Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
1.
Acta Biomater ; 181: 202-221, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692468

ABSTRACT

Dental pulp is the only soft tissue in the tooth which plays a crucial role in maintaining intrinsic multi-functional behaviors of the dentin-pulp complex. Nevertheless, the restoration of fully functional pulps after pulpitis or pulp necrosis, termed endodontic regeneration, remained a major challenge for decades. Therefore, a bioactive and in-situ injectable biomaterial is highly desired for tissue-engineered pulp regeneration. Herein, a decellularized matrix hydrogel derived from porcine dental pulps (pDDPM-G) was prepared and characterized through systematic comparison against the porcine decellularized nerve matrix hydrogel (pDNM-G). The pDDPM-G not only exhibited superior capabilities in facilitating multi-directional differentiation of dental pulp stem cells (DPSCs) during 3D culture, but also promoted regeneration of pulp-like tissues after DPSCs encapsulation and transplantation. Further comparative proteomic and transcriptome analyses revealed the differential compositions and potential mechanisms that endow the pDDPM-G with highly tissue-specific properties. Finally, it was realized that the abundant tenascin C (TNC) in pDDPM served as key factor responsible for the activation of Notch signaling cascades and promoted DPSCs odontoblastic differentiation. Overall, it is believed that pDDPM-G is a sort of multi-functional and tissue-specific hydrogel-based material that holds great promise in endodontic regeneration and clinical translation. STATEMENT OF SIGNIFICANCE: Functional hydrogel-based biomaterials are highly desirable for endodontic regeneration treatments. Decellularized extracellular matrix (dECM) preserves most extracellular matrix components of its native tissue, exhibiting unique advantages in promoting tissue regeneration and functional restoration. In this study, we prepared a porcine dental pulp-derived dECM hydrogel (pDDPM-G), which exhibited superior performance in promoting odontogenesis, angiogenesis, and neurogenesis of the regenerating pulp-like tissue, further showed its tissue-specificity compared to the peripheral nerve-derived dECM hydrogel. In-depth proteomic and transcriptomic analyses revealed that the activation of tenascin C-Notch axis played an important role in facilitating odontogenic regeneration. This biomaterial-based study validated the great potential of the dental pulp-specific pDDPM-G for clinical applications, and provides a springboard for research strategies in ECM-related regenerative medicine.


Subject(s)
Dental Pulp , Hydrogels , Regeneration , Stem Cells , Dental Pulp/cytology , Animals , Hydrogels/chemistry , Swine , Regeneration/drug effects , Stem Cells/cytology , Stem Cells/metabolism , Decellularized Extracellular Matrix/chemistry , Decellularized Extracellular Matrix/pharmacology , Cell Differentiation/drug effects , Regenerative Endodontics/methods , Humans , Tissue Engineering/methods
2.
Cell Biochem Funct ; 42(4): e4038, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38736214

ABSTRACT

The generation of insulin-producing cells (IPCs) is an attractive approach for replacing damaged ß cells in diabetic patients. In the present work, we introduced a hybrid platform of decellularized amniotic membrane (dAM) and fibrin encapsulation for differentiating adipose tissue-derived stem cells (ASCs) into IPCs. ASCs were isolated from healthy donors and characterized. Human AM was decellularized, and its morphology, DNA, collagen, glycosaminoglycan (GAG) contents, and biocompatibility were evaluated. ASCs were subjected to four IPC differentiation methods, and the most efficient method was selected for the experiment. ASCs were seeded onto dAM, alone or encapsulated in fibrin gel with various thrombin concentrations, and differentiated into IPCs according to a method applying serum-free media containing 2-mercaptoethanol, nicotinamide, and exendin-4. PDX-1, GLUT-2 and insulin expression were evaluated in differentiated cells using real-time PCR. Structural integrity and collagen and GAG contents of AM were preserved after decellularization, while DNA content was minimized. Cultivating ASCs on dAM augmented their attachment, proliferation, and viability and enhanced the expression of PDX-1, GLUT-2, and insulin in differentiated cells. Encapsulating ASCs in fibrin gel containing 2 mg/ml fibrinogen and 10 units/ml thrombin increased their differentiation into IPCs. dAM and fibrin gel synergistically enhanced the differentiation of ASCs into IPCs, which could be considered an appropriate strategy for replacing damaged ß cells.


