Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.035
Filter
1.
Food Res Int ; 188: 114441, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823858

ABSTRACT

Rice (Oryza sativa L.) is one of the most consumed cereals that along with several important nutritional constituents typically provide more than 21% of the caloric requirements of human beings. Aflatoxins (AFs) are toxic secondary metabolites of several Aspergillus species that are prevalent in cereals, including rice. This review provides a comprehensive overview on production factors, prevalence, regulations, detection methods, and decontamination strategies for AFs in the rice production chain. The prevalence of AFs in rice is more prominent in African and Asian than in European countries. Developed nations have more stringent regulations for AFs in rice than in the developing world. The contamination level of AFs in the rice varied at different stages of rice production chain and is affected by production practices, environmental conditions comprising temperature, humidity, moisture, and water activity as well as milling operations such as de-husking, parboiling, and polishing. A range of methods including chromatographic techniques, immunochemical methods, and spectrophotometric methods have been developed, and used for monitoring AFs in rice. Chromatographic methods are the most used methods of AFs detection followed by immunochemical techniques. AFs decontamination strategies adopted worldwide involve various physical, chemical, and biological strategies, and even using plant materials. In conclusion, adopting good agricultural practices, implementing efficient AFs detection methods, and developing innovative aflatoxin decontamination strategies are imperative to ensure the safety and quality of rice for consumers.


Subject(s)
Aflatoxins , Decontamination , Food Contamination , Oryza , Oryza/chemistry , Oryza/microbiology , Aflatoxins/analysis , Food Contamination/analysis , Decontamination/methods , Humans , Aspergillus/metabolism , Food Handling/methods , Food Microbiology
2.
Clin Oral Investig ; 28(6): 355, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833072

ABSTRACT

OBJECTIVES: Clinical trials testing new devices require prior training on dummies to minimize the "learning curve" for patients. Dentists were trained using a novel water jet device for mechanical cleaning of dental implants and with a novel cold plasma device for surface functionalisation during a simulated open flap peri-implantitis therapy. The hypothesis was that there would be a learning curve for both devices. MATERIALS AND METHODS: 11 dentists instrumented 44 implants in a dummy-fixed jaw model. The effect of the water jet treatment was assessed as stain removal and the effect of cold plasma treatment as surface wettability. Both results were analysed using photographs. To improve treatment skills, each dentist treated four implants and checked the results immediately after the treatment as feedback. RESULTS: Water jet treatment significantly improved from the first to the second implant from 62.7% to 75.3% stain removal, with no further improvement up to the fourth implant. The wettability with cold plasma application reached immediately a high level at the first implant and was unchanged to the 4th implant (mean scores 2.7 out of 3). CONCLUSION: A moderate learning curve was found for handling of the water jet but none for handling of the cold plasma. CLINICAL RELEVANCE: Scientific rational for study: Two new devices were developed for peri-implantitis treatment (Dental water jet, cold plasma). Dentists were trained in the use of these devices prior to the trial to minimize learning effects. PRINCIPAL FINDINGS: Experienced dentists learn the handling of the water jet very rapidly and for cold plasma they do not need much training. PRACTICAL IMPLICATIONS: A clinical study is in process. When the planned clinical study will be finished, we will find out, if this dummy head exercise really minimised the learning curve for these devices.


Subject(s)
Decontamination , Dental Implants , Plasma Gases , Water , Humans , Decontamination/methods , Peri-Implantitis/prevention & control , Surface Properties , Wettability
3.
Food Res Int ; 186: 114364, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729726

ABSTRACT

With the aim of reintroducing wheat grains naturally contaminated with mycotoxins into the food value chain, a decontamination strategy was developed in this study. For this purpose, in a first step, the whole wheat kernels were pre-treated using cold needle perforation. The pore size was evaluated by scanning electron microscopy and the accessibility of enzymes and microorganisms determined using fluorescent markers in the size range of enzymes (5 nm) and microorganisms (10 µm), and fluorescent microscopy. The perforated wheat grains, as well as non-perforated grains as controls, were then incubated with selected microorganisms (Bacillus megaterium Myk145 and B. licheniformis MA572) or with the enzyme ZHD518. The two bacilli strains were not able to significantly reduce the amount of zearalenone (ZEA), neither in the perforated nor in the non-perforated wheat kernels in comparison with the controls. In contrast, the enzyme ZHD518 significantly reduced the initial concentration of ZEA in the perforated and non-perforated wheat kernels in comparison with controls. Moreover, in vitro incubation of ZHD518 with ZEA showed the presence of two non-estrogenic degradation products of ZEA: hydrolysed zearalenone (HZEA) and decarboxylated hydrolysed ZEA (DHZEA). In addition, the physical pre-treatment led to a reduction in detectable mycotoxin contents in a subset of samples. Overall, this study emphasizes the promising potential of combining physical pre-treatment approaches with biological decontamination solutions in order to address the associated problem of mycotoxin contamination and food waste reduction.


