cosmetics, dietary supplements, food, and the pharmaceutical industry.


Subject(s)
Cannabinoids , Cannabis , Hallucinogens , Polycyclic Sesquiterpenes , Sesquiterpenes , Terpenes/chemistry , Cannabinoids/chemistry , Cannabis/chemistry , Olive Oil , Decarboxylation , Microwaves , Monoterpenes/chemistry , Sesquiterpenes/chemistry , Cannabinoid Receptor Agonists
4.
Mol Cell ; 84(5): 981-989.e7, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38295803

ABSTRACT

Coenzyme Q (CoQ) is a redox lipid that fulfills critical functions in cellular bioenergetics and homeostasis. CoQ is synthesized by a multi-step pathway that involves several COQ proteins. Two steps of the eukaryotic pathway, the decarboxylation and hydroxylation of position C1, have remained uncharacterized. Here, we provide evidence that these two reactions occur in a single oxidative decarboxylation step catalyzed by COQ4. We demonstrate that COQ4 complements an Escherichia coli strain deficient for C1 decarboxylation and hydroxylation and that COQ4 displays oxidative decarboxylation activity in the non-CoQ producer Corynebacterium glutamicum. Overall, our results substantiate that COQ4 contributes to CoQ biosynthesis, not only via its previously proposed structural role but also via the oxidative decarboxylation of CoQ precursors. These findings fill a major gap in the knowledge of eukaryotic CoQ biosynthesis and shed light on the pathophysiology of human primary CoQ deficiency due to COQ4 mutations.


Subject(s)
Eukaryotic Cells , Ubiquinone , Humans , Decarboxylation , Eukaryotic Cells/metabolism , Oxidation-Reduction , Escherichia coli/genetics , Escherichia coli/metabolism , Oxidative Stress , Mitochondrial Proteins/metabolism
5.
ChemSusChem ; 17(3): e202301326, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-37985235

ABSTRACT

The realm of photobiocatalytic alkane biofuel synthesis has burgeoned recently; however, the current dearth of well-established and scalable production methodologies in this domain remains conspicuous. In this investigation, we engineered a modified form of membrane-associated fatty acid photodecarboxylase sourced from Micractinium conductrix (McFAP). This endeavour resulted in creating an innovative assembled photoenzyme-membrane (protein load 5 mg cm-2 ), subsequently integrated into an illuminated flow apparatus to achieve uninterrupted generation of alkane biofuels. Through batch experiments, the photoenzyme-membrane exhibited its prowess in converting fatty acids spanning varying chain lengths (C6-C18). Following this, the membrane-flow mesoscale reactor attained a maximum space-time yield of 1.2 mmol L-1 h-1 (C8) and demonstrated commendable catalytic proficiency across eight consecutive cycles, culminating in a cumulative runtime of eight hours. These findings collectively underscored the photoenzyme-membrane's capability to facilitate the biotransformation of diverse fatty acids, furnishing valuable benchmarks for the conversion of biomass via photobiocatalysis.


Subject(s)
Alkanes , Fatty Acids , Decarboxylation , Catalysis , Alkanes/metabolism , Biofuels
6.
Nat Chem ; 15(12): 1672-1682, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37973941

ABSTRACT

Stereoselective protonation is a challenge in asymmetric catalysis. The small size and high rate of transfer of protons mean that face-selective delivery to planar intermediates is hard to control, but it can unlock previously obscure asymmetric transformations. Particularly, when coupled with a preceding decarboxylation, enantioselective protonation can convert the abundant acid feedstocks into structurally diverse chiral molecules. Here an anchoring group strategy is demonstrated as a potential alternative and supplement to the conventional structural modification of catalysts by creating additional catalyst-substrate interactions. We show that a tailored benzamide group in aminomalonic acids can help build a coordinated network of non-covalent interactions, including hydrogen bonds, π-π interactions and dispersion forces, with a chiral acid catalyst. This allows enantioselective decarboxylative protonation to give α-amino acids. The malonate-based synthesis introduces side chains via a facile substitution of aminomalonic esters and thus can access structurally and functionally diverse amino acids.