Subject(s)
Adipose Tissue , Cell Differentiation , Fibrin , Insulin , Stem Cells , Humans , Cell Differentiation/drug effects , Fibrin/chemistry , Fibrin/metabolism , Adipose Tissue/cytology , Adipose Tissue/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Insulin/metabolism , Cells, Cultured , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/cytology , Decellularized Extracellular Matrix/chemistry , Decellularized Extracellular Matrix/metabolism , Decellularized Extracellular Matrix/pharmacology , Amnion/cytology , Amnion/metabolism , Amnion/chemistry
3.
Biomater Adv ; 161: 213883, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762928

ABSTRACT

Maintaining the viability of damaged pulp is critical in clinical dentistry. Pulp capping, by placing dental material over the exposed pulp, is a main approach to promote pulp-dentin healing and mineralized tissue formation. The dental materials are desired to impact on intricate physiological mechanisms in the healing process, including early regulation of inflammation, immunity, and cellular events. In this study, we developed an injectable dental pulp-derived decellularized matrix (DPM) hydrogel to modulate macrophage responses and promote dentin repair. The DPM derived from porcine dental pulp has high collagen retention and low DNA content. The DPM was solubilized by pepsin digestion (named p-DPM) and subsequently injected through a 25G needle to form hydrogel facilely at 37 °C. In vitro results demonstrated that the p-DPM induced the M2-polarization of macrophages and the migration, proliferation, and dentin differentiation of human dental pulp stem cells from deciduous teeth (SHEDs). In a mouse subcutaneous injection test, the p-DPM hydrogel was found to facilitate cell recruitment and M2 polarization during the early phase of implantation. Additionally, the acute pulp restoration in rat models proved that injectable p-DPM hydrogel as a pulp-capping agent had excellent efficacy in dentin regeneration. This study demonstrates that the DPM promotes dentin repair by modulating macrophage responses, and has a potential for pulp-capping applications in dental practice.


Subject(s)
Dental Pulp , Dentin , Hydrogels , Macrophages , Dental Pulp/cytology , Dental Pulp/drug effects , Animals , Macrophages/drug effects , Macrophages/metabolism , Humans , Dentin/drug effects , Dentin/chemistry , Hydrogels/chemistry , Mice , Rats , Decellularized Extracellular Matrix/chemistry , Decellularized Extracellular Matrix/pharmacology , Swine , Cell Differentiation/drug effects , Regeneration/drug effects , Cell Proliferation/drug effects , Stem Cells/drug effects , Stem Cells/cytology , Wound Healing/drug effects
4.
Sci Rep ; 14(1): 11991, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38796487

ABSTRACT

Physiochemical tissue inducers and mechanical stimulation are both efficient variables in cartilage tissue fabrication and regeneration. In the presence of biomolecules, decellularized extracellular matrix (ECM) may trigger and enhance stem cell proliferation and differentiation. Here, we investigated the controlled release of transforming growth factor beta (TGF-ß1) as an active mediator of mesenchymal stromal cells (MSCs) in a biocompatible scaffold and mechanical stimulation for cartilage tissue engineering. ECM-derived hydrogel with TGF-ß1-loaded alginate-based microspheres (MSs) was created to promote human MSC chondrogenic development. Ex vivo explants and a complicated multiaxial loading bioreactor replicated the physiological conditions. Hydrogels with/without MSs and TGF-ß1 were highly cytocompatible. MSCs in ECM-derived hydrogel containing TGF-ß1/MSs showed comparable chondrogenic gene expression levels as those hydrogels with TGF-ß1 added in culture media or those without TGF-ß1. However, constructs with TGF-ß1 directly added within the hydrogel had inferior properties under unloaded conditions. The ECM-derived hydrogel group including TGF-ß1/MSs under loading circumstances formed better cartilage matrix in an ex vivo osteochondral defect than control settings. This study demonstrates that controlled local delivery of TGF-ß1 using MSs and mechanical loading is essential for neocartilage formation by MSCs and that further optimization is needed to prevent MSC differentiation towards hypertrophy.


Subject(s)
Alginates , Bioreactors , Chondrogenesis , Hydrogels , Mesenchymal Stem Cells , Microspheres , Tissue Engineering , Alginates/chemistry , Tissue Engineering/methods , Humans , Hydrogels/chemistry , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Animals , Cartilage/metabolism , Cartilage/cytology , Tissue Scaffolds/chemistry , Decellularized Extracellular Matrix/chemistry , Transforming Growth Factor beta1/metabolism , Cell Differentiation , Cells, Cultured , Transforming Growth Factor beta/metabolism , Extracellular Matrix/metabolism
5.
Biomater Adv ; 161: 213873, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692180

ABSTRACT

The muscle tendon junction (MTJ) plays a crucial role in transmitting the force generated by muscles to the tendon and then to the bone. Injuries such as tears and strains frequently happen at the MTJ, where the regenerative process is limited due to poor vascularization and the complex structure of the tissue. Current solutions for a complete tear at the MTJ have not been successful and therefore, the development of a tissue-engineered MTJ may provide a more effective treatment. In this study, decellularised extracellular matrix (DECM) derived from sheep MTJ was used to provide a scaffold for the MTJ with the relevant mechanical properties and differentiation cues such as the relase of growth factors. Human mesenchymal stem cells (MSCs) were seeded on DECM and 10 % cyclic strain was applied using a bioreactor. MSCs cultured on DECM showed significantly higher gene and protein expression of MTJ markers such as collagen 22, paxillin and talin, than MSCs in 2D culture. Although collagen 22 protein expression was higher in the cells with strain than without strain, reduced gene expression of other MTJ markers was observed when the strain was applied. DECM combined with 10 % strain enhanced myogenic differentiation, while tenogenic differentiation was reduced when compared to static cultures of MSCs on DECM. For the first time, these results showed that DECM derived from the MTJ can induce MTJ marker gene and protein expression by MSCs, however, the effect of strain on the MTJ development in DECM culture needs further investigation.