Subject(s)
Food Contamination , Triticum , Zearalenone , Zearalenone/analysis , Triticum/chemistry , Triticum/microbiology , Food Contamination/analysis , Bacillus megaterium/enzymology , Decontamination/methods , Food Microbiology , Food Handling/methods , Bacillus/enzymology , Seeds/chemistry , Seeds/microbiology , Microscopy, Electron, Scanning
4.
PLoS One ; 19(5): e0302967, 2024.
Article in English | MEDLINE | ID: mdl-38722908

ABSTRACT

Ricin is a highly toxic protein, capable of inhibiting protein synthesis within cells, and is produced from the beans of the Ricinus communis (castor bean) plant. Numerous recent incidents involving ricin have occurred, many in the form of mailed letters resulting in both building and mail sorting facility contamination. The goal of this study was to assess the decontamination efficacy of several commercial off-the-shelf (COTS) cleaners and decontaminants (solutions of sodium hypochlorite [bleach], quaternary ammonium, sodium percarbonate, peracetic acid, and hydrogen peroxide) against a crude preparation of ricin toxin. The ricin was inoculated onto four common building materials (pine wood, drywall joint tape, countertop laminate, and industrial carpet), and the decontaminants were applied to the test coupons using a handheld sprayer. Decontamination efficacy was quantified using an in-vitro cytotoxicity assay to measure the quantity of bioactive ricin toxin extracted from test coupons as compared to the corresponding positive controls (not sprayed with decontaminant). Results showed that decontamination efficacy varied by decontaminant and substrate material, and that efficacy generally improved as the number of spray applications or contact time increased. The solutions of 0.45% peracetic acid and the 20,000-parts per million (ppm) sodium hypochlorite provided the overall best decontamination efficacy. The 0.45% peracetic acid solution achieved 97.8 to 99.8% reduction with a 30-min contact time.


Subject(s)
Decontamination , Ricin , Decontamination/methods , Sodium Hypochlorite/pharmacology , Sodium Hypochlorite/chemistry , Construction Materials , Peracetic Acid/pharmacology , Peracetic Acid/chemistry , Hydrogen Peroxide/chemistry , Animals , Disinfectants/pharmacology , Disinfectants/chemistry
5.
Adv Skin Wound Care ; 37(6): 292-296, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38767420

ABSTRACT

GENERAL PURPOSE: To review the management of a patient with a chemical burn from wet cement. TARGET AUDIENCE: This continuing education activity is intended for physicians, physician assistants, nurse practitioners, and registered nurses with an interest in skin and wound care. LEARNING OBJECTIVES/OUTCOMES: After participating in this educational activity, the participant will:1. Recognize the clinical presentation of a patient with a chemical burn from contact with wet cement.2. Describe features related to the pathophysiology of alkali burns from wet cement.3. Select the proper decontamination procedure after exposure to wet cement.4. Identify steps in the treatment of a patient with a chemical burn from contact with wet cement.


Alkali burn from wet cement is an often unrecognized and completely preventable chemical injury. The prevalence of cement burns is likely underestimated because of a lack of awareness and knowledge among both individuals who work with cement and healthcare providers. Chemical injuries have important differences compared with thermal burns: they are usually produced by longer exposure to noxious agents as opposed to short-term exposure that is quickly stopped. As a result, first aid approaches are different. Chemical burns from cement can be avoided with adequate skin and eye protection as well as immediate first aid if contact occurs. Manufacturers of bagged cement place warning notices on packaging, but these can be small and go unnoticed by consumers. Construction workers and amateur do-it-yourselfers should avoid direct contact with cement for any prolonged amount of time. Watertight boots, gloves, and clothing will prevent contact, and any accidental splash on exposed skin should be immediately washed away. Education and awareness of the consequences of cement burns are the best prevention.