Subject(s)
Amines , Amino Acids , Amino Acids/chemistry , Esters , Decarboxylation , Malonates , Catalysis
7.
Nature ; 623(7988): 745-751, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37788684

ABSTRACT

Modern retrosynthetic analysis in organic chemistry is based on the principle of polar relationships between functional groups to guide the design of synthetic routes1. This method, termed polar retrosynthetic analysis, assigns partial positive (electrophilic) or negative (nucleophilic) charges to constituent functional groups in complex molecules followed by disconnecting bonds between opposing charges2-4. Although this approach forms the basis of undergraduate curriculum in organic chemistry5 and strategic applications of most synthetic methods6, the implementation often requires a long list of ancillary considerations to mitigate chemoselectivity and oxidation state issues involving protecting groups and precise reaction choreography3,4,7. Here we report a radical-based Ni/Ag-electrocatalytic cross-coupling of substituted carboxylic acids, thereby enabling an intuitive and modular approach to accessing complex molecular architectures. This new method relies on a key silver additive that forms an active Ag nanoparticle-coated electrode surface8,9 in situ along with carefully chosen ligands that modulate the reactivity of Ni. Through judicious choice of conditions and ligands, the cross-couplings can be rendered highly diastereoselective. To demonstrate the simplifying power of these reactions, concise syntheses of 14 natural products and two medicinally relevant molecules were completed.


Subject(s)
Biological Products , Chemistry Techniques, Synthetic , Decarboxylation , Electrochemistry , Electrodes , Pharmaceutical Preparations , Carboxylic Acids/chemistry , Metal Nanoparticles/chemistry , Oxidation-Reduction , Silver/chemistry , Biological Products/chemical synthesis , Biological Products/chemistry , Nickel/chemistry , Ligands , Pharmaceutical Preparations/chemical synthesis , Pharmaceutical Preparations/chemistry , Electrochemistry/methods , Chemistry Techniques, Synthetic/methods
8.
Org Lett ; 25(44): 7958-7962, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37758233

ABSTRACT

Broad application of α,α-disubstituted cyclic amino acid derivatives in medicinal chemistry urges for analogue design with improved pharmacokinetic properties. Herein, we disclose an electrochemical approach toward unnatural THF- and THP-containing amino acid derivatives that relies on anodic decarboxylation-intramolecular etherification of inexpensive and readily available N-acetylamino malonic acid monoesters under Hofer-Moest reaction conditions. The decarboxylative cyclization proceeds under constant current conditions in an undivided cell in an aqueous medium without any added base. A successful bioisosteric replacement of the 1-aminocyclohexane-1-carboxylic acid subunit by the THP-containing amino acid scaffold in cathepsin K inhibitor balicatib helped to reduce lipophilicity while retaining low nanomolar enzyme inhibitory potency and comparable microsomal stability.


Subject(s)
Amino Acids , Amino Acids/chemistry , Decarboxylation , Cyclization
9.
J Biol Chem ; 299(7): 104904, 2023 07.
Article in English | MEDLINE | ID: mdl-37302552