Subject(s)
Cell Differentiation , Mesenchymal Stem Cells , Tendons , Tissue Engineering , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Tendons/cytology , Tendons/metabolism , Tendons/physiology , Humans , Animals , Tissue Engineering/methods , Sheep , Tissue Scaffolds/chemistry , Decellularized Extracellular Matrix/metabolism , Tensile Strength , Extracellular Matrix/metabolism , Cells, Cultured
6.
J Mater Chem B ; 12(22): 5513-5524, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38745541

ABSTRACT

BACKGROUND: In the domain of plastic surgery, nasal cartilage regeneration is of significant importance. The extracellular matrix (ECM) from porcine nasal septum cartilage has shown potential for promoting human cartilage regeneration. Nonetheless, the specific biological inductive factors and their pathways in cartilage tissue engineering remain undefined. METHODS: The decellularized matrix derived from porcine nasal septum cartilage (PN-DCM) was prepared using a grinding method. Human umbilical cord mesenchymal stem cells (HuMSCs) were cultured on these PN-DCM scaffolds for 4 weeks without exogenous growth factors to evaluate their chondroinductive potential. Subsequently, proteomic analysis was employed to identify potential biological inductive factors within the PN-DCM scaffolds. RESULTS: Compared to the TGF-ß3-cultured pellet model serving as a positive control, the PN-DCM scaffolds promoted significant deposition of a Safranin-O positive matrix and Type II collagen by HuMSCs. Gene expression profiling revealed upregulation of ACAN, COL2A1, and SOX9. Proteomic analysis identified potential chondroinductive factors in the PN-DCM scaffolds, including CYTL1, CTGF, MGP, ITGB1, BMP7, and GDF5, which influence HuMSC differentiation. CONCLUSION: Our findings have demonstrated that the PN-DCM scaffolds promoted HuMSC differentiation towards a nasal chondrocyte phenotype without the supplementation of exogenous growth factors. This outcome is associated with the chondroinductive factors present within the PN-DCM scaffolds.


Subject(s)
Cell Differentiation , Chondrogenesis , Mesenchymal Stem Cells , Nasal Septum , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Nasal Septum/cytology , Nasal Septum/chemistry , Animals , Swine , Cells, Cultured , Tissue Scaffolds/chemistry , Decellularized Extracellular Matrix/chemistry , Decellularized Extracellular Matrix/pharmacology , Extracellular Matrix/metabolism , Extracellular Matrix/chemistry , Tissue Engineering , Umbilical Cord/cytology
7.
J Biomed Mater Res B Appl Biomater ; 112(5): e35414, 2024 May.
Article in English | MEDLINE | ID: mdl-38733611

ABSTRACT

Utilizing natural scaffold production derived from extracellular matrix components presents a promising strategy for advancing in vitro spermatogenesis. In this study, we employed decellularized human placental tissue as a scaffold, upon which neonatal mouse spermatogonial cells (SCs) were cultured three-dimensional (3D) configuration. To assess cellular proliferation, we examined the expression of key markers (Id4 and Gfrα1) at both 1 and 14 days into the culture. Our quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis revealed a notable increase in Gfrα1 gene expression, with the 3D culture group exhibiting the highest levels. Furthermore, the relative frequency of Gfrα1-positive cells significantly rose from 38.1% in isolated SCs to 46.13% and 76.93% in the two-dimensional (2D) and 3D culture systems, respectively. Moving forward to days 14 and 35 of the culture period, we evaluated the expression of differentiating markers (Sycp3, acrosin, and Protamine 1). Sycp3 and Prm1 gene expression levels were upregulated in both 2D and 3D cultures, with the 3D group displaying the highest expression. Additionally, acrosin gene expression increased notably within the 3D culture. Notably, at the 35-day mark, the percentage of Prm1-positive cells in the 3D group (36.4%) significantly surpassed that in the 2D group (10.96%). This study suggests that the utilization of placental scaffolds holds significant promise as a bio-scaffold for enhancing mouse in vitro spermatogenesis.