Subject(s)
Burns, Chemical , Humans , Burns, Chemical/etiology , Burns, Chemical/therapy , Construction Materials/adverse effects , Male , Female , Decontamination/methods
6.
Arch Microbiol ; 206(6): 276, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38777923

ABSTRACT

Due to its increased safety over ultraviolet light, there is interest in the development of antimicrobial violet-blue light technologies for infection control applications. To ensure compatibility with exposed materials and tissue, the light irradiances and dose regimes used must be suitable for the target application. This study investigates the antimicrobial dose responses and germicidal efficiency of 405 nm violet-blue light when applied at a range of irradiance levels, for inactivation of surface-seeded and suspended bacteria. Bacteria were seeded onto agar surfaces (101-108 CFUplate-1) or suspended in PBS (103-109 CFUmL-1) and exposed to increasing doses of 405-nm light (≤ 288 Jcm-2) using various irradiances (0.5-150 mWcm-2), with susceptibility at equivalent light doses compared. Bacterial reductions ≥ 96% were demonstrated in all cases for lower irradiance (≤ 5 mWcm-2) exposures. Comparisons indicated, on a per unit dose basis, that significantly lower doses were required for significant reductions of all species when exposed at lower irradiances: 3-30 Jcm-2/0.5 mWcm-2 compared to 9-75 Jcm-2/50 mWcm-2 for low cell density (102 CFUplate-1) surface exposures and 22.5 Jcm-2/5 mWcm-2 compared to 67.5 Jcm-2/150 mWcm-2 for low density (103 CFUmL-1) liquid exposures (P ≤ 0.05). Similar patterns were observed at higher densities, excluding S. aureus exposed at 109 CFUmL-1, suggesting bacterial density at predictable levels has minimal influence on decontamination efficacy. This study provides fundamental evidence of the greater energy efficacy of 405-nm light for inactivation of clinically-significant pathogens when lower irradiances are employed, further supporting its relevance for practical decontamination applications.


Subject(s)
Decontamination , Light , Decontamination/methods , Bacteria/radiation effects , Bacteria/drug effects , Disinfection/methods , Microbial Viability/radiation effects , Staphylococcus aureus/radiation effects , Staphylococcus aureus/drug effects
7.
Dis Aquat Organ ; 158: 173-178, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813857

ABSTRACT

Working with aquatic organisms often requires handling multiple individuals in a single session, potentially resulting in cross-contamination by live pathogens or DNA. Most researchers address this problem by disposing of gloves between animals. However, this generates excessive waste and may be impractical for processing very slippery animals that might be easier to handle with cotton gloves. We tested methods to decontaminate cotton or nitrile gloves after contamination with cultured Batrachochytrium dendrobatidis (Bd) or after handling heavily Bd-infected Xenopus laevis with layered cotton and nitrile gloves. Bleach eliminated detectable Bd DNA from culture-contaminated nitrile gloves, but gloves retained detectable Bd DNA following ethanol disinfection. After handling a Bd-infected frog, Bd DNA contamination was greatly reduced by removal of the outer cotton glove, after which either bleach decontamination or ethanol decontamination followed by drying hands with a paper towel lowered Bd DNA below the detection threshold of our assay. These results provide new options to prevent pathogen or DNA cross-contamination, especially when handling slippery aquatic organisms. However, tradeoffs should be considered when selecting an animal handling procedure, such as the potential for cotton gloves to abrade amphibian skin or disrupt skin mucus. Disposing of gloves between animals should remain the gold standard for maintaining biosecurity in sensitive situations.


Subject(s)
Decontamination , Gloves, Protective , Animals , Decontamination/methods , Gloves, Protective/microbiology , Batrachochytrium , DNA, Fungal , Mycoses/veterinary , Mycoses/prevention & control , Mycoses/microbiology
8.
J Hazard Mater ; 472: 134562, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38743977