ABSTRACT

Nitrosuccinate is a biosynthetic building block in many microbial pathways. The metabolite is produced by dedicated L-aspartate hydroxylases that use NADPH and molecular oxygen as co-substrates. Here, we investigate the mechanism underlying the unusual ability of these enzymes to perform successive rounds of oxidative modifications. The crystal structure of Streptomyces sp. V2 L-aspartate N-hydroxylase outlines a characteristic helical domain wedged between two dinucleotide-binding domains. Together with NADPH and FAD, a cluster of conserved arginine residues forms the catalytic core at the domain interface. Aspartate is found to bind in an entry chamber that is close to but not in direct contact with the flavin. It is recognized by an extensive H-bond network that explains the enzyme's strict substrate-selectivity. A mutant designed to create steric and electrostatic hindrance to substrate binding disables hydroxylation without perturbing the NADPH oxidase side-activity. Critically, the distance between the FAD and the substrate is far too long to afford N-hydroxylation by the C4a-hydroperoxyflavin intermediate whose formation is confirmed by our work. We conclude that the enzyme functions through a catch-and-release mechanism. L-aspartate slides into the catalytic center only when the hydroxylating apparatus is formed. It is then re-captured by the entry chamber where it waits for the next round of hydroxylation. By iterating these steps, the enzyme minimizes the leakage of incompletely oxygenated products and ensures that the reaction carries on until nitrosuccinate is formed. This unstable product can then be engaged by a successive biosynthetic enzyme or undergoes spontaneous decarboxylation to produce 3-nitropropionate, a mycotoxin.


Subject(s)
Aspartic Acid , Biocatalysis , Mixed Function Oxygenases , Streptomyces , Aspartic Acid/metabolism , Flavin-Adenine Dinucleotide/metabolism , Kinetics , Mixed Function Oxygenases/metabolism , NADP/metabolism , Oxidation-Reduction , Streptomyces/enzymology , Protein Domains , Arginine/metabolism , Substrate Specificity , Hydroxylation , Hydrogen Bonding , Static Electricity , Decarboxylation , Catalytic Domain
10.
J Org Chem ; 88(13): 9372-9380, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37343224

ABSTRACT

Visible-light-induced decarboxylative trifluoromethylselenolation of (hetero)aromatic carboxylic acids with [Me4N][SeCF3], oxidant, and catalysts afforded a variety of (hetero)aryl trifluoromethyl selenoethers in good yields. The reaction might involve a radical process, which generated (hetero)aryl radicals from the stable (hetero)aromatic carboxylic acids via oxidative decarboxylation with NFSI as the oxidant, [di-tBu-Mes-Acr-Ph][BF4] as the photocatalyst, and 1,1'-biphenyl as the cocatalyst. Both catalysts had a decisive influence on the reaction. The trifluoromethylselenolation was further promoted by the copper salts probably via Cu-mediated cross-coupling of the sensitive SeCF3 species with the in situ formed (hetero)aryl radicals. Advantages of the method include visible light irradiation, mild reaction conditions at ambient temperature, good functional group tolerance, no pre-functionalization/activation of the starting carboxylic acids, and applicability to drug molecules. This protocol is promising and synthetically useful, which overcame the limitations of the known trifluoromethylselenolation methods and represented the first decarboxylative trifluoromethylselenolation of (hetero)aromatic carboxylic acids.


Subject(s)
Carboxylic Acids , Copper , Copper/chemistry , Decarboxylation , Acids, Carbocyclic , Carboxylic Acids/chemistry , Oxidants
11.
Org Lett ; 25(27): 5006-5010, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37384561

ABSTRACT

Chiral propargylic cyanides are often used as small-molecule feedstocks for the introduction of chiral centers into various valuable products and complex molecules. Here, we have developed a highly atom-economical strategy for the chiral copper complex-catalyzed synthesis of chiral propargylic cyanides. Propargylic radicals can be smoothly obtained by direct decarboxylation of the propargylic carboxylic acids without preactivation. The reactions show excellent selectivity and functional group compatibility. Gram-scale reaction and several conversion reactions from chiral propargylic cyanide have demonstrated the synthetic value of this strategy.