Subject(s)
Cell Differentiation , Cell Proliferation , Placenta , Animals , Female , Mice , Male , Humans , Placenta/cytology , Placenta/metabolism , Pregnancy , Spermatogonia/cytology , Spermatogonia/metabolism , Tissue Scaffolds/chemistry , Decellularized Extracellular Matrix/chemistry , Decellularized Extracellular Matrix/metabolism , Stem Cells/metabolism , Stem Cells/cytology
8.
Cryo Letters ; 45(3): 177-184, 2024.
Article in English | MEDLINE | ID: mdl-38709189

ABSTRACT

BACKGROUND: Ovarian tissue cryopreservation for fertility preservation carries a risk of malignant cell re-seeding. Artificial ovary is a promising method to solve such a problem. However, ovary decellularization protocols are limited. Hence, further studies are necessary to get better ovarian decellularization techniques for the construction of artificial ovary scaffolds. OBJECTIVE: To establish an innovative decellularization technique for whole porcine ovaries by integrating liquid nitrogen with chemical agents to reduce the contact time between the scaffolds and chemical reagents. MATERIALS AND METHODS: Porcine ovaries were randomly assigned to three groups: novel decellularized group, conventional decellularized group and fresh group. The ovaries in the novel decellularized group underwent three cycles of freezing by liquid nitrogen and thawing at temperatures around 37 degree C before decellularization. The efficiency of the decellularization procedure was assessed through histological staining and DNA content analysis. The maintenance of ovarian decellularized extracellular matrix(ODECM) constituents was determined by analyzing the content of matrix proteins. Additionally, we evaluated the biocompatibility of the decellularized extracellular matrix(dECM) by observing the growth of granulosa cells on the ODECM scaffold in vitro. RESULTS: Hematoxylin and eosin staining, DAPI staining and DNA quantification techniques collectively confirm the success of the novel decellularization methods in removing cellular and nuclear components from ovarian tissue. Moreover, quantitative assessments of ODECM contents revealed that the novel decellularization technique preserved more collagen and glycosaminoglycan compared to the conventional decellularized group (P<0.05). Additionally, the novel decellularized scaffold exhibited a significantly higher number of granulosa cells than the conventional scaffold during in vitro co-culture (P<0.05). CONCLUSION: The novel decellularized method demonstrated high efficacy in eliminating DNA and cellular structures while effectively preserving the extracellular matrix. As a result, the novel decellularized method holds significant promise as a viable technique for ovarian decellularization in forthcoming studies. Doi.org/10.54680/fr24310110212.


Subject(s)
Cryopreservation , Decellularized Extracellular Matrix , Nitrogen , Ovary , Tissue Scaffolds , Animals , Female , Nitrogen/chemistry , Swine , Ovary/cytology , Tissue Scaffolds/chemistry , Cryopreservation/methods , Decellularized Extracellular Matrix/chemistry , Tissue Engineering/methods , Granulosa Cells/cytology , Fertility Preservation/methods , Extracellular Matrix/chemistry , DNA/analysis , DNA/chemistry
9.
Iran Biomed J ; 28(2&3): 90-101, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38770915

ABSTRACT

Background: Synthetic and natural polymer scaffolds can be used to design wound dressing for repairing the damaged skin tissue. This study investigated acute wound healing process using a decellularized skin scaffold and MEF. Methods: Mouse skin fragments were decellularized and evaluated by DNA content, toxicity, H&E staining, Raman confocal microscopy, Masson's trichrome staining, SEM, and biodegradation assays. The fragments were recellularized by the MEFs, and cell attachment and penetration were studied. De- and decellularized scaffolds were used wound dressings in mouse acute wound models as two experimental groups. Using morphological and immunohistochemical assessments, wound healing was evaluated and compared among the experimental and control groups. Results: DNA content of the decellularized tissue significantly reduced compared to the native control group (7% vs. 100%; p < 0.05). ECM components, e.g. collagen types I, III, and IV, elastin, and glycosaminoglycan, were well preserved in the decellularized group. The porosity and fiber arrangement in the stroma had a structure similar to normal skin tissue. A significant reduction in healing time was observed in the group treated with a decellularized scaffold. A thicker epidermis layer was observed in the recovered tissue in both experimental groups compared to the control group. Immunostaining showed a positive reaction for CD31 as an endothelial marker in both experimental groups, confirming new vascularization in these groups. Conclusion: Using MEFs with decellularized skin as a wound dressing increases the rate of wound healing and also the formation of new capillaries. This system could be beneficial for clinical applications in the field of tissue engineering.


Subject(s)
Fibroblasts , Neovascularization, Physiologic , Skin , Tissue Scaffolds , Wound Healing , Animals , Tissue Scaffolds/chemistry , Mice , Embryo, Mammalian , Decellularized Extracellular Matrix/chemistry , Angiogenesis
10.
Cells ; 13(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38667303

ABSTRACT

Skeletal muscle degeneration is responsible for major mobility complications, and this muscle type has little regenerative capacity. Several biomaterials have been proposed to induce muscle regeneration and function restoration. Decellularized scaffolds present biological properties that allow efficient cell culture, providing a suitable microenvironment for artificial construct development and being an alternative for in vitro muscle culture. For translational purposes, biomaterials derived from large animals are an interesting and unexplored source for muscle scaffold production. Therefore, this study aimed to produce and characterize bovine muscle scaffolds to be applied to muscle cell 3D cultures. Bovine muscle fragments were immersed in decellularizing solutions for 7 days. Decellularization efficiency, structure, composition, and three-dimensionality were evaluated. Bovine fetal myoblasts were cultured on the scaffolds for 10 days to attest cytocompatibility. Decellularization was confirmed by DAPI staining and DNA quantification. Histological and immunohistochemical analysis attested to the preservation of main ECM components. SEM analysis demonstrated that the 3D structure was maintained. In addition, after 10 days, fetal myoblasts were able to adhere and proliferate on the scaffolds, attesting to their cytocompatibility. These data, even preliminary, infer that generated bovine muscular scaffolds were well structured, with preserved composition and allowed cell culture. This study demonstrated that biomaterials derived from bovine muscle could be used in tissue engineering.