ABSTRACT

Nosocomial infections are a serious threat and difficult to cure due to rising antibiotic resistance in pathogens and biofilms. Direct exposure to cold atmospheric plasma (CAP) has been widely employed in numerous biological research endeavors. Nonetheless, plasma-treated liquids (PTLs) formulated with physiological solutions may offer additional benefits such as enhanced portability, and biocompatibility. Additionally, CAP-infused long-lived reactive oxygen and nitrogen species (RONS) such as nitrite (NO2-), nitrate (NO3-), and hydrogen peroxide (H2O2) can synergistically induce their antibacterial activity. Herein, we investigated those argon-plasma jet-treated liquids, including Ringer's lactate (RL), phosphate-buffered saline (PBS), and physiological saline, have significant antibacterial activity against nosocomial/gastrointestinal-causing pathogens, which might be due to ROS-mediated lipid peroxidation. Combining the conventional culture-based method with propidium iodide monoazide quantitative PCR (PMAxx™-qPCR) indicated that PTLs induce a minimal viable but non-culturable (VBNC) state and moderately affect culturable counts. Specifically, the PTL exposure resulted in pathogenicity dysfunction via controlling T3SS-related effector genes of S. enterica. Overall, this study provides insights into the effectiveness of PTLs for inducing ROS-mediated damage, controlling the virulence of diarrheagenic bacteria, and modulating homeostatic genes.


Subject(s)
Anti-Bacterial Agents , Plasma Gases , Plasma Gases/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Decontamination/methods , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Humans , Hydrogen Peroxide/chemistry
9.
Sensors (Basel) ; 24(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38793903

ABSTRACT

The traditional aviary decontamination process involves farmers applying pesticides to the aviary's ground. These agricultural defenses are easily dispersed in the air, making the farmers susceptible to chronic diseases related to recurrent exposure. Industry 5.0 raises new pillars of research and innovation in transitioning to more sustainable, human-centric, and resilient companies. Based on these concepts, this paper presents a new aviary decontamination process that uses IoT and a robotic platform coupled with ozonizer (O3) and ultraviolet light (UVL). These clean technologies can successfully decontaminate poultry farms against pathogenic microorganisms, insects, and mites. Also, they can degrade toxic compounds used to control living organisms. This new decontamination process uses physicochemical information from the poultry litter through sensors installed in the environment, which allows accurate and safe disinfection. Different experimental tests were conducted to construct the system. First, tests related to measuring soil moisture, temperature, and pH were carried out, establishing the range of use and the confidence interval of the measurements. The robot's navigation uses a back-and-forth motion that parallels the aviary's longest side because it reduces the number of turns, reducing energy consumption. This task becomes more accessible because of the aviaries' standardized geometry. Furthermore, the prototype was tested in a real aviary to confirm the innovation, safety, and effectiveness of the proposal. Tests have shown that the UV + ozone combination is sufficient to disinfect this environment.


Subject(s)
Robotics , Animals , Poultry , Ultraviolet Rays , Chickens , Decontamination/methods , Disinfection/methods , Ozone/chemistry , Internet of Things
10.
Biomed Res Int ; 2024: 6670159, 2024.
Article in English | MEDLINE | ID: mdl-38606199

ABSTRACT

Objective: This research study investigated the effect of new decontamination protocols on the bonding capacity of saliva-contaminated monolithic zirconia (MZ) ceramics cemented with two different monomer-containing self-adhesive resin cements. Materials and Methods: Standardized tooth preparations (4 mm. axial height) were performed for eighty human maxillary premolars under constant water cooling system. Eighty monolithic zirconia crowns (Whitepeaks Supreme Monolith) (n = 8/10 groups) were manufactured by CAD-CAM. Specimens were kept in the artificial saliva at pH = 7.3 for 1 minute at 37°C except control groups. The specimens have not been prealumina blasted and grouped according to cleaning methods and resin cements: control groups (C) (no saliva contamination + GPDM + 4-META (N) (CN) and 10-MDP (M) containing resin cement (CM), alumina blasted (AL) + GPDM + 4-META (ALN) and 10-MDP containing resin cement (ALM), zirconium oxide containing universal cleaning agent (IC) applied + GPDM + 4-META (N) (ICN) and 10-MDP containing resin cement (ICM), pumice (P) applied + GPDM + 4-META (PN) and 10-MDP containing resin cement (PM), and air-water spray (AW) applied + GPDM + 4-META (AWN) and 10-MDP containing resin cement (AWM)). Monobond Plus was applied to all surfaces for 40 seconds before cementation. The thermal cycle was applied at 5,000 cycles after cementation. The crowns were tested in tensile mode at a speed of 1 mm/min. The mode of failure was recorded. SEM examinations were carried out at different magnifications. Data were analyzed using rank-based Kruskal-Wallis and Mann-Whitney tests. Results: No significant differences were found between the surface treatments and between the two types of resin cements. Interaction effects between surface treatments and resin cements were found to be significant by two-way ANOVA analysis. ICM group resulted in significantly better bond strength results compared with CN. ICM was found to result in better bond strength results compared with PM. The combination of universal cleaning agent and 10-MDP containing resin cement had significantly the highest cementation bond strength values. The increasing order of mean tensile bond strength values of decontamination protocols was C < AW < P < AL < IC. The mean tensile bond strength of 10-MDP containing resin cement was slightly higher than GPDM + 4-META containing resin cement. Conclusions: Universal cleaning agents can be preferred as an efficient cleaning method with 10-MDP-containing cement after saliva contamination for better adhesive bond strength of 4 mm crown preparation height of monolithic zirconia ceramics.