Subject(s)
Carboxylic Acids , Copper , Decarboxylation , Catalysis , Stereoisomerism , Cyanides
12.
Org Lett ; 25(27): 5123-5127, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37382582

ABSTRACT

A protocol for a copper-catalyzed intermolecular cross-coupling cascade between 2-(2-bromoaryl)-1H-benzo[d]imidazole analogues and proline or pipecolic acid has been developed. The developed protocol allows access to a variety of synthetically useful N-fused pyrrolo or pyrido[1,2-a]imidazo[1,2-c]quinazoline scaffolds with high efficiency and good functional group compatibility. Proline or pipecolic acid plays a dual role in the reaction: as ligand and reactants. A mechanistically consecutive approach for the Ullmann coupling, decarboxylation, oxidation, and dehydration reaction process was presented.


Subject(s)
Copper , Quinazolines , Humans , Decarboxylation , Dehydration , Proline , Catalysis
13.
Methods Enzymol ; 685: 241-277, 2023.
Article in English | MEDLINE | ID: mdl-37245904

ABSTRACT

Salicylate hydroxylase (NahG) is a FAD-dependent monooxygenase in which the reduced flavin activates O2 coupled to the oxidative decarboxylation of salicylate to catechol or uncoupled from substrate oxidation to afford H2O2. This chapter presents different methodologies in equilibrium studies, steady-state kinetics, and identification of reaction products, which were important to understand the SEAr mechanism of catalysis in NahG, the role of the different FAD parts for ligand binding, the extent of uncoupled reaction, and the catalysis of salicylate's oxidative decarboxylation. These features are likely familiar to many other FAD-dependent monooxygenases and offer a potential asset for developing new tools and strategies in catalysis.


Subject(s)
Hydrogen Peroxide , Mixed Function Oxygenases , Decarboxylation , Mixed Function Oxygenases/metabolism , Oxidation-Reduction , Flavins/metabolism , Catalysis , Salicylates , Oxidative Stress , Kinetics , Flavin-Adenine Dinucleotide/metabolism
14.
Proc Natl Acad Sci U S A ; 120(22): e2221483120, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37216508

ABSTRACT

The enzymatic decarboxylation of fatty acids (FAs) represents an advance toward the development of biological routes to produce drop-in hydrocarbons. The current mechanism for the P450-catalyzed decarboxylation has been largely established from the bacterial cytochrome P450 OleTJE. Herein, we describe OleTPRN, a poly-unsaturated alkene-producing decarboxylase that outrivals the functional properties of the model enzyme and exploits a distinct molecular mechanism for substrate binding and chemoselectivity. In addition to the high conversion rates into alkenes from a broad range of saturated FAs without dependence on high salt concentrations, OleTPRN can also efficiently produce alkenes from unsaturated (oleic and linoleic) acids, the most abundant FAs found in nature. OleTPRN performs carbon-carbon cleavage by a catalytic itinerary that involves hydrogen-atom transfer by the heme-ferryl intermediate Compound I and features a hydrophobic cradle at the distal region of the substrate-binding pocket, not found in OleTJE, which is proposed to play a role in the productive binding of long-chain FAs and favors the rapid release of products from the metabolism of short-chain FAs. Moreover, it is shown that the dimeric configuration of OleTPRN is involved in the stabilization of the A-A' helical motif, a second-coordination sphere of the substrate, which contributes to the proper accommodation of the aliphatic tail in the distal and medial active-site pocket. These findings provide an alternative molecular mechanism for alkene production by P450 peroxygenases, creating new opportunities for biological production of renewable hydrocarbons.


Subject(s)
Alkenes , Fatty Acids , Fatty Acids/metabolism , Alkenes/chemistry , Decarboxylation , Cytochrome P-450 Enzyme System/metabolism , Oxidation-Reduction
15.
Int J Mol Sci ; 24(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37108586

ABSTRACT

The deprotonation of an organic substrate is a common preactivation step for the enzymatic cofactorless addition of O2 to this substrate, as it promotes charge-transfer between the two partners, inducing intersystem crossing between the triplet and singlet states involved in the process. Nevertheless, the spin-forbidden addition of O2 to uncharged ligands has also been observed in the laboratory, and the detailed mechanism of how the system circumvents the spin-forbiddenness of the reaction is still unknown. One of these examples is the cofactorless peroxidation of 2-methyl-3,4-dihydro-1-naphthol, which will be studied computationally using single and multi-reference electronic structure calculations. Our results show that the preferred mechanism is that in which O2 picks a proton from the substrate in the triplet state, and subsequently hops to the singlet state in which the product is stable. For this reaction, the formation of the radical pair is associated with a higher barrier than that associated with the intersystem crossing, even though the absence of the negative charge leads to relatively small values of the spin-orbit coupling.