Subject(s)
Muscle, Skeletal , Myoblasts , Tissue Engineering , Tissue Scaffolds , Animals , Cattle , Tissue Scaffolds/chemistry , Muscle, Skeletal/cytology , Tissue Engineering/methods , Myoblasts/cytology , Biocompatible Materials/chemistry , Decellularized Extracellular Matrix/chemistry , Decellularized Extracellular Matrix/pharmacology , Cells, Cultured , Cell Proliferation , Extracellular Matrix/metabolism
11.
Methods Mol Biol ; 2803: 3-12, 2024.
Article in English | MEDLINE | ID: mdl-38676881

ABSTRACT

The extracellular matrix (ECM) forms most of the tissue microenvironment and is in a constant and dynamic equilibrium with cells. The decellularization process employs physical or chemical methods, or a combination of them, to remove the cellular components of tissues and organs while preserving the architecture and composition of the ECM. Depending on the methodology used, the decellularized ECM (dECM) is then suitable for research or clinical applications. Here, we describe an optimized protocol for the efficient decellularization of the human myocardium to generate 3D scaffolds of well-preserved cardiac extracellular matrix that can be used for in vitro or in vivo studies.


Subject(s)
Decellularized Extracellular Matrix , Myocardium , Tissue Engineering , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Myocardium/cytology , Myocardium/metabolism , Tissue Engineering/methods , Decellularized Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Extracellular Matrix/chemistry , Cellular Microenvironment
12.
ACS Biomater Sci Eng ; 10(5): 3203-3217, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38557027

ABSTRACT

The intricate electrophysiological functions and anatomical structures of spinal cord tissue render the establishment of in vitro models for spinal cord-related diseases highly challenging. Currently, both in vivo and in vitro models for spinal cord-related diseases are still underdeveloped, complicating the exploration and development of effective therapeutic drugs or strategies. Organoids cultured from human induced pluripotent stem cells (hiPSCs) hold promise as suitable in vitro models for spinal cord-related diseases. However, the cultivation of spinal cord organoids predominantly relies on Matrigel, a matrix derived from murine sarcoma tissue. Tissue-specific extracellular matrices are key drivers of complex organ development, thus underscoring the urgent need to research safer and more physiologically relevant organoid culture materials. Herein, we have prepared a rat decellularized brain extracellular matrix hydrogel (DBECMH), which supports the formation of hiPSC-derived spinal cord organoids. Compared with Matrigel, organoids cultured in DBECMH exhibited higher expression levels of markers from multiple compartments of the natural spinal cord, facilitating the development and maturation of spinal cord organoid tissues. Our study suggests that DBECMH holds potential to replace Matrigel as the standard culture medium for human spinal cord organoids, thereby advancing the development of spinal cord organoid culture protocols and their application in in vitro modeling of spinal cord-related diseases.


Subject(s)
Brain , Hydrogels , Induced Pluripotent Stem Cells , Organoids , Spinal Cord , Organoids/drug effects , Organoids/cytology , Organoids/metabolism , Humans , Animals , Spinal Cord/cytology , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Brain/metabolism , Rats , Decellularized Extracellular Matrix/chemistry , Decellularized Extracellular Matrix/pharmacology , Extracellular Matrix/metabolism , Extracellular Matrix/chemistry , Laminin/pharmacology , Laminin/chemistry , Proteoglycans/chemistry , Rats, Sprague-Dawley , Drug Combinations , Collagen
13.
ACS Biomater Sci Eng ; 10(5): 3218-3231, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38593429

ABSTRACT

Spinal cord organoids are of significant value in the research of spinal cord-related diseases by simulating disease states, thereby facilitating the development of novel therapies. However, the complexity of spinal cord structure and physiological functions, along with the lack of human-derived inducing components, presents challenges in the in vitro construction of human spinal cord organoids. Here, we introduce a novel human decellularized placenta-derived extracellular matrix hydrogel (DPECMH) and, combined with a new induction protocol, successfully construct human spinal cord organoids. The human placenta-sourced decellularized extracellular matrix (dECM), verified through hematoxylin and eosin staining, DNA quantification, and immunofluorescence staining, retained essential ECM components such as elastin, fibronectin, type I collagen, laminin, and so forth. The temperature-sensitive hydrogel made from human placenta dECM demonstrated good biocompatibility and promoted the differentiation of human induced pluripotent stem cell (hiPSCs)-derived spinal cord organoids into neurons. It displayed enhanced expression of laminar markers in comparison to Matrigel and showed higher expression of laminar markers compared to Matrigel, accelerating the maturation process of spinal cord organoids and demonstrating its potential as an organoid culture substrate. DPECMH has the potential to replace Matrigel as the standard additive for human spinal cord organoids, thus advancing the development of spinal cord organoid culture protocols and their application in the in vitro modeling of spinal cord-related diseases.