Subject(s)
Dental Bonding , Methacrylates , Resin Cements , Humans , Resin Cements/chemistry , Saliva , Decontamination , Materials Testing , Zirconium/chemistry , Ceramics/chemistry , Water/chemistry , Shear Strength , Surface Properties , Dental Stress Analysis
11.
J Hazard Mater ; 470: 134190, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38593659

ABSTRACT

Organophosphorus compounds (OPs), such as VX, pose a significant threat due to their neurotoxic and hazardous properties. Skin decontamination is essential to avoid irreversible effects. Fuller's earth (FE), a phyllosilicate conventionally employed in powder form, has demonstrated decontamination capacity against OPs. The aim of this study was to develop a formulation that forms a film on the skin, with a significant OP removal capacity (>95 %) coupled with sequestration capabilities, favorable drying time and mechanical properties to allow for easy application and removal, particularly in emergency context. Various formulations were prepared using different concentrations of polyvinyl alcohol (PVA), FE and surfactants. Their removal and sequestration capacity was tested using paraoxon-ethyl (POX), a chemical that simulates the behavior of VX. Formulations with removal capacity levels surpassing 95 % were mechanically characterized and cell viability assays were performed on Normal Human Dermal Fibroblast (NHDF). The four most promising formulations were used to assess decontamination efficacy on pig ear skin explants. These formulations showed decontamination levels ranging from 84.4 ± 4.7 % to 96.5 ± 1.3 %, which is equivalent to current decontamination methods. These results suggest that this technology could be a novel and effective tool for skin decontamination following exposure to OPs.


Subject(s)
Decontamination , Paraoxon , Skin , Decontamination/methods , Animals , Skin/drug effects , Humans , Swine , Paraoxon/toxicity , Paraoxon/chemistry , Aluminum Compounds/chemistry , Cell Survival/drug effects , Silicates/chemistry , Polyvinyl Alcohol/chemistry , Magnesium Compounds/chemistry , Magnesium Compounds/pharmacology , Surface-Active Agents/chemistry , Fibroblasts/drug effects
12.
Am J Disaster Med ; 19(1): 25-31, 2024.
Article in English | MEDLINE | ID: mdl-38597644

ABSTRACT

OBJECTIVE: Chemical, biological, radiological, and nuclear (CBRN) incidents are a major challenge for emergency medical services and the involved hospitals, especially if decontamination needs to be performed nearby or even within the hospital campus. The University Hospital Wuerzburg has developed a comprehensive and alternative CBRN response plan. The focus of this study was to proof the practicability of the concept, the duration of the decontamination process, and the temperature management. METHODS: The entire decontamination area can be deployed 24/7 by the hospitals technical staff. Fire and rescue services are responsible for the decontamination process itself. This study was designed as full-scale exercise with 30 participants. RESULTS: The decontamination area was ready for operation within 30 minutes. The decontamination of the four simulated patients took 5.5 ± 0.6 minutes (mean ± SD). At the end of the decontamination process, the temperature of the undressed upper body of the training patients was 27.25 ± 1°C (81.05 ± 2°F) (mean ± SD) and the water in the shower was about 35°C (95°F). CONCLUSION: The presented concept is comprehensive and simple for a best possible care during CBRN incidents at hospitals. It ensures wet decontamination by Special Forces, while the technical requirements are created by the hospital.