Subject(s)
Tetralones , Decarboxylation , Oxygen/chemistry
16.
Biochemistry ; 62(9): 1443-1451, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37042731

ABSTRACT

Green photosynthetic bacteria, one of the phototrophs, have the largest and most efficient light-harvesting antenna systems, called chlorosomes. The core part of chlorosomes consists of unique bacteriochlorophyll c/d/e molecules. In the biosynthetic pathway of these molecules, a BciC enzyme catalyzes the removal of the C132-methoxycarbonyl group of chlorophyllide a. Two sequential reactions have been proposed for the BciC enzymatic demethoxycarbonylation: the BciC enzyme would catalyze the hydrolysis of the C132-methoxycarbonyl group, and the resulting carboxylic acid would be rapidly decarboxylated to generate pyrochlorophyllide a. In this study, we computationally predicted the three-dimensional structure of the BciC protein. Its active site was proposed based on structural analysis using docking simulation. In vitro enzymatic reaction assays of mutated BciC supported the prediction. The BciC enzymatic hydrolysis would be an aspartic/glutamic acid hydrolase, which involves the amino residues E85 and D180. Furthermore, Y58 and H126 might depend on stabilization and/or recognition with the substrate. Most importantly, H137 would protonate 13-C═O or deprotonate C132-COOH in the hydrolyzed product to promote decarboxylation. In conclusion, the BciC enzyme has the dual functions of hydrolysis and decarboxylation.


Subject(s)
Bacteriochlorophylls , Chlorophyllides , Hydrolysis , Catalytic Domain , Decarboxylation , Bacteriochlorophylls/chemistry , Chlorophyll , Bacterial Proteins/metabolism
17.
Chemistry ; 29(35): e202300265, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-36972020

ABSTRACT

Herein we report on the decarboxylative alkenylation between alkyl carboxylic acids and enol triflates. The reaction is mediated by a dual catalytic nickel and iridium system, operating under visible light irradiation. Two competing catalytic pathways, from the excited state iridium photocatalyst, are identified. One is energy transfer from the excited state, resulting in formation of an undesired enol ester. The desired pathway involves electron transfer, resulting in decarboxylation to ultimately give the target product. The use of a highly oxidizing iridium photocatalyst is essential to control the reactivity. A diverse array of enol triflates and alkyl carboxylic acids are investigated, providing both scope and limitations of the presented methodology.


Subject(s)
Carboxylic Acids , Iridium , Molecular Structure , Decarboxylation , Catalysis , Energy Transfer
18.
J Phys Chem B ; 127(13): 2927-2933, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36959730

ABSTRACT

Cytochrome P450OleT (CYP450OleT), a member of CYP450 peroxygenases, catalyzes unusual decarboxylation activity. Unlike other members of the peroxygenases family, CYP450OleT possesses a histidine at the 85th position, which was supposed to be the root cause of the decarboxylation activity in CYP450OleT. This work addresses the His85 → Gln mutant paradox, where mutation of His → Gln still shows efficient decarboxylation activity in CYP450OleT. The MD simulation of the H85Q mutant of CYP450OleT shows that in the absence of the histidine at the 85th position, an Asp239 plays a similar role via a well-organized water channel. Our simulation shows that such a water channel is vital for the optimal substrate positioning needed for the decarboxylation activity and is gated by the Q85-N242 residue pair. Interestingly, the MD simulation of the WT CYP450BSß shows a closed channel that blocks access to the Glu236 (analogous residue to Asp239 in CYP450OleT), and therefore, CYP450BSß shows low decarboxylation activity.