Subject(s)
Cell Differentiation , Decellularized Extracellular Matrix , Hydrogels , Induced Pluripotent Stem Cells , Organoids , Placenta , Spinal Cord , Humans , Organoids/cytology , Organoids/metabolism , Organoids/drug effects , Female , Placenta/cytology , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Pregnancy , Hydrogels/chemistry , Hydrogels/pharmacology , Spinal Cord/cytology , Spinal Cord/metabolism , Cell Differentiation/drug effects , Decellularized Extracellular Matrix/pharmacology , Decellularized Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Extracellular Matrix/chemistry , Laminin/pharmacology , Laminin/chemistry
14.
Acta Biomater ; 180: 295-307, 2024 May.
Article in English | MEDLINE | ID: mdl-38642787

ABSTRACT

Kidney regeneration is hindered by the limited pool of intrinsic reparative cells. Advanced therapies targeting renal regeneration have the potential to alleviate the clinical and financial burdens associated with kidney disease. Delivery systems for cells, extracellular vesicles, or growth factors aimed at enhancing regeneration can benefit from vehicles enabling targeted delivery and controlled release. Hydrogels, optimized to carry biological cargo while promoting regeneration, have emerged as promising candidates for this purpose. This study aims to develop a hydrogel from decellularized kidney extracellular matrix (DKECM) and explore its biocompatibility as a biomaterial for renal regeneration. The resulting hydrogel crosslinks with temperature and exhibits a high concentration of extracellular matrix. The decellularization process efficiently removes detergent residues, yielding a pathogen-free biomaterial that is non-hemolytic and devoid of α-gal epitope. Upon interaction with macrophages, the hydrogel induces differentiation into both pro-inflammatory and anti-inflammatory phenotypes, suggesting an adequate balance to promote biomaterial functionality in vivo. Renal progenitor cells encapsulated in the DKECM hydrogel demonstrate higher viability and proliferation than in commercial collagen-I hydrogels, while also expressing tubular cells and podocyte markers in long-term culture. Overall, the injectable biomaterial derived from porcine DKECM is anticipated to elicit minimal host reaction while fostering progenitor cell bioactivity, offering a potential avenue for enhancing renal regeneration in clinical settings. STATEMENT OF SIGNIFICANCE: The quest to improve treatments for kidney disease is crucial, given the challenges faced by patients on dialysis or waiting for transplants. Exciting new therapies combining biomaterials with cells can revolutionize kidney repair. In this study, researchers created a hydrogel from pig kidney. This gel could be used to deliver cells and other substances that help in kidney regeneration. Despite coming from pigs, it's safe for use in humans, with no harmful substances and reduced risk of immune reactions. Importantly, it promotes a balanced healing response in the body. This research not only advances our knowledge of kidney repair but also offers hope for more effective treatments for kidney diseases.


Subject(s)
Decellularized Extracellular Matrix , Hydrogels , Kidney , Tissue Engineering , Hydrogels/chemistry , Animals , Tissue Engineering/methods , Decellularized Extracellular Matrix/chemistry , Decellularized Extracellular Matrix/pharmacology , Swine , Extracellular Matrix/chemistry , Humans , Stem Cells/cytology , Stem Cells/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
15.
Int Wound J ; 21(5): e14888, 2024 May.
Article in English | MEDLINE | ID: mdl-38686514

ABSTRACT

Allografts derived from live-birth tissue obtained with donor consent have emerged as an important treatment option for wound and soft tissue repairs. Placental membrane derived from the amniotic sac consists of the amnion and chorion, the latter of which contains the trophoblast layer. For ease of cleaning and processing, these layers are often separated with or without re-lamination and the trophoblast layer is typically discarded, both of which can negatively affect the abundance of native biological factors and make the grafts difficult to handle. Thus, a full-thickness placental membrane that includes a fully-intact decellularized trophoblast layer was developed for homologous clinical use as a protective barrier and scaffold in soft tissue repairs. Here, we demonstrate that this full-thickness placental membrane is effectively decellularized while retaining native extracellular matrix (ECM) scaffold and biological factors, including the full trophoblast layer. Following processing, it is porous, biocompatible, supports cell proliferation in vitro, and retains its biomechanical strength and the ability to pass through a cannula without visible evidence of movement or damage. Finally, it was accepted as a natural scaffold in vivo with evidence of host-cell infiltration, angiogenesis, tissue remodelling, and structural layer retention for up to 10 weeks in a murine subcutaneous implant model.