Subject(s)
Disaster Planning , Emergency Medical Services , Mass Casualty Incidents , Humans , Pilot Projects , Hospitals, University , Decontamination
13.
Radiat Prot Dosimetry ; 200(7): 707-714, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38678315

ABSTRACT

Decorporation therapies increase the excretion of the incorporated material and therefore may reduce the probability of the occurrence of stochastic effects and may avoid deterministic effects in persons internally contaminated with radionuclides. The decision to initiate decorporation therapy should consider the effects of treatment in relation to the benefit provided. The literature presents threshold values above which treatment is recommended. The objective of this work is to collect and summarize recommendations on decorporation therapy. Ten key topics are presented for consideration by a multidisciplinary team when assessing the risk-benefit balance for performing decorporation therapy.


Subject(s)
Decontamination , Humans , Decontamination/methods , Risk Assessment/methods , Decision Making , Radioisotopes/analysis
14.
Rev. Odontol. Araçatuba (Impr.) ; 45(1): 16-22, jan.-abr. 2024. ilus
Article in Portuguese | LILACS, BBO - Dentistry | ID: biblio-1553248

ABSTRACT

Os implantes dentários osseointegrados representam uma parte da reabilitação oral, sendo uma alternativa cada vez mais utilizada na Odontologia a fim de substituir dentes perdidos. À semelhança das doenças periodontais, o fator etiológico das doenças periimplantares é o acúmulo de biofilme ao redor dos implantes dentários. Esta patologia também é classificada de acordo com os tecidos acometidos por ela, em mucosite e periimplantite. Para um correto tratamento e sucesso na terapia periimplantar, o diagnóstico deve ser baseado na sua etiologia e, seu tratamento segue variando de acordo com cada caso e estágio da doença. O presente trabalho tem como objetivo relatar o tratamento de um caso de periimplantite por meio da descontaminação da superfície do implante através de uma cirurgia de acesso. Paciente leucoderma, com 56 anos, sexo feminino, procurou atendimento no curso de graduação em Odontologia do centro Universitário da Serra Gaúcha ­ FSG, com queixa de sangramento/supuração, dor e edema na região dos dentes 15 e 16, reabilitados com implantes, e exposição de componentes protéticos. A paciente foi diagnosticada com periimplantite. O plano de tratamento proposto foi de promover a descontaminação da superfície do implante por meio de acesso cirúrgico. Com base no caso clínico apresentado, foi possível concluir que a técnica de tratamento utilizada foi eficaz para a resolução da periimplantite, no período de acompanhamento do estudo (90 dias), demonstrando melhora nos parâmetros clínicos e radiográficos(AU)


Osseointegrated dental implants represent a part of oral rehabilitation, being an increasingly used alternative in Dentistry in order to replace lost teeth. Similar to periodontal diseases, the etiological factor of peri-implant diseases is the accumulation of biofilm around dental implants. This pathology is also classified according to the tissues affected by it, in mucositis and peri-implantitis. For a correct treatment and success in peri-implant therapy, the diagnosis must be based on its etiology, and its treatment continues to vary according to each case and stage of the disease. The present work aims to report the treatment of a case of peri-implantitis through the decontamination of the implant surface through an access surgery. Caucasian female patient, 56 years old, sought care at the graduation course in Dentistry at Centro Universitário da Serra Gaúcha ­ FSG, complaining of bleeding/suppuration, pain and edema in the region of teeth 15 and 16, rehabilitated with implants, and exposure of prosthetic components. The patient was diagnosed with peri-implantitis. The proposed treatment plan was to promote decontamination of the implant surface through surgical access. Based on the presented clinical case, it was possible to conclude that the treatment technique used was effective for the resolution of periimplantitis, in the follow-up period of the study (90 days), demonstrating improvement in clinical and radiographic parameters(AU)


Subject(s)
Humans , Female , Middle Aged , Decontamination , Peri-Implantitis/therapy , Dental Implantation , Dental Implantation, Endosseous , Dental Plaque , Microbiota
15.
Food Chem ; 450: 139276, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38626711