Subject(s)
Cytochrome P-450 Enzyme System , Histidine , Histidine/genetics , Decarboxylation , Mutation
19.
Forensic Toxicol ; 41(1): 105-113, 2023 01.
Article in English | MEDLINE | ID: mdl-36652066

ABSTRACT

PURPOSE: Decarboxylation of Δ9-tetrahydrocannabinolic acid (Δ9-THCA) to Δ9-tetrahydrocannabinol (Δ9-THC) by heating is a common method for determining total Δ9-THC. In the manual for cannabis identification and analysis, the United Nations Office on Drugs and Crime (UNODC) proposed decarboxylation conditions. Although the manual's primary analytical target is Δ9-THC, some reports also quantified cannabidiol (CBD). The authors assessed the efficiency of decarboxylation of Δ9-THCA and cannabidiolic acid (CBDA), a carboxylated form of CBD, under four decarboxylation conditions, including the UNODC condition. METHODS: Δ9-THCA and CBDA were heated in 2-mL glass vials at 150 °C for 12 min after the following treatment: condition A involves the addition of ethanol without capping, condition B involves non addition of solvent without capping, condition C involves non addition of solvent with capping, and condition D (UNODC condition) involves the addition of 0.5 mg/mL tribenzylamine (TBA) in ethanol without capping. The residue after heating was dissolved in methanol and then analyzed by high-performance liquid chromatography. RESULTS: The production of Δ9-THC and CBD was low (≤ 10.1%) under conditions A and B. Under condition C, Δ9-THC production was increased (53.4%), but CBD production was hardly improved (11.7%). Under condition D, Δ9-THC and CBD production dramatically increased to 83.2 and 71.0%, respectively. CONCLUSIONS: These findings indicated that TBA improved the production of Δ9-THC and CBD from their carboxylated forms; however, even in the presence of TBA, their production did not reach 100%. Forensic toxicologists should understand the effectiveness and limitations of decarboxylation under the UNODC condition.


Subject(s)
Cannabidiol , Dronabinol , Dronabinol/analysis , Decarboxylation , Solvents , Ethanol
20.
Protein J ; 42(1): 1-13, 2023 02.
Article in English | MEDLINE | ID: mdl-36527585

ABSTRACT

Ginkgo seed is an important Chinese medicine and food resource in China, but the toxicity of ginkgo acid in it limits its application. Previous studies have found that salicylic acid decarboxylase (Sdc) has a decarboxylation degradation effect on ginkgo acid. In order to improve the decarboxylation ability of Sdc to Ginkgo acid, 11 residues of the Sdc around the substrate (salicylic acid) were determined as mutation targets according to the analysis of crystal structure of Sdc (PDB ID:6JQX), from Trichosporon moniliiforme WU-0401, and a total of 30 single point mutant enzymes and one compound mutant enzyme were obtained. With Ginkgo acid C15:1 as the substrate, it was found from activity assay that Sdc-Y64T and Sdc-P191A had higher decarboxylation activity, which increased by 105.18% and 116.74% compared with that of wild type Sdc, respectively. The optimal pH for Sdc Y64T and Sdc-P191A to decarboxylate Ginkgo acid C15:1 was 5.5, which is the same as the wild type Sdc. The optimal temperature of Sdc-P191A was 50 °C, which was consistent with that of the wild type Sdc, but the optimal temperature of the mutant Sdc-Y64T was 40 °C, which was 10 °C lower than that of wild type Sdc.


Subject(s)
Carboxy-Lyases , Ginkgo biloba , Ginkgo biloba/metabolism , Decarboxylation , Salicylic Acid/metabolism , Carboxy-Lyases/chemistry , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...