Subject(s)
Placenta , Humans , Female , Pregnancy , Animals , Mice , Tissue Scaffolds , Freeze Drying/methods , Decellularized Extracellular Matrix , Wound Healing/physiology
16.
Biofabrication ; 16(3)2024 May 07.
Article in English | MEDLINE | ID: mdl-38663394

ABSTRACT

Extracellular matrix (ECM) rich whole organ bio-scaffolds, preserving structural integrity and essential growth factors, has potential towards regeneration and reconstruction. Women with cervical anomalies or trauma can benefit from clinical cervicovaginal repair using constructs rich in site specific ECM. In this study, complete human cervix decellularization was achieved using a modified perfusion-based stir bench top decellularization method. This was followed by physico-chemical processes including perfusion of ionic agents, enzymatic treatment and washing using detergent solutions for a duration of 10-12 d. Histopathological analysis, as well as DNA quantification confirmed the efficacy of the decellularization process. Tissue ultrastructure integrity was preserved and the same was validated via scanning electron microscopy and transmission electron microscopy studies. Biochemical analysis and structural characterizations like Fourier transform infrared, Raman spectroscopy of decellularized tissues demonstrated preservation of important proteins, crucial growth factors, collagen, and glycosaminoglycans.In vitrostudies, using THP-1 and human umbilical vein endothelial cell (HUVEC) cells, demonstrated macrophage polarization from M1 to M2 and vascular functional genes enhancement, respectively, when treated with decellularized human cervical matrix (DHCp). Crosslinked DHC scaffolds were recellularized with site specific human cervical epithelial cells and HUVEC, showing non-cytotoxic cell viability and enhanced proliferation. Furthermore, DHC scaffolds showed immunomodulatory effectsin vivoon small rodent model via upregulation of M2 macrophage genes as compared to decellularized rat cervix matrix scaffolds (DRC). DHC scaffolds underwent neo-vascularization followed by ECM remodeling with enhanced tissue integration.


Subject(s)
Cervix Uteri , Decellularized Extracellular Matrix , Human Umbilical Vein Endothelial Cells , Tissue Scaffolds , Humans , Female , Cervix Uteri/cytology , Animals , Decellularized Extracellular Matrix/chemistry , Decellularized Extracellular Matrix/pharmacology , Tissue Scaffolds/chemistry , Extracellular Matrix/metabolism , Extracellular Matrix/chemistry , Rats , Tissue Engineering , THP-1 Cells , Macrophages/metabolism , Macrophages/cytology , Rats, Sprague-Dawley
17.
Biomed Mater ; 19(4)2024 May 07.
Article in English | MEDLINE | ID: mdl-38653259

ABSTRACT

The decellularized matrix has a great potential for tissue remodeling and regeneration; however, decellularization could induce host immune rejection due to incomplete cell removal or detergent residues, thereby posing significant challenges for its clinical application. Therefore, the selection of an appropriate detergent concentration, further optimization of tissue decellularization technique, increased of biosafety in decellularized tissues, and reduction of tissue damage during the decellularization procedures are pivotal issues that need to be investigated. In this study, we tested several conditions and determined that 0.1% Sodium dodecyl sulfate and three decellularization cycles were the optimal conditions for decellularization of pulp tissue. Decellularization efficiency was calculated and the preparation protocol for dental pulp decellularization matrix (DPDM) was further optimized. To characterize the optimized DPDM, the microstructure, odontogenesis-related protein and fiber content were evaluated. Our results showed that the properties of optimized DPDM were superior to those of the non-optimized matrix. We also performed the 4D-Label-free quantitative proteomic analysis of DPDM and demonstrated the preservation of proteins from the natural pulp. This study provides a optimized protocol for the potential application of DPDM in pulp regeneration.


Subject(s)
Decellularized Extracellular Matrix , Dental Pulp , Proteomics , Tissue Engineering , Tissue Scaffolds , Dental Pulp/cytology , Proteomics/methods , Animals , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Decellularized Extracellular Matrix/chemistry , Sodium Dodecyl Sulfate/chemistry , Humans , Odontogenesis , Extracellular Matrix/metabolism , Extracellular Matrix/chemistry
18.
Res Vet Sci ; 173: 105257, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636324