ABSTRACT

This study presents a new method combining cold plasma-activated oxygen (CPAO) and microwave (MW) to decontaminate milkshake powder, exploring its effectiveness, mechanisms, and quality impact. CPAO (6 min) alone reduced bacterial load by 0.419 log CFU/g, and MW (3 min) by 0.030 log CFU/g. However, their co-application significantly amplified decontamination, achieving a 1.265 log CFU/g reduction. CPAO-MW co-treatment inflicted more oxidative damage on bacterial cell membranes and intracellular antioxidant defense system, leading to higher mortality. It also raised protein and lipid oxidation, while decreasing vitamin C and A levels in the powder. Specifically, CPAO (6 min)-MW (3 min) co-treatment increased the carbonyl content from 0.438 to 0.891 nmol/mg protein, malondialdehyde from 0.824 to 0.996 mg/kg, and lowered vitamin C from 162.151 to 137.640 mg/kg, and vitamin A from 2.05 to 1.38 mg/kg. This study shows CPAO-MW is effective for decontaminating powdered foods but highlights a need to reduce negative effects.


Subject(s)
Decontamination , Microwaves , Oxygen , Plasma Gases , Powders , Decontamination/methods , Powders/chemistry , Plasma Gases/pharmacology , Plasma Gases/chemistry , Oxygen/metabolism , Animals
16.
Food Chem ; 450: 139356, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38643647

ABSTRACT

Fruits and vegetables (F&V) are a significant part of our diet consumption. Microbial and pesticide residues are the predominant safety hazards of F&V consumption. Ordinary water washing has a very limited effect on removing microorganisms and pesticide residues and requires high water usage. Ultrasound, as an environmentally friendly technology, shows excellent potential for reducing microbial contamination and pesticide residue. This paper summarizes the research on ultrasound application in F&V washing, including the removal of microbial and pesticide residues and the comprehensive effect on their physicochemical characteristics. Furthermore, multimode ultrasonic-assisted techniques like multi-frequency and sequential ultrasound, combined with novel and conventional methods, can enhance the ultrasound-based effect and be more effective and sustainable in preventing F&V from microbial contamination. Overall, this work explicitly establishes the background on the potential for ultrasound cleaning and disinfection in the food industry as a green, effective, and ultimate method of preventing foodborne illnesses.


Subject(s)
Decontamination , Food Contamination , Fruit , Vegetables , Vegetables/chemistry , Vegetables/microbiology , Fruit/chemistry , Fruit/microbiology , Food Contamination/analysis , Food Contamination/prevention & control , Decontamination/methods , Decontamination/instrumentation , Ultrasonics/instrumentation , Food Handling/instrumentation , Food Handling/methods , Bacteria/isolation & purification , Pesticide Residues/chemistry , Disinfection/instrumentation , Disinfection/methods
17.
Chemosphere ; 358: 142135, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670513

ABSTRACT

We present the Three-Parameter Penalized Attributive Analysis for Upgrading (3PPAA-U) method as a tool for selecting the Best Upgrading Condition (BUC) in process engineering. Conventional approaches tend to consider only maximizing recovery (ε) and minimizing yield (γc); in contrast, the proposed 3PPAA-U introduces and seeks to maximize a third parameter, the grade (λ). This multi-parameter approach has not yet been explored in existing literature. In addition to controlling multiple parameters, the method is also superior to others as it includes inverse standard deviation weighting to avoid the distortion of results due to data dispersion. This reduces the possibility of drawing conclusions based on extreme values. Furthermore, the method can be used with a target-to-distance correction to optimize separation for multi-component feeds. To illustrate our method, we present a practical application of 3PPAA-U. Soil contaminated with potentially toxic elements (PTEs) was subject to hydrocycloning under 12 different experimental conditions. Results of these 12 experiments were compared using 3PPAA-U and conventional methods to identify the best upgrading conditions (BUC). Analysis reveals that the 3PPAA-U approach offers a simple and effective criterion for selecting BUC. Furthermore, 3PPAA-U has uses beyond soil remediation. It offers a versatile tool for optimizing operations across various processing and manufacturing environments offering a way to manage factors such as concentration, temperature, pressure, pH, Eh, grain size, and even broader environmental and economic considerations.