ABSTRACT

Decellularization is an innovative method to create natural scaffolds by removing all cellular materials while preserving the composition and three-dimensional ultrastructure of the extracellular matrix (ECM). The obtention of decellularized reproductive organs in cats might facilitate the development of assisted reproductive techniques not only in this species but also in other felids. The aim was to compare the efficiency of three decellularization protocols on reproductive organs (ovary, oviduct, and uterine horn) in domestic cats. The decellularization protocol involved 0.1% sodium dodecyl sulfate and 1%Triton X-100. Protocol 1 (P1) entailed 2-cycles of decellularization using these detergents. Protocol 2 (P2) was like P1 but included 3-cycles. Protocol 3 (P3) was similar to P2, with the addition of deoxyribonuclease incubation. Reproductive organs from nine cats were separated into two sides. One side served as the control (non-decellularized organ) while the contralateral side was the treated group (decellularized organ). The treated organs were subdivided into 3 groups (n = 3 per group) for each protocol. Both control and treated samples were analyzed for DNA content, histology (nuclear and ECM (collagen, elastin, and glycosaminoglycans (GAGs)) density), ultrastructure by electron microscopy, and cytotoxicity. The results of the study showed that P3 was the only protocol that displayed no nucleus residue and significantly reduced DNA content in decellularized samples (in all the studied organs) compared to the control (P < 0.05). The ECM content in the ovaries remained similar across all protocols compared with controls (P > 0.05). However, elastic fibers and GAGs decreased in decellularized oviducts (P < 0.05), while collagen levels remained unchanged (P > 0.05). Regarding the uterus, the ECM content decreased in decellularized uterine horns from P3 (P < 0.05). Electron microscopy revealed that the microarchitecture of the decellularized samples was maintained compared to controls. The decellularized tissues, upon being washed for 24 h, showed cytocompatibility following co-incubation with sperm. In conclusion, when comparing different decellularization methods, P3 proved to be the most efficient in removing nuclear material from reproductive organs compared to P1 and P2. P3 demonstrated its success in decellularizing ovarian samples by significantly decreasing DNA content while maintaining ECM components and tissue microarchitecture. However, P3 was less effective in maintaining ECM contents in decellularized oviducts and uterine horns.


Subject(s)
Extracellular Matrix , Uterus , Animals , Female , Cats , Uterus/cytology , Ovary/cytology , Ovary/ultrastructure , Oviducts/cytology , Oviducts/ultrastructure , DNA/analysis , Octoxynol , Sodium Dodecyl Sulfate , Glycosaminoglycans/analysis , Decellularized Extracellular Matrix/chemistry
19.
Cell Tissue Bank ; 25(2): 721-734, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38671187

ABSTRACT

Tissue regeneration is thought to have considerable promise with the use of scaffolds designed for tissue engineering. Although polymer-based scaffolds for tissue engineering have been used extensively and developed quickly, their ability to mimic the in-vivo milieu, overcome immunogenicity, and have comparable mechanical or biochemical properties has limited their capability for repair. Fortunately, there is a compelling method to get around these challenges thanks to the development of extracellular matrix (ECM) scaffolds made from decellularized tissues. We used ECM decellularized sheep kidney capsule tissue in our research. Using detergents such as Triton-X100 and sodium dodecyl sulfate (SDS), these scaffolds were decellularized. DNA content, histology, mechanical properties analysis, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), biocompatibility, hemocompatibility and scanning electron microscope (SEM) imaging were measured. The results showed that the three-dimensional (3D) structure of the ECM remained largely intact. The scaffolds mentioned above had several hydrophilic properties. The best biocompatibility and blood compatibility properties were reported in the SDS method of 0.5%. The best decellularization scaffold was introduced with 0.5% SDS. Therefore, it can be proposed as a scaffold that has ECM like natural tissue, for tissue engineering applications.


Subject(s)
Kidney , Tissue Engineering , Tissue Scaffolds , Tissue Scaffolds/chemistry , Animals , Sheep , Tissue Engineering/methods , Kidney/cytology , Regeneration , Decellularized Extracellular Matrix/chemistry , Biocompatible Materials/chemistry , Sodium Dodecyl Sulfate/chemistry , Sodium Dodecyl Sulfate/pharmacology , Materials Testing , Extracellular Matrix/chemistry , Spectroscopy, Fourier Transform Infrared , Humans
20.
J Microbiol Biotechnol ; 34(5): 1003-1016, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38563106

ABSTRACT

This study explores the potential of plant-based decellularization in regenerative medicine, a pivotal development in tissue engineering focusing on scaffold development, modification, and vascularization. Plant decellularization involves removing cellular components from plant structures, offering an eco-friendly and cost-effective alternative to traditional scaffold materials. The use of plant-derived polymers is critical, presenting both benefits and challenges, notably in mechanical properties. Integration of plant vascular networks represents a significant bioengineering breakthrough, aligning with natural design principles. The paper provides an in-depth analysis of development protocols, scaffold fabrication considerations, and illustrative case studies showcasing plant-based decellularization applications. This technique is transformative, offering sustainable scaffold design solutions with readily available plant materials capable of forming perfusable structures. Ongoing research aims to refine protocols, assess long-term implications, and adapt the process for clinical use, indicating a path toward widespread adoption. Plant-based decellularization holds promise for regenerative medicine, bridging biological sciences with engineering through eco-friendly approaches. Future perspectives include protocol optimization, understanding long-term impacts, clinical scalability, addressing mechanical limitations, fostering collaboration, exploring new research areas, and enhancing education. Collectively, these efforts envision a regenerative future where nature and scientific innovation converge to create sustainable solutions, offering hope for generations to come.


Subject(s)
Regenerative Medicine , Tissue Engineering , Tissue Scaffolds , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Regenerative Medicine/methods , Plants , Decellularized Extracellular Matrix/chemistry , Perfusion/methods , Humans , Extracellular Matrix/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...