Subject(s)
Algorithms , Decontamination , Environmental Restoration and Remediation , Soil Pollutants , Soil , Soil Pollutants/analysis , Soil/chemistry , Environmental Restoration and Remediation/methods , Decontamination/methods
18.
Chem Biol Interact ; 395: 111001, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38641146

ABSTRACT

In recent years, various poisoning incidents have been reported, involving the alleged use of the so-called Novichok agents, resulting in their addition to the Schedule I list of the Organisation for the Prohibition of Chemical Warfare (OPCW). As the physicochemical properties of these agents are different from the 'classical' nerve agents, such as VX, research is needed to evaluate whether and to what extent existing countermeasures are effective. Here, we evaluated the therapeutic potential of RSDL® (Reactive Skin Decontamination Lotion Kit) for the neutralization of percutaneous toxicity caused by Novichok agents, both in vitro and in vivo. Experiments showed the three selected Novichok agents (A230, A232, A234) could be degraded by RSDL lotion, but at a different rate. The half-life of A234, in the presence of an excess of RSDL lotion, was 36 min, as compared to A230 (<5 min) and A232 (18 min). Following dermal exposure of guinea pigs to A234, application of the RSDL kit was highly effective in preventing intoxication, even when applied up until 30 min following exposure. Delayed use of the RSDL kit until the appearance of clinical signs of intoxication (3-4 h) was not able to prevent intoxication progression and deaths. This study determines RSDL decontamination as an effective treatment strategy for dermal exposure to the Novichok agent A234 and underscores the importance of early, forward use of skin decontamination, as rapidly as possible.


Subject(s)
Decontamination , Nerve Agents , Skin , Animals , Guinea Pigs , Decontamination/methods , Skin/drug effects , Nerve Agents/toxicity , Nerve Agents/chemistry , Skin Cream/pharmacology , Skin Cream/chemistry , Male , Chemical Warfare Agents/toxicity
19.
Environ Sci Pollut Res Int ; 31(22): 32416-32427, 2024 May.
Article in English | MEDLINE | ID: mdl-38649609

ABSTRACT

Mercury (Hg) tailings are hazardous solid wastes because of their high Hg concentrations. Modified phosphogypsum (PG) can decrease the bioactivity and mobility of heavy metals through chemisorption or electrostatic interactions. In this study, PG whiskers were modified by ZnCl2 and S, chitosan-hydrochloric acid, and thioglycolic materials; the resulting modified whiskers were used to decontaminate Hg tailings. Leaching tests and orthogonal experiments were conducted to optimize the modification parameters, including modifier quantity, pH, reaction temperature, and reaction time. The structure and physicochemical properties of the whiskers before and after modification were characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The stabilization efficiency of the modified PG whiskers ranged from 93.05 to 97.50%, demonstrating excellent stabilization effects. The stabilization was achieved through chemisorption or complexation. The decontamination process using modified whiskers reduced the pH and total nitrogen of the tailings; increased the cation exchange, total phosphorus, organic carbon, and total carbon; and made the tailings suitable for planting. In addition, the modified PG promoted the morphological transformation of Hg in the tailings, thereby significantly decreasing the Hg content in the effective states and mitigating the risk of Hg contamination.


Subject(s)
Calcium Sulfate , Decontamination , Mercury , Phosphorus , Mercury/chemistry , Decontamination/methods , Calcium Sulfate/chemistry , Phosphorus/chemistry , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared
20.
Disaster Med Public Health Prep ; 18: e91, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682448

ABSTRACT

The effect of filtering face piece grade 2 (FFP2) masks for infection prevention is essential in health care systems; however, it depends on supply chains. Efficient methods to reprocess FFP2 masks may be needed in disasters. Therefore, different UV-C irradiation schemes for bacterial decontamination of used FFP2 masks were investigated.Seventy-eight masks were irradiated with UV light for durations between 3 and 120 seconds and subsequently analyzed for the presence of viable bacteria on the inside. Ten masks served as the control group. Irradiation on the inside of the masks reduced bacteria in proportion to the dose, with an almost complete decontamination after 30 seconds. Outside irradiation reduced the quantity of colonies without time-dependent effects. Both sides of irradiation for a cumulated 30 seconds or more showed almost complete decontamination.Overall, this study suggests that standardized UV irradiation schemes with treatment to both sides might be an efficient and effective method for FFP2 mask decontamination in times of insufficient supplies.


Subject(s)
Decontamination , Masks , Ultraviolet Rays , Masks/standards , Decontamination/methods , Decontamination/instrumentation , Decontamination/standards , Humans , Equipment Reuse/standards , Disinfection/methods , Disinfection/instrumentation , Disinfection/